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HOMOGENEITY OF HYPERSURFACES IN A SPHERE

By

Akira YamaDa

§1. Introduction

A Riemannian manifold (M, {, >) is called homogeneous if its isometric
transformation group acts transitively on M. In general, it is not easy to obtain
the isometric transformation group for a given Riemannian manifold. Thus, it is
a question whether we can decide the homogeneity or the locally homogeneity of
a given Riemannian manifold by more elementary method. For this question, the
result of W. Ambrose and I. M. Singer [1] is known.

I. M. Singer defined the concept of the curvature homogeneous Riemannian
manifold (further, its higher order version). We here review it. Let M be an n-
dimensional Riemannian manifold with the Riemannian connection V and the
curvature tensor R. The k-th covariant differential of a tensor field K is denoted
by VKK and V'K = K, by definition. A linear isomorphism ® of the tangent
space T)M onto the tangent space T,M is naturally extended to a linear iso-
morphism of the tensor algebra I(T,M) onto I(T,M), which is also denoted by
®. If M is locally homogeneous, i.e., for each p, ge M there exists a local
isometry ¢ of a neighborhood of p onto a neighborhood of ¢ which maps p to g,
then for any integer k > 0, the following condition R(k) is satisfied:

R(k) : For each p,q € M, there exists a linear isometry ® of M
onto 7, M such that ®(V'R), = (V'R),, fori=0,1,... k.

In fact, ® is given by dp. A Riemannian manifold M satisfying the condition
R(0) (resp. R(k)) is called curvature homogeneous (resp. curvature homogeneous up
to order k). 1. M. Singer [17] dealt with the converse problem and he proved that
if a complete and simply connected Riemannian manifold M satisfies the
condition R(k) for a certain k, then M is homogeneous. Following his proof, we
see that if a Riemannian manifold M satisfies the condition R(k) for a certain k,
then M is locally homogeneous. In his theorem, the minimum of such integers k
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depends on M, but it is not greater than n(n —1)/2+ 1. He also posed the
following problem (and also its higher order version): Do there exist curvature
homogeneous spaces which are not homogeneous? This problem was solved by K.
Sekigawa [13], who constructed 3-dimensional complete simply connected non-
homogeneous curvature homogeneous spaces (cf. also [18]). With respect to the
first order version, K. Sekigawa [14] proved that a 3-dimensional complete simply
connected Riemannian manifold which is curvature homogeneous up to order 1 is
homogeneous. It is also known that the similar statement is valid in 4-dimensional
case ([16]). However, the higher order version is still unresolved in general.

K. Tsukada [20] studied curvature homogeneous hypersurfaces in real space
forms and classified them. In general, a curvature homogeneous hypersurface in a
real space form is not necessarily an isoparametric one, where an isoparametric
hypersurface is the hypersurface which has constant principal curvatures. By
using his result, we see that an n( >4)-dimensional complete curvature homogeneous
hypersurface in S"*! is isoparametric (cf. Theorem 4.6 and Remark 4.7).

In the present paper, in connection with the I. M. Singer’s problem, we
consider the homogeneity of hypersurfaces in S™*! and prove the following

THEOREM A. Let M be an oriented closed hypersurface in S™' which is
curvature homogeneous up to order 4. Then, M is homogeneous.

The author wishes to express his gratitude to Professor K. Sekigawa for his
many valuable suggestions and advices, and also to the referee for his valuable
suggestions.

§2. Preliminaries

Let M = (M"1(¢),{,)) be an (n+ 1)-dimensional real space form of
constant curvature ¢ and M an oriented hypersurface immersed in M by an
immersion . Since y is locally an imbedding, we may identify x e M with
Y(x) € M locally, and T,M with the subspace (dy).(TxM) of T,,,(X)M. Let V
(resp. V) be the Riemannian connection on M (resp. M) with respect to the
induced metric via y which is also denoted by ¢, ) (resp. the Riemannian metric
¢, ) and R (resp. R) the curvature tensor of M (resp. M). The curvature tensor
R is defined by

2.1) R(X,Y)Z =|Vx,Vy|Z-Vx ) Z

for X, Y, Z € ¥(M), where X(M) denotes the set of all tangential vector fields to
M. From now on, we use the notational convention: X, Y, Z, W, V; € X(M). We
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denote by ¢ the second fundamental form of M in M. Let & be the unit normal
vector field on M. We put

(2.2) o(X,Y) = H(X, Y)¢E.

The (0,2)-type tensor field H on M is called the second fundamental tensor field.
Then, the Gauss formula and the Weingarten formula are given respectively by

(2.3) VyY =VyY + H(X,Y),
(2.4) Vyé=—AX.

The (1,1)-type tensor field 4 is called the Weingarten map and is related to the
second fundamental tensor field H by

(2.5) H(X,Y)=(4X,Y).
The Gauss equation and the Codazzi equation are given respectively by
+HX,W)H(Y,Z)-H(X,Z)H(Y,W)
= HRo(X, VZ, W)
+HX,W)H(Y,Z)-H(X,Z)H(Y,W),
2.7) (VxH)(Y,Z) = (VyH)(X, Z).

We use the following notational convention:

~~~~~~

(2.8)

From (2.7) and (2.8), we have immediately

(2.9) (VHHYV,,..., VL, X; Y, Z) = (VP H)Y (V... V1, Y X, Z),

for i > 1. From (2.6) and (2.8), by direct calculation, we have easily the following
(2.10)  (VR(Vi,...,V;; X, VZ, W)= {(VH)V;,...,Vi;X,W)H(Y,Z)

- (VZH)(th VlaX,Z)H(Y> W)}
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i

2

j=l Ll1<ai<<a <i

{(VIH)(Viy... . Voo, Vary o, VX, WY VH) Vs Vi Y, Z)
—(VIH) Vi, ., Vay oo Vs VX, Z)VH) Vi, Va Y, W)}

for i>1.

§3. Isoparametric hypersurfaces in $™*!

In the first part of this section, we shall recall some well-known facts about
isoparametric hypersurfaces in real space forms. Let M be an oriented iso-
parametric hypersurface in a real space form M = (M"'(¢),(, >). From (2.6),
an isoparametric hypersurface in a real space form is necessarily curvature
homogeneous. We assume that M has g distinct constant principal curvatures,
that is, the Weingarten map A has g distinct eigenvalues 4 > 1 > --- > 4,
at each point, which are constants and have the same multiplicities on M.
E. Cartan studied isoparametric hypersurfaces in real space forms. He [3] showed
that, if there exists an isoparametric hypersurface in M with g > 3, it must be
¢ > 0. By using this fact, he classified completely closed isoparametric hyper-
surfaces in M with g = 1 or 2 and showed that all of them are homogeneous. For
the case g =3, he [4] showed that m; =m; =m; and classified closed iso-
parametric hypersurfaces in S”*! and checked that all of them are homogeneous.
Further, he [6] gave examples of isoparametric hypersurfaces in S"*! with g = 4
such that m; =---=mg =1 or 2 and checked their homogeneity. In the mean
time, he posed several problems. One of them is the following: Are all of closed
isoparametric hypersurfaces in S™! homogeneous? This problem which is a
special case of the I. M. Singer’s problem, was solved negatively (cf. [12], [7]).

In the rest of this section, we recall some several results about isoparametric
hypersurfaces in S"*!, which will be useful for our arguments in the present
paper. Let M be an oriented isoparametric hypersurface in S”t! with g distinct
constant principal curvatures. Let 4, =cotf;, 0< 0, <6, < - - <, <7 and m;
be the multiplicity of 1;, H. F. Miinzner [9] showed the following results.

PROPOSITION 3.1.  For an isoparametric hypersurface in S™*!, the number g of
distinct eigenvalues of A is 1, 2, 3, 4 or 6.
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PROPOSITION 3.2. The following equalities hold,

) 6 =6, + =1

n!

(i) m; = myyy, where i+g=i.

RemARK 3.3. Taking account of Proposition 3.1 and Proposition 3.2, we
may easily observe the following.

(i) In the case of g=2, 4 or 6, we have 4, #0 for any i=1,...,q.

(i) We assume that A; = 0 for some i (1 <i < g). Then we have g =1 or 3.

In the case of g = 1, we have 4, = 0, that is, M is totally geodesic in S"*!. In the
case of g =3, we have A; =+/3, 4 =0, A3 = —+/3, and hence M is minimal.

H. Takagi [19] studied oriented isoparametric hypersurfaces M in S™*!
satisfying the following condition H(k) which is analogous to R(k):

H(k) : For each p,q € M, there exists a linear isometry ® of 7T, M
onto T, M such that ®(V'H), = (V'H),, fori=0,1,...,k.

Using the results of H. F. Miinzner, he gave a condition for isoparametric
hypersurfaces in S"*! to be homogeneous:

THEOREM 3.4. Let M be a closed isoparametric hypersurface in S™ with g
distinct principal curvatures. Then, M is homogeneous if and only if the condition
H(g —2) is satisfied.

§4. Proof of the Theorem A

Let V be the n-dimensional real vector space with inner product {, > and
S2V* the space of (0,2)-type symmetric tensors on ¥ and SV*=
{H € S?V*|rank H > 3}. Then, we have the following

LemMmA 4.1. If the equality
G(xv W)H(y) Z) - G(xs Z)H(y, W) + H()C, W)G(ya Z) - H()C, Z)G(yv W) =0

holds for H € S*V* and G e S*V*, then G = 0.

ProoF. We choose an orthonormal basis {e,} (r=1,...,n) of ¥V such that
H(e,,e5) = p,0,5. Since rank H > 3, we may suppose that u, #0 for r=1,2,3.
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We use the following notational convention: H,, := H(e,,¢;), G,s := G(e,, ;) and
the range of indices: r, s, t, u=1,...,m; o,f=4,...,n.
By assumption, we have

(4.1) H,=H; = ,urérs, Gs = Gy,
(4.2) Hy=p #0, Hp=p #0, Hp=p #0,
(43) GruHst - GnH_m + HruGsl - Hrthu - 0

Forr=u=1, s=t=2, from (4.1) and (4.3), we have
(4.4) GiHy + Hi1Gx =0.
Similarly, from (4.1) and (4.3), we have also
(4.5) GuHy + Hi1G3 =0, GuHy+ HpGs =0.
From (4.5), we have
H33(Gy1Hy — Hi1Gy) = 0.
Thus, from (4.2), we have
(4.6) GuHy — Hj1Gn =0.
From (4.2), (4.4) ~ (4.6), we have
4.7 Gi1=0, Gnp=0, Gi=0.
For r=u=3, s=2, t=1, from (4.1) ~ (4.3), we have
(4.8) Gy =0.
Similarly, from (4.1) ~ (4.3), we have also
4.9) Gu=0, G=0, G;=0, Gop=0, G3=0, Gyu=0,
for a#f8 Forr=u=1 s=t=a0, frbm (4.1) ~ (4.3) and (4.7), we have
(4.10) G = 0.
Hence, from (4.1) and (4.7) ~ (4.10), we see G=0. O
Let M be an oriented hypersurface in M = (M"1(é),{, )). Let V =
T,M(pe M) and K(c®*V*) be the space of curvature-like tensors (for the

definition, see [2]). We define the map Fy:S8?V*x (V*® S?V*) x ---x
(R V* @S V*) - Kx (V*®K) x--- x (®V* ®K) by
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(4.11) Fo(H,VH,...,V*H) = (fo, f1,-- -, fi)s
(412) (fb(H))(x’ya z, W) = H(x, W)H(y) Z) - H(x’ Z)H(ya W),
(413) (ﬁ(H,VH,...,ViH))(vi,...,vl;x,y,z,w)

= {(ViH)(Ui> ses U X, W)H(y,Z) - (ViH)(Uiv“ -avl;xvz)H(y7 W)}

i

+ 2

j=1 Ll<a<<q<i

{(Vi‘jH)(u,-,...,ﬁaj,...,ﬁal, .. .,vl;x,w)(VjH)(vaj, ey Ui Vs Z)
- (Vi'jH)(vi,...,ﬁaj, . .,6a,,...,vl;x,z)(VjH)(vaj,...,val;y, w)}

for i > 1 (cf. [2]). We can easily check that Fy is well-defined. Then, by Lemma
4.1, we have the following

LemMma 4.2. For each integer k > 0, the map Fy is injective.

Proor. The injectivity of Fp is easy to see by the similar argument of the
classical rigidity theorem (cf. [8, Chapter VII, Theorem 6.2 and Corollary 6.3],
[20, Proposition 2.2]).

We shall prove the injectivity of Fi,...,F; by induction.

(I) We suppose that Fi(H,VH) = F;(H,VH). By injectivity of Fo(= fo), we
have H = H. Therefore, from (4.13) and hypothesis, we have

(4.14)  (VH —VH)(vi;x,w)H(y,2z) — (VH — VH)(vy; x, z) H(y, w)
+ H(x,w)(VH — VH)(v1;y,2) — H(x,z)(VH — VH)(v1;y,w) = 0.

From (4.14), by Lemma 4.1, we have VH = VH. Hence, we see that Fj is
injective.

(II) We assume that F; is injective. We suppose that Fi . (H,
VH,...,V*''H) = F,(H,VH,... ,V*'H). By the inductive assumption, we
have H=H, VH =VH,...,V'H = V'H. Therefore, from (4.13) and hypothesis,
we have

(4.15) (VP H — VP H) (0341, - - -, 015, W) H (9, 2)

_ (Vi+lH _ VH—]I_{)(UH_], e, 01 X, Z)H(y7 W)
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+ H(xa W)(Vi_HH - Vi+lﬁ)(vi+la .. .,01;y,Z)
— H(x,z)(VH — VP H) (0141, ..., 0159, w) = 0.

From (4.15), by Lemma 4.1, we have V**'H = V"' H. Hence, we see that Fj,; is
injective.
From (I) and (II), we may conclude that Lemma 4.2 follows. O

By Lemma 4.2, we have the following

Lemma 4.3. Let M be an oriented hypersurface in M = (M™1(¢),{, >). If
the rank of the second fundamental tensor field H is not less than 3 on M, then the
two conditions R(k) and H(k) is equivalent for each integer k > 0.

Proor. From (2.6) and (2.10), we may easily see that H(k) implies R(k).
Therefore, it is sufficient to show that R(k) implies H(k). We assume that R(k)
holds, i.e., for each p, g € M, there exists a linear isometry ® of T,M onto T,M
such that ®(V'R), = (V'R), for i =0,1,...,k. Taking account of (2.6), we define
the (0,4)-type tensor field 7 on M by

(4.16) T(X,Y,Z,W)=<{(R-ER)(X,Y)Z,W).

Since ®(R,) = R;, we have ®(7T,) = T,. Therefore, from (2.6), (4.12) and the
hypothesis, we have

(4.17) (o(@H,))(x,3,2,w) = (B(Ty))(x, 5,2, w)
= (T)(x,,2,w) = (fo(H))(%,3, 2, W)
for x, y, z, we T,M. From (2.10), (4.13) and the hypothesis, we have
(4.18) (fi(®H,, ®(VH),,...,®(V'H),)) (v, ..., 01;X,,2,W)
= {(@(V'R),) (vi; - - -, v15%, )2, W)
= (V'R 03y - -, v1; %, )z, W)
= (fi(Hy, (VH),, ..., (ViH)q))(v,-, VXY, 2, W)
for x, y, z, w, ;e T,M and i=1,...,k. From (4.17) and (4.18), we have
Fi(®H,, ®(VH),,...,®(V*H),) = Fi(H,,(VH),,...,(V*H),).

By Lemma 4.2, we have ®(V'H), = (V'H), for i = 0,1,...,k. Hence, we see that
H(k) holds. O
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In particular, for an oriented isoparametric hypersurface in S"*! we have the
following

LeEmMMA 4.4. Let M be an oriented isoparametric hypersurface in S"™*'. The
two conditions R(k) and H (k) are equivalent for each integer k(=0).

Proor. From (2.6) and (2.10), we may easily see that H(k) implies R(k).
Therefore, it suffices to show that R(k) implies H(k). If n =2, then, taking
account of (2.7), we may easily observe that VH = 0. Therefore, we have
immediately Lemma 4.4 in this case. If rank H > 3 on M, it reduces to Lemma
4.3. Thus, we shall show that Lemma 4.4 is also valid for the remaining case
where n >3 and rank H <3 on M.

We assume that n >3 and rank H# <3 on M. Then, taking account of
Remark 3.3 and Proposition 3.2 (ii), one of the following may occur:

(1) g=1 and 4; =0 (rank H = 0)

(2) g=3, Ai=V3, 12=0, 23=—V3 and n=3 (rankH = 2)

In the case of (1), M is totally geodesic in S"*'. Hence, we see that M
satisfies H(k) for any k.

In the case of (2), for any point p € M, we may choose an orthonormal basis
{e:(p)} (r=1,2,3) of T,M such that Ae,(p) = A.e,(p). Then, for each points p,
g€ M, we may define a linear isometry ®: T,M — T,M by ®(e,(p)) = e(q).
We use the following notational convention:

Rrsuu(p) = (Ry(er(p), es(p))ed(p), eu(p),

(VR)lrstu(P) = <(VR)p(el(p); e,-(P), es(p))et(p)a eu(p)>7
(V'R),,-.tyrstu(P) 7= {(V'R),(e1,(p), - - ., €1,(p); (), e5(p))er(p), eu(P);
Hy(p) == Hp(es(p), e(p)),

(VH),(p) == (VH),(e1(p); es(p), e:( D)),

(ViH)I,w-l;st(p) = (ViH)p(eli (P), ce € (P); es(p)7 et(p))

and so on, where the latin indices (except i and k) run over the range 1, 2, 3. By
the definition of ®, we easily see

((D(ViR)p)l,-ml;rstu(q) = (ViR)I,----Ilrstu(p)?

(4.19) ) ‘
(@(V'H),),,..,(9) = (V'H), 1 (P)-
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Therefore, we see immediately that

(i) ®(V'R), = (V'R), if and only if (V'R), 0 (P) = (V'R)}.1ren(9),

(i) ®(V'H), = (V'H), if and only if (V'H), ;,(p) = (V'H);.;0(a),
for each i > 0.

Since M is isoparametric,c M always satisfies H(0). We shall prove by
induction that R(k) implies H (k) for k > 1.

(I) We assume that M satisfies R(1). Since M is minimal by Remark 3.3 (ii),
we have

Hy+Hp+ Hy =0,
(4.20) (VH)jyy + (VH)jpy + (VH) 53 = 0.

From (2.10), we have

(4.21) (VR)}pg, = (VH)p, Hyt — (VH), Ho + Hn(VH) ,, — Hu(VH) g,

Irstu
= Asést(VH)Im - AS&SN(VH)M + A'rém(VH)lsl - A"arl(VH)Isu'
Since 4; # 0, from (4.21), (i) and hypothesis, we have

(VH);p3(p) = (VH) ;53(9),
(4.22) (VH)y33(p) = (VH)33(9),
(VH)30(p) = (VH)35,(9)-

Since A3 # 0, from (4.21), (i) and hypothesis, we have

(VH)12(p) = (VH)112(9),
(4.23) (VH)y11(p) = (VH)31(9),
(VH) 1(p) = (VH)122(9)-
From (4.20), (4.22) and (4.23), we have
(4.24) (VH)3(p) = (VH) 10(q)-
From (4.21), we have also

(VR)j313 = —V3(VH) 33 + V3(VH),y,,

(VR)31313 = \/§(VH)311 - \/g(VH)m-

Hence, by the hypothesis, we have
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(V) 133(p) = (VH)111(p) = (VH)33(9) = (VH) 11, (),

(VH)311(P) — (VH)335(p) = (VH)31,(q9) — (VH)333(9)-
On one hand, by (4.20), (4.22) and (4.23), we have

(VH) 1, (p) + (VH) 33(p) = (VH)111(9) + (VH) 133(9);

(VH)314(p) + (VH)333(p) = (VH)311(9) + (VH)335(9)-

Thus, from (4.25) and (4.26), we have

(4.25)

(4.26)

(VH)yy1(p) = (VH) 11 (9),

(VH) 33(p) = (VH)133(9),
(4.27)

(VH)31,(p) = (VH)3,(9),

(VH)333(p) = (VH)333(9)-

Therefore, from (2.7), (4.22) ~ (4.24), (4.27) and (ii), we see that M satisfies H(1).
(II) We assume that R(i) implies H(i). We suppose that M satisfies R(i + 1).
From (2.10), (i) and (ii), by inductive assumption, we have

428) 0= (V'R o) = (V'R rsn@)

= {(V*" H),, .4 (P)Ha(p) = (VT H), o (P) Hiu(P)
+ Hm(p)(VH_lH)I,-Hmllst(p) — Hy(p) (VH]H)I,-H.-.I,W(P)}
—{(V*H),, 4 D Hst(9) — (VT H), (@) H(9)
+ Hm(q)(vi+1H)l,-+|-~-llst(q) = Hrt(q)(Vi+1H)Ii+1‘--I|Su(q)}

= {ﬂsast(viﬂH)z,-ﬂ'-.[lm(l’) - ousésu(VHIH)I,v“-~11rt(p)
+ /‘rdm(VH_]H)l,-ﬂ---l‘st(p) - /‘r&rt(VH—lH)IH,;---Ilsu(p)}
— (B (VT H), (@) — 295 (VY HD, (@)
+ 1,00 (VH), (@) = 18(VTH), 0 (@)}

Thus, by the similar procedure as in (I), we may easily show that M satisfies
H(i+1).

From (I) and (II), by the induction, we can conclude that R(k) implies H (k)
for each k > 0. This completes the proof of Lemma 4.4. O
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From the above Lemma 4.4, taking account of Theorem 3.4 and Proposition 3.1,
we have the following

LEMMA 4.5. Let M be an oriented closed isoparametric hypersurface in S™*!.
If M satisfies the condition R(4), then M is homogeneous.

In general, a curvature homogeneous hypersurface in a real space form is not
necessarily an isoparametric one. Concerning this, K. Tsukada proved the fol-
lowing ([20, Theorem B])

THEOREM 4.6. Let M be an n(>4)-dimensional curvature homogeneous space
and  an isometric immersion of M into S™'. Then one of the following may
oceur:

(i) M is a Riemannian manifold of constant curvature 1.

(ii) The immersion Y has constant principal curvatures.

ReMARK 4.7. In the case (i) of the above Theorem 4.6, if the hypersurface
M is complete, by the result [11, Theorem 2], we see that M is totally geodesic
(and hence, M is isoparametric).

If n > 4, we see immediately that Theorem A follows from Lemma 4.5 and
Theorem 4.6 with Remark 4.7. Further, we can easily show that a 3-dimensional
oriented closed hypersurface in $”*! satisfying the condition R(1) is homogeneous
by taking account of the results of K. Sekigawa ([15, §2]) and E. Cartan ([3] and
[4]). Therefore, we have finally Theorem A.
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