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HOMOGENEITY OF HYPERSUMFACES IN A SPHERE

By

Akira Yamada

§1. Introduction

A Riemannian manifold (M, <, >) is called homogeneous if its isometric

transformation group acts transitivelyon M. In general,it is not easy to obtain

the isometric transformation group for a given Riemannian manifold. Thus, it is

a question whether we can decide the homogeneity or the locally homogeneity of

a given Riemannian manifold by more elementary method. For this question, the

result of W. Ambrose and I. M. Singer [1] is known.

I. M. Singer defined the concept of the curvature homogeneous Riemannian

manifold (further,its higher order version). We here review it. Let M be an n-

dimensional Riemannian manifold with the Riemannian connection V and the

curvature tensor R. The k-th.covariant differentialof a tensor fieldK is denoted

by VkK and V°K ― K, by definition. A linear isomorphism > of the tangent

space TPM onto the tangent space TqM is naturally extended to a linear iso-

morphism of the tensor algebra %{TPM) onto %(TqM), which is also denoted by

>. If M is locally homogeneous, i.e.,for each p, q e M there exists a local

isometry (p of a neighborhood of p onto a neighborhood of q which maps p to q,

then for any integer k > 0, the following condition R{k) is satisfied:

R(k) : For each/?, q e M, there existsa linear isometry >of TpM

onto TqM such that <D{ViR)p = {YR)q, for i = 0,1,..., k.

In fact, > is given by dtp. A Riemannian manifold M satisfying the condition

R(Q) (resp. R(k)) is called curvature homogeneous (resp. curvature homogeneous up

to order k). I. M. Singer [17] dealt with the converse problem and he proved that

if a complete and simply connected Riemannian manifold M satisfies the

condition R(k) for a certain k, then M is homogeneous. Following his proof, we

see that if a Riemannian manifold M satisfiesthe condition R(k) for a certain k,

then M is locally homogeneous. In his theorem, the minimum of such integers k
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depends on M, but it is not greater than n{n ―l)/2 + l. He also posed the

following problem (and also its higher order version): Do there exist curvature

homogeneous spaces which are not homogeneous? This problem was solved by K.

Sekigawa [13], who constructed 3-dimensional complete simply connected non-

homogeneous curvature homogeneous spaces (cf. also [18]). With respect to the

firstorder version, K. Sekigawa [14] proved that a 3-dimensional complete simply

connected Riemannian manifold which is curvature homogeneous up to order 1 is

homogeneous. It is also known that the similar statement is valid in 4-dimensional

case ([16]).However, the higher order version is stillunresolved in general.

K. Tsukada [20] studied curvature homogeneous hypersurfaces in real space

forms and classifiedthem. In general, a curvature homogeneous hypersurface in a

real space form is not necessarily an isoparametric one, where an isoparametric

hypersurface is the hypersurface which has constant principal curvatures. By

using his result,we see that ann(>4)-dimensional complete curvature homogeneous

hypersurface in Sn+l is isoparametric (cf. Theorem 4.6 and Remark 4.7).

In the present paper, in connection with the I. M. Singer's problem, we

consider the homogeneity of hypersurfaces in Sn+l and prove the following

Theorem A. Let M be an oriented closed hypersurface in Sn+l which is

curvature homogeneous up to order 4. Then, M is homogeneous.

The author wishes to express his gratitude to Professor K. Sekigawa for his

many valuable suggestions and advices, and also to the referee for his valuable

suggestions.

§2. Preliminaries

Let M = (Mn+l(c), <, ≫ be an (≪+ 1)-dimensional real space form of

constant curvature c and M an oriented hypersurface immersed in M by an

immersion x//.Since i/ris locally an imbedding, we may identify x e M with

ij/(x)e M locally, and TXM with the subspace (dijj)x(TxM) of T^x)M. Let V

(resp. V) be the Riemannian connection on M (resp. M) with respect to the

induced metric via i//which is also denoted by <, > (resp. the Riemannian metric

<, ≫ and R (resp. R) the curvature tensor of M (resp. M). The curvature tensor

R is defined by

(2.1) R{X, Y)Z=[Vx,Vy]Z-V[x,y]Z

for X, Y, Z e X(M), where 3E(M) denotes the set of all tangential vector fieldsto

M. From now on, we use the notational convention: X, Y, Z, W, Vt e X(M). We
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denote by a the second fundamental form of M in M. Let £be the unit normal

vector fieldon M. We put

(2.2) g(X, Y) = H(X, Y)Z.

The (0,2)-type tensor fieldH on M is called the second fundamental tensorfield.

Then, the Gauss formula and the Weingarten formula are given respectively by

(2.3)

(2.4) Vx£ = -AX.

The (1,1)-type tensor fieldA is called the Weingarten map and is related to the

second fundamental tensor field H by

(2.5) H(X, Y) = <AX, F>.

The Gauss equation and the Codazzi equation are given respectivelyby

(2.6) <J?(X, F)Z, W} = c≪X, fr>< 7, Z> - <X, Z>< Y, W}}

+ H(X, W)H{ Y, Z) - H(X, Z)H{ F, W)

=: c<i?o(^,F)Z, Wy

+ H(X, W)H(Y,Z) - H(X,Z)H{Y, W),

(2.7) (VXH)(Y,Z) = (VYH)(X,Z).

We use the following notationalconvention:

(V'ltXK,,...,Fi;X, F)Z := (V< VR)(X, Y)Z,
(2.8)

(v'#)(k,,..., vi;x, y) := (v' -#)(*, y)

From (2.7) and (2.8), we have immediately

(2.9) (Vi+lH)(Vh..., VhX; Y,Z) = (Vi+lH)(Vh ...,Vu 7;X,Z),

for i > 1. From (2.6) and (2.8),by direct calculation,we have easily the following

(2.10) ({YR)(Vh..., VVjX, Y)Z, Wy = {{YH){Vh... ,VX;X, W)H(Y,Z)

-(ViH)(Vu...1Vl]X,Z)H(Y,W)}
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{{Y-JH){Vh ..., Van ...,Kfll,...,Vi;X, W)(VjH)(Vaj Vai;Y,Z)

- (V'-'tf)(K,,...,Vaj,...,Vai,...,VUX,Z){WH){Vap ...,Vai;Y, W)}

for i > 1

§3. Isoparametric hypersurfaces in Sn+1

In the firstpart of this section, we shall recall some well-known facts about

isoparametric hypersurfaces in real space forms. Let M be an oriented iso-

parametric hypersurface in a real space form M ―(M"+1(c),<, ≫. From (2.6),

an isoparametric hypersurface in a real space form is necessarily curvature

homogeneous. We assume that M has g distinctconstant principal curvatures,

that is, the Weingarten map A has g distinct eigenvalues X＼> X2> ■■■> Xg

at each point, which are constants and have the same multiplicitieson M.

E. Cartan studied isoparametric hypersurfaces in real space forms. He [3] showed

that,if there exists an isoparametric hypersurface in M with g > 3, it must be

c > 0. By using this fact, he classifiedcompletely closed isoparametric hyper-

surfaces in M with g = 1 or 2 and showed that all of them are homogeneous. For

the case g ― 3, he [4] showed that mi ― mi = ms and classified closed iso-

parametric hypersurfaces in Sn+l and checked that all of them are homogeneous.

Further, he [6] gave examples of isoparametric hypersurfaces in Sn+l with g ― A

such that m＼ = ･･･ = m$ = 1 or 2 and checked their homogeneity. In the mean

time, he posed several problems. One of them is the following: Are all of closed

isoparametric hypersurfaces in Sn+l homogeneous? This problem which is a

special case of the I. M. Singer's problem, was solved negatively (cf. [12], [7]).

In the rest of this section, we recall some several results about isoparametric

hypersurfaces in Sn+l, which will be useful for our arguments in the present

paper. Let M be an oriented isoparametric hypersurface in Sn+l with g distinct

constant principal curvatures. Let kt = cot 6t, 0 < 6＼< 62 < ･･･ < 9g < n and mt

be the multiplicity of A{. H. F. Miinzner [9] showed the following results.

Proposition 3.1. For an isoparametric hyper surface in Sn+l, the number g of

distincteigenvalues of A is 1, 2, 3, 4 or 6.
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Proposition 3.2. The following equalitieshold,

(i) 0t = 0i +
i-l

n

= 0
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(ii)nii = rni+2, where i + g = i.

Remark 3.3. Taking account of Proposition 3.1 and Proposition 3.2, we

may easily observe the following.

(i) In the case of g = 2, 4 or 6, we have A,-̂ 0 for any i ―＼,...,g.

(ii)We assume that A,-= 0 for some i (1 < i < g). Then we have g = 1 or 3.

In the case of g = 1, we have X＼= 0, that is, M is totallygeodesic in Sn+l. In the

case of g ― 3, we have X＼= y/3, X2 = 0, A3 = ―V3, and hence M is minimal.

H. Takagi [19] studied orientedisoparametric hypersurfaces M in Sn+1

satisfyingthe following condition H{k) which is analogous to R{k):

H(k) : For each/?,qe M, thereexistsa linearisometry > of TpM

onto TqM such that<&{YH)p = {YH)q, fori = 0,1,...,k.

Using the resultsof H. F. Miinzner, he gave a condition for isoparametric

hypersurfacesin Sn+1 to be homogeneous:

Theorem 3.4. Let M be a closed isoparametric hypersurface in Sn+l with g

distinctprincipal curvatures. Then, M is homogeneous if and only if the condition

H (g ―2) is satisfied.

§4. Proof of the Theorem A

Let V be the ^-dimensional real vector space with inner product <, > and

S2V* the space of (0,2)-type symmetric tensors on V and S2V* =

{H e S2V* Iranki/ > 3}. Then, we have the following

Lemma 4.1. If the equality

G(x, w)H(y,z) - G(x,z)H(y, w) + H{x, w)G(y,z) - H(x, z)G(y, w)

holdsfor He$2V* and GeS2V*, then G = 0.

Proof. We choose an orthonormal basis {er} (r = 1,...,≪) of V such that

H(er,es) = uJrs. Since rank if > 3, we may suppose that u. # 0 for r = 1,2,3.



136 Akira Yamada

We use the following notational convention: Hrs := H(er, es), Grs

the range of indices: r, s, t, u = 1,...,≪; a,fi= 4,...,≪.

By assumption, we have

(4.1) Hrs ― Hsr = /irdrs, Grs = Gsr,

(4.2) ^T11=//1#0, JY22=/42#Q, /f33=/i3#0,

(4.3) GruHst - GrtHsu + HmGst - HrtGsu = 0.

For r

(4.4)

= u = 1 s = t = 2, from (4.1) and (4.3), we have

Gll#22+#ll<?22 = 0.

Similarly, from (4.1) and (4.3), we have also

(4.5) Gn if33 + H＼＼Gi3

From (4.5),we have

Thus, from (4.2),we have

(4.6)

0, (722^33 + H22G33 ― 0.

H33(GnH22-HnG22) = 0.

GnHzi ―H11G22 = 0

From (4.2),(4.4)~(4.6),we have

(4.7) Cm = 0, G22 = 0 G33 = 0

For r = u ― 3, s = 2, t=＼, from (4.1) ~(4.3), we have

(4.8) (hi = 0

Similarly, from (4.1) ~ (4.3), we have also

(4.9) G3l = 0, G32 = 0

for a # /?.For r u = 1, s

G(er,es)and

Gai = 0, G<*2 = 0, (ja3 = 0, Gap = 0,

f = a, from (4.1) - (4.3) and (4.7), we have

(4.10) Gaa = 0.

Hence, from (4.1)and (4.7)~(4.10),we see G = 0. Q

Let M be an oriented hypersurface in M = (Mw+I(c),<, ≫･ Let V =

TpM{p e M) and ^T(<=R4F*) be the space of curvature-liketensors(for the

definition,see [2]). We define the map Fk : S2V* x (V* (g)S2V*) x ■･･ x

(RkV*RS2V*)^Kx (V*RK)x---x (RkV*RK) by



(4.11)

(4.12)

(4.13)
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Fk(H,VH,...,VkH) = (fQJh...,fk),

(MH))(x,y, z,w) := H(x, w)H(y, z) - H(x, z)H(y, w),

(ft(H,VH,.. .yH)){vu.. ..bi;^,^)

:={(ViH)(vi,...,vl;x,w)H(y,z)-(ViH)(vi,...,vl;x,z)H(y,w)}

+
t E

.1 <ax<-<aj <i

{(V' JH){vh ..., vaj,.･･, vai,...,i>i;x, w)(VJH)(vaj, ...,vai;y,z)

- (V1 JH)(vt, ...,Vaf1...,vai,...,vi;x,z)(VJH)(vaj, ...,vai;y,w)}
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for i > 1 (cf.[2]).We can easily check that F^ Is well-defined. Then, by Lemma

4.1, we have the following

Lemma 4.2. For each integer k > 0, the map F^ is infective.

Proof. The injectivity of Fq is easy to see by the similar argument of the

classical rigidity theorem (cf. [8, Chapter VII, Theorem 6.2 and Corollary 6.3],

[20, Proposition 2.2]).

We shall prove the injectivity of F＼,..., F^ by induction.

(I) We suppose that F＼(H,VH) =Fi(H,VH). By injectivity of iro(=/o), we

have H = H. Therefore, from (4.13) and hypothesis, we have

(4.14) (VH - VH)(Vl; x, w)H(y,z) - (VH - VH)(Vl; x, z)H{y, w)

+ H(x,w)(VH -VH)(Vl;y,z) - H(x,z)(VH -VH)(Vl;y,w) = 0.

From (4.14), by Lemma 4.1, we have VH = VH. Hence, we see that F＼ is

injective.

(II) We assume that Ft is injective. We suppose that Fi+＼{H,

VH,..., V/+1 if) = Fi+i(H, VH,..., Vi+1H). By the inductive assumption, we

have H = H,VH = VH,...,V(H = V'J?. Therefore, from (4.13) and hypothesis,

we have

(4.15) (Vi+lH - Vi+lH)(vi+h ...,vi;x,w)H(y,z)

- (Vi+lH - Vi+lH)(vi+l,...,≫,;x, z)H(y, w)
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+ H(x,w)(yi+lH-Vi+lH)(vM,...,vl]y,z)

-H(x,z)(Vi+lH-Vi+lH)(vi+h...,vl;y,w)=Q.

From (4.15),by Lemma 4.1, we have Vl+lH ― Vz+1if. Hence, we see that Fi+＼is

injective.

From (I) and (II), we may conclude that Lemma 4.2 follows. □

By Lemma 4.2, we have the following

Lemma 4.3. Let M he an oriented hypersurface in M = (Mn+I(c),(, ≫. If

the rank of the second fundamental tensorfield H is not less than 3 on M, then the

two conditions R(k) and H(k) is equivalent for each integer k > 0.

Proof. From (2.6) and (2.10), we may easily see that H{k) implies R{k).

Therefore, it is sufficientto show that R{k) implies H(k). We assume that R(k)

holds, i.e.,for each p, q e M, there exists a linear isometry > of TpM onto TqM

such that ^(VlR)p = (ViR)q for / = 0,1,... ,k. Taking account of (2.6),we define

the (0,4)-type tensor field T on M by

(4.16) T(X, Y,Z, W) = <(i?- cRQ)(X, Y)Z, W}.

Since <b(Rp) = Rq, we have 0>{Tp) = Tq. Therefore, from (2.6), (4.12) and the

hypothesis, we have

(4.17) (M<$>Hp))(x,y,z,w) = (<l>(Tp))(x,y,z,w)

= {Tq){x,y,z,w) = (fo{Hq))(x,y,z,w)

for jc,y, z, w e TqM. From (2.10), (4.13) and the hypothesis, we have

(4.18) C/KOtfp, R(VJy)p, ･･･,<$>{YH)p)){vu ...,vuwz, w)

= <(R(ViR)p)(vi,...,vl;x,y)z,w}

= <({ViR)q)(vi,...,vl;x,y)z,wy

= (ft(Hq, (VH)q,..., (V'tf),))(≫,,...,vuxiy,z,w)

for jc,y, z, w, v{e TqM and / = l,...,k. From (4.17) and (4.18), we have

Fk(4>Hp, *(V/0p,
■･･,
^(V^) = Fk(Hqi (VH)q,..., (VkH)q).

By Lemma 4.2, we have ^(V''^ = (ViH)q for i = 0,1,... ,k. Hence, we see that

H(k) holds. D
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In particular,for an orientedisoparametric hypersurfacein Sn+l, we have the

following

Lemma 4.4. Let M be an orientedisoparametrichypersurfacein Sn+1. The

two conditionsR(k) and H(k) are equivalentfor each integerk(>0).

Proof. From (2.6) and (2.10), we may easily see that H{k) implies R(k).

Therefore, it suffices to show that R(k) implies H{k). If n = 2, then, taking

account of (2.7), we may easily observe that VH ― 0. Therefore, we have

immediately Lemma 4.4 in this case. If rank If > 3 on M, it reduces to Lemma

4.3. Thus, we shall show that Lemma 4.4 is also valid for the remaining case

where n > 3 and rank H < 3 on M.

We assume that n > 3 and rank If < 3 on M. Then, taking account of

Remark 3.3 and Proposition 3.2 (ii),one of the following may occur:

(1) 0=1 and M = 0 (rank/f = 0)

(2) 0 = 3, Xi = ＼/3,X2 = 0, h = -＼/3 and n = 3 (ranki/ = 2)

In the case of (1), M is totally geodesic in S"+l. Hence, we see that M

satisfiesH(k) for any k.

In the case of (2), for any point p e M, we may choose an orthonormal basis

{er(p)} (r ― 1,2,3) of TpM such that Aer(p) = krer(p). Then, for each points p,

q e M, we may define a linear isometry >: TpM ―>7"9M by >(er(/?))= er(^).

We use the following notational convention:

Rrstu{p)■=(Rp(er{p),es{p))et{p),eu{p)},

(VR)lrstu(P):= <(VJ?).(c/(^);er(/≫),e,^))c(/i),≪,(/≫)>,

(v'*)/,W/O := <(V'J*) (<?(,(/>),･･･ ,eh(p)-er(p),es(p))et(p),eu(p)y,

Hsl(p):=Hp(es(p),et(p)),

m)M ･= (VH)P(ei(py,es(p),et(p))

(V^)/,..,^) := (V/O,fo(/0, ...,≪,,(/,);ea(p),et(p))

and so on, where the latin indices (except i and k) ran over the range 1, 2, 3. By

the definition of >, we easily see

(4.19)
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Therefore, we see immediately that

(i) ^(v'/g, = (V'Jl), if and only if {V'R),,...,^) = (V'%..^),

(ii)O(V'/0, = (V/f), if and only if {YH)h...hst{p) = {YH＼.,xSt{q＼

for each i > 0.

Since M is isoparametric, M always satisfiesH(0). We shall prove by

induction that R(k) implies H(k) for k > 1.

(I) We assume that M satisfiesR{＼).Since M is minimal by Remark 3.3 (ii),

we have

Hn +1/22+^33=0,

(4.20)

From (2.10), we have

(VH),n + (VH^ + iVH)'" ' °

(4.21) (VR)lrstu = (VH)lruHst - (VH)lrtHsu + Hru(VH)lst - Hrt(VH)lsu

Since X＼# 0, from (4.21), (i) and hypothesis, we have

(VtfW/0 = (vmm(g),

(4.22) (V^)233(^) = (VtfW*),

(VH)322(p) = (VH)322(q).

Since A3 # 0, from (4.21),(i)and hypothesis,we have

(v#)/12(/0 = (v#)/12te),

(4.23) {VH)2U(p) = {VH)2U{q)1

(VH)m(p) = (VH)m(q).

From (4.20),(4.22) and (4.23),we have

(4.24) (Vif)222(/>)= (VH)222(q).

From (4.21),we have also

(V*)i3i3i= -v/3(VF)133 + V3(VH)m,

(Vi?)31313= V3(VH)m - V3(VH)w

Hence, by the hypothesis,we have
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(V#)i33(/0 - (VH)in(p) = (V#)133(*) - (VJOmfo),

(4.25)

(V^f)311(i?) - (V#)333(/0 = (VH)m(q) - (VH)m(q).

On one hand, by (4.20), (4.22) and (4.23), we have

(yH)m(p) + (V#)133(/0 = (VJy)m(^) + (V#)133fo),

(4.26)

(V#)3n(/0 + (V#)333(/>) = (yffhiM + (V#)333(*).

Thus, from (4.25) and (4.26), we have

(V/OmC/jHCVlOmte),

(V/O133QO = (V^)133(≪),

(4.27)

(v#)311(/0 = (Vtf)311fo),

(VH)m(p) = (V^)333(≪r).

Therefore, from (2.7), (4.22) - (4.24), (4.27) and (ii),we see that M satisfiesH{＼).

(II) We assume that R(i) implies H(i). We suppose that M satisfies R(i+ 1).

From (2.10), (i) and (ii), by inductive assumption, we have

(4.28) 0 = (V'+1*)/|+1.../irj<B(/0- (Vi+lR)li+v..hrstM

= {(Vi+lH)li+r..hMHsM
~
(Vi+lH)li+l..,Jp)Hsu(p)

+ Hm(p)(Vi+1H)li+v.,lSM - Hrt(p)(Vi+lH)li+v..hJP)}

~{{yi-＼lH)ii+v..hMHst{q) ~ {yi+lH)li+v,,hrM)Hsu{q)

+ HUqW+'H^M - Hrt(q)(Vi+lH)li+v..hJq)}

= {fisdst{Vi+lH)li+v,,iru{p) -aA≪(Vi+lH)ii+v..hM

+ fir3ru(Vi+lH)li+r.,iSt(p) - nAt{yi+lH)li+v..hsu{p)}

- {^^^^^...^(^-^(V^lf)^..^^)

4- firSm(Vi+lH)li+v.,iSt(q) - /iA(Vmn,+1.../,J^)}-

Thus, by the similar procedure as in (I), we may easily show that M satisfies

H(i+l).

From (I) and (II), by the induction, we can conclude that R(k) implies H(k)

for each k > 0. This completes the proof of Lemma 4.4. □
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From the above Lemma 4.4,taking account of Theorem 3.4 and Proposition 3.1,

we have the following

Lemma 4.5. Let M be an oriented closed isoparametric hyper surface in Sn+l.

If M satisfiesthe condition R{4), then M is homogeneous.

In general, a curvature homogeneous hypersurface in a real space form is not

necessarily an isoparametric one. Concerning this,K. Tsukada proved the fol-

lowing ([20, Theorem B])

Theorem 4.6. Let M be an n(>4)-dimensional curvaturehomogeneous space

and i/fan isometricimmersion of M into Sn+l. Then one of thefollowing may

occur:

(i) M is a Riemannian manifold of constant curvature1.

(ii)The immersion ＼l/has constantprincipalcurvatures.

Remark 4.7. In the case (i) of the above Theorem 4.6,if the hypersurface

M is complete, by the result [11, Theorem 2], we see that M is totally geodesic

(and hence, M is isoparametric).

If n > 4, we see immediately that Theorem A follows from Lemma 4.5 and

Theorem 4.6 with Remark 4.7. Further, we can easily show that a 3-dimensional

oriented closed hypersurface in Sn+1 satisfyingthe condition R(l) is homogeneous

by taking account of the resultsof K. Sekigawa ([15,§2]) and E. Cartan ([3] and

[4]).Therefore, we have finally Theorem A.
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