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TOTALLY COMPLEX SUBMANIFOLDS OF THE CAYLEY

PRO.TECTIVF PLANE

By

Liu Ximin

Abstract. Let K be the sectionalcurvature of a compact sub-

manifold M of the Cayley projectiveplane CaP2. In thispaper, we

prove that the compact totallycomplex submanifold M of complex

dimension 2 in CaP2 satisfyingK > (1/8) is totallygeodesic and

m ―rp2

1. Introduction

Let M be an ^-dimensional compact Kaehler submanifold of complex

projective space CP^l). Denote by K the sectional curvature of M. In [6],Ros

and Verstraelen showed that if K > (1/8), then M is totally geodesic. The

analogous result in the case of totally complex submanifolds of quaternion

projective space HPm{＼) was obtained by Xia [7].In the present paper, we prove

the following same type result for totally complex submanifolds of the Cayley

Droiective plane CaP2.

Theorem. Let M be a compact totallycomplex submanifold of complex

dimension 2, immersed in the Cayley pwjective plane CaP2. If the sectional

curvatureK of M satisfyingK > (1/8), then M is totallygeodesicin CaP2 and

m2 ―rp2

2. Cayley projectiveplane

In thissection,we review simply the fundamental resultsabout the Cayley

proiectiveplane, for detailssee [41.
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Let us denote by Ca the Cayley number, it possesses a multiplicative identity

1 and a positive definite bilinear form <･,･> with norm ||a||= {a,a}, satisfying

＼＼ab＼＼= ＼＼a＼＼＼＼b＼＼,for a,b e Ca. Every element ae Ca can be expressed in the form

a = aol + a＼ for aR e R and (a＼, 1> = 0. The conjugation map a ―> a* = oq＼ ―a＼

is an anti-automorphism (ah)* ― b*a*.

A canonical basis for Ca is any basis of the form {l,eo,ei,... ,e&＼ satis-

fying: (i) <e,-,1> = 0; (ii) <e,-,<?7->= {0 for i #7, and 1 otherwise}; (iii) ef = ―1;

dej + ejd = 0 (1 #7); (iv) 6^+1=^+3 for ieZ7.

Let F be a vector space of real dimension 16 with automorphism group

Spin(9). the splitting

V=CaRCa

together with the above canonical basis on each summand, endows V with what

we may refer to as a Cayley structure. We know that the Cayley projective plane

CaP1 is the 16-dimensional Riemannian symmetric space whose tangent space

admits the Cayley structure pointwise. In the following, let {Io,...,Ie} be the

Cayley structure on CaP2.

The curvature tensor R of CaP2 is given in [21 as follows

(2.1) R((a,h),(Cjd))(e,f)= ^((4<c,e><i-4<a,e>c + (ed)b* - (eb)d*

+ (ad - cb)f*),(4<d,f>b - 4{b,f}d + a*(cf)

-c*{af)-e*{ad-cb))).

On Ca 0 Ca we have the positivedefinitebilinearform <, > given by

(2.2) <(fl>6),M)> = <a,c> + <M>.

3. Totally complex submanifolis

Let V c TxCaP2 be a real vector subspace, we say that V is a totally

complex subspace if there existsan / such that there existsa basis with I = Iq and

(i)Iq V cz V, and (ii)4 V is perpendicular to V for 1 < k < 6. Clearly, if F is a

maximal subspace of this kind then dim^ V = 4.

Let M be a compact Riemannian manifold isometrically immersed in CaP2

by j : M ―>CflP2. Denote by A and
^4

the second fundamental form ofy and the

Weingarten endomorphism respectively. Then we have

(3.1) <MX, Y),N} = (X,AN(Y)} X,YeTM,Ne TML
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We take V, V and V1" to be the Riemannian connections on CaP2, M and the

normal connection on M respectively. The corresponding curvature tensors are

denoted by R, R, and R1 respectively.The firstand second covariant derivatives

of h are given by

(3.2) (V/s)(X, Y-Z) = Vf(h(X, Y)) - h(VzX, Y) - h(X,VzY)

(3.3) (V2h)(X, Y;Z; W) = Vi(Vh)(X, Y-Z) - (Vh)(VwX, Y;Z)

- (Vh)(X,VwY;Z) - (Vh)(X, Y;VWZ)

X, Y,Z,W e TM.

The Codazzi equation takes the following form

(3.4) (V/i)(XT(1),XT(2);ZT(3)= (Vh)(XuX2;X3),

where x{i)e S3 the permutation group and the arguments are in the tangent space

of M. Recalling that h and (V/i) are symmetric, we have the Ricci identity

(3.5) {th){X, Y- Z; W) - (th)(X, Y- W＼ Z)

= -RL{Z, W)h(X, Y) + h{R(Z, W)X, Y) + h{X,R(Z, W) Y).

We say thatj : M ―>CaP2 is a totallycomplex immersion if W =j*{TM) is

a totally complex subspace for each point of M. Observe that every totally

complex submanifold of CaP2 has a Kaehler structure. We set I = Iq, and

consequently we have

(3.6) (a) VXI = O

(b) h(IX,Y)=Ih(X,Y)

(c) AIN = IAN ― -ANI

(d) IR(X,IX)X

where X, Y e TXM and JV e TXM^.

= R(X,IX)IX

Define /(≪)= |/i(≪,≪)|2,where we UM, the unit tangent bundle over M

Assume / attainsits maximum at some vector v e UMP, p e M, then ([5]):

(3.7) Ah,v,v)V=＼h(v,v)＼2v.

Lemma 3.1. Let Mn he a compact totallycomplex suhmanifold in CaP2.

Assume f attainsits maximum at v e UMP, then
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3＼h(v,v)＼＼l- 4＼h(v,v)＼2)+ J^ <h(v, v)JiV? + 4|(VA)(o, v;v)＼2< 0.

i=l

Proof. Fix v in UMP. For any u e UMP, let ru(t) be the geodesic in M

satisfying the initial conditions ru(0) =p, /M(0) = u. Parallel translating along ru(t)

gives rise to a vector field Vu(t). Put fJt) =f(VJt)), then

(3.9) -rr/JO) = 2<(V2A)(t;, v- u- u), h(v, v)} + 2|(VA)(≪, v; v)＼2

Using (3.4), (3.5) and (3.6), we have

(3.10) ((V2h)(v,v;Iv;Iv),h(v,v)y = <y2h)(v,Iv;v;Iv),h(v,v)>

= -<(V h)(v,v;v;v),h(v,v)y

+ <:R±(Iv,v)h(IvJv),h(v,v)y

-2(R(Iv,v)Iv,AhMvy.

From the Ricci equation, (2.1), (2.2) and (3.6), we obtain

(3.11)

= (R(Iv,v)h(Iv,v),h(v,v)} + <,[Ah(iv,v),dh(v:v))Iv,v')

＼
＼h(v,v)|2 - 2＼Ah{VtV)v＼2+

l-J2
<Kv, v), IiV)2

Now, by the Gauss equation and using (2.1),(2.2)and (3.6)we have

(3.12) <*(/!>,v)Iv,Ah{v>v)v}= -＼h(v,v)＼2+ 2＼Ah{VjV)v＼2

Since / attains its maximum at v, we have

(3-13) ^2/y(0)+^2//u(0)-°-

Combining (3.9)-(3.13)and noticing(3.7),we get (3.8).

4. Proof of the Theorem

We will prove the Theorem by showing that under its assumptions the

hypothesis that M is not totallygeodesicleads to a contradiction.
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From Lemma (3.1) it follows that, by the hypothesis h^Q.

(4.1) ＼h(v,v)＼2>1-

For any u e UMP, let ru{t) be the geodesic in M determined by the initial

conditions ru(0) = p and r^(0) = u. Parallel translation of v along ru(t) yields a

vector field Vu(t). Then we know that the function/, defined by fu(t) ―f{Vu{t))

attains a maximum at t = 0. This implies that

(4-2) ^2/w(0)+^2//m(0)-°-

for all u e UMP.

By directcomputations we have

(4.3)
^fu(0)

= 2i(V2h)(v,v;u;u),h(v,v)y+ 2＼(Vh)(u,v-v)＼2

Using (3.4),(3.5) and (3.6),we have

(4.4) ((V2h)(v,v;Iu;Iu),h(v,v)y= <(V2h)(v,Iv;u;Iu),h(v,v)y

= -((V2h)(v,Iv;Iu;u),h(v,v)>

+ (RL(Iu,u)Ih{v,v),h{v,v)y

-2<R(Iu,u)Iv,Ah(v>v)vy.

From the Ricci equation,(2.1),(2.2),and (3.6),we obtain

(4.5) ^R±(Iu,u)Ih(v,v),h(v,v)y

= <R(Iu,u)Ih(v,v),h(v,v)y+ <[Ah(IViV),AhM]Iu,uy

z z i=i

By the Gauss equation,we get

(4.6) <*(/*,u)Iv,AhMv> = -＼h(v,v)＼＼R(u,Iu)Iv,v}

From (4.2)-(4.6), we obtain

(4.7) 21%, v)＼＼R(u,Iu)Iv,v>-1- ＼h{v,v)＼2- 2＼Ah{v>v)u＼2+ J2 <h^y)'^ ^ °-
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Since n = 2, we can always choose a unit eigenvector u of Aj,(VtV)such that

<m, y> = <≪,Ivy = 0, using the equation of Gauss which implies that

(4.8)

(4.9)

we have

(4.10)

R(u, v)v = -u + Ah(VjV)U - Ah{uiU)v

R(u, Iv)Iv = -u - Ah{V)V)u- Ah{uM)v

A(v,v)U = ^ {R{u, v)v - R(u, Iv)Iv) = ^ {K(u, v) - K{u, Iv))u

where K(r,s) is the sectionalcurvature of M at p for the plane spanned by r

s e TPM. The Bianchi identityshows that

(4.11) (R(u, Iu)Iv, v) = K(u, v) + K{u, Iv)

From (4.7), (4.10) and (4.11) we obtain

(4.12) 2＼h{v,v)＼2(K(u, v) + K(u, Iv))-1- ＼h(v,v)＼2-
l-
(K(u, v)2 + K(u, Iv)2

6

- 2K(u, v)K(u, Iv)) + J^ <h(v, v),Iiu}2 < 0.

or equivalently,

1 6

(4.13) aK{u,v) + bK(u,Iv) - -＼h{v,v)＼2+ V <%, i>),/;W>2 < 0.

where

(4.14)

(4.15)

1=1

a = 2＼h{v,v)＼2
~K{u,v)

+
l-K{u,Iv)

h = 2＼h(v,v)＼2-l-K(u,Iv)+^K(u,v)

Now, we prove that a,b > 0. From the equation of Gauss it follows that

(4.16) K(u, v) + K(u, Iv) =
＼

- 2|/s(t;,v)＼2<
i

By (4.1)and (4.14),we have

(4.17) ＼-K{u,v)+K(u,Iv) <2a
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From (4.16) and (4.17),we know
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(4.18) l+2K{u,Iv)<2a + -

Which by the assumption K > (1/8) implies that a > 0. In the same way it

follows that also b > 0. Since a and b are strictlypositive and K > (1/8), by

(4.13) we get the strictlyinequality

(4.19)
La

+ b)-l＼h^v)f +
J2<h(v,v),Iiuy2<0

5 l i=l

But from (4.14) and (4.15) it follows that

(4.20) a + b = 4＼h(v,v)＼2

Which combines with (4.19) yields the desired contradiction. So M is totally

geodesic, by the Theorem 2.2 in [41, we known that M = CP2.
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