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§1. Imtroduction

Atomic decomposition for the Hardy spaces H?, 0 < p £ 1, is well known.
In this paper, we shall give a variant of atomic decomposition which applies to
the Sobolev spaces and to the C, spaces of DeVore and Sharpley ([DS]) on
general domains. In this section, we shall briefly review our results.

We shall first fix several notations which will be used throughout the paper.
In this paper we consider functions defined on R” or on a subset of R"; the
letter n always denotes the dimension of the basic space R". We also use the
letters k, «, p, and Q in the following fixed meaning: k denotes a nonnegative
integer; o denotes a positive real number; p denotes a positive real number or
oo; and € denotes an open subset of R”. We shall call a Lebesgue measurable
function merely a function. For a Lebesgue measurable set E c R", the L7(E)-
quasinorm of a function f on E is defined by

1N,z = Ilf;T(1/p; E)|| = (JE lf(x)lpdx)l/p

with the usual modification in the case p = oo, and the set of functions / on E
such that ||f||,z < co is denoted by L’(E) or by I'(1/p;E). (Thus the two
symbols || f]l,z and || f;T(1/p; E)|| denote exactly the same thing and so do the
two symbols I7(E) and I'(1/p; E); we shall use whichever will be convenient.)
We often abbreviate |fl,zr = I/ T(1/5:RM)| to |71, = [/:T(1/p)]l and
I’(R") =T(1/p;R") to L =T(1/p). The Lebesgue measure of E < R" is

denoted by |E|. For x = (x1,...,x,) € R", we write
" 1/2
|x| = (Z xf) and ||x|| = max{|x;};i=1,...,n}.
=1
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By a cube, we mean a closed cube in R” with sides parallel to the coordinate
axes, i.e., a cube Q is a subset of R" of the form Q= {xeR";||x—a| £},
0 < t < c0; we write xg = a (the center of Q) and #(Q) = 2t (the sidelength of Q).
For a cube Q and for 0 < ¢ < co, we define Q as the cube with the same center
as Q and with sidelength ¢ times as large as Q. The symbol 2, denotes the set of
the polynomial functions on R" of degree less than or equal to k. If a function
f has classical derivatives 8 for all v with |v| =k, then we write |VEf| =
2=k [0’f|. Some other notations will be explained at the last paragraph of this
section.

Now, let D be a cube or an open subset of R” and let f* a function on D.
For cubes O < D, we define

I po(f) = inf{|QI 7P| f = Pll, p; P € Zi}.

We define

S p(%) = sup{2(Q) "I p o(f); Q cube, xe Q = D}, x €D,

and

ak _
175 G4 D) = 15 llp.p-

We shall often abbreviate |f; C¥*(R")| as |f; Cp¥|.

Variants of the above fk*; , and |/ Cl‘j‘vk(D)| are considered by many people.
At least, DeVore and Sharpley [DS], M. Christ [Chr], and Bojarski [B] gave
almost the same definitions as above. The idea can be traced back to many
older works; cf. Triebel [Tri; Remark 1.7.2/1].

In considering |f; C;’k(D)|, thecases k <a<k+1and kSa<k+1 seem
to be most important. In fact, it is known that the case k=oa—1 with « a
positive integer corresponds to the classical Sobolev space (see Remark (1°) to
be given at the last part of this section), and that, at least for sufficiently nice D,
the case k >« is essentially equivalent to the case k S a <k+1 (see [DS;
Lemma 4.4]). We shall, however, give our results without imposing restrictions
on k so long as possible.

Let Q£ R". For xeQ and for ¢ with 0 <t < 1, we define

po(x) = min{||x — y|;;y € Q°}
and

0:(x) = {y; ly — xI| £ tpa(x)}-
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For functions f on Q and for 0 < ¢t < 1, we define
fHx) = ”f”oo,Q,(x)) xeQ.

We shall often abbreviate f*!/2 to f*.
Now, let 2 # R", k+ 1 = a, and p < c0. Suppose g is a smooth function on
Q such that

(1.1) & =IVE gl 0 < co.

Also suppose that {g;} is a sequence of functions on R", {Q;} is a sequence of
cubes, and {/4;} is a sequence of nonnegative real numbers, and that they satisfy

(1.2) suppg; = Qj, 20, < Q, |9 CH(RY)| £ 4,

and

1/q
(1) | H (Z i;’xQ,>

for ¢ = min{p, 1}. Then it is rather easy to see that the series ) ¢; converges in
loc(€2) for some r >0 and the function f =g+ 3, ¢, satisfies

< 0
p

(1.4) S G4 Q)] < w03

see Theorems 3.1 and 4.1 of the present paper. It is the main purpose of the
present paper to prove the converse of this fact. To be precise, we shall prove the
following result, which is slightly stronger than the pure converse: Every function
f on Q satisfying (1.4) can be written as f = g + Zj ; with a smooth function g
satisfying (1.1) and with (¢;, Q), 4;) satisfying (1.2) and (1.3) for all ¢ > 0. This
result will be given in Theorems 4.2 and 5.1. We shall also give similar result for
the case Q = R"; see Theorems 4.3 and 5.2.

R. G. Duran [Dur] has already obtained a result which is closely related to
our result. Durdn treats a maximal function which is different from ours, but it
is known that Durin’s maximal function (for the case where his dilation
operator A, is the usual dilation x — #x) is equivalent to our fk"; » with
k<a=k+1 (see [DS; Theorem 5.3]). One of Durdn’s result in [Dur] gives an
atomic decomposition of functions f on R" with |f; Cg”"(R")l < oo in the case
k<oau<k+1 and 14+a/n>1/p=1. Compared with this result of Durdn,
our results contain the following improvements. First, we treat the functions
on arbitrary open subset of R"; the function g is peculiar to our situation.
Secondly, we treat the full range 0 < «, p < o0; thus, in particular, our result
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covers also the case of classical Sobolev spaces (cf. Remark (1°) below). Thirdly,
we give several ‘mod 0’ estimates (for example we give L7 estimates for the
function g and for the series Ej ¢;), whereas in [Dur] the convergence of the
atomic series is considered mod polynomials.

In a forthcoming paper, [Mi4], the same author will consider the estimates
of the pointwise product of functions in terms of |-; Cl‘j‘vk(Q)L where the results
of the present paper will be effectively used.

The contents of the succeeding sections are as follows. In Section 2, we give
several preliminary lemmas. In Section 3, we consider the series )¢, arising
from (1.2) and (1.3). In Section 4, we consider functions g satisfying (1.1); in
particular, we give a method to associate with each function f satisfying (1.4) a
function g satisfying (1.1). In Section 5, we give the main decomposition
theorems, Theorems 5.1 and 5.2.

The following remarks will help the reader to understand the meaning of
the quasinorm |-; C¥¥(Q).

ReMARK. (1°) If m is a positive integer and 1/p < 1 4+ m/n, then for locally
integrable functions f on Q the quasinorm |f; C;"""“I(Q)| is equivalent to

Yol (p>1) or D 18 lme G 1=1/p<1+m/n),

|v|=m [v|=m

where 8'f denotes the derivative in the sense of distribution and || - || »(q) denotes
the quasinorm of the H? space on Q as given in [Mi2]. This result for p > 1 is
due to A. P. Calderén [Cal; Theorem 4 and Lemma 7]; proof can be found also
in [Chr; Lemma 2.2] or [DS; Theorem 6.2]. The result for p < 1 is due to Duran
[Dur] and Miyachi [Mi3].

(2°) Let k < « < k+ 1 and let f be a function on Q. Then |f; C%¥(Q)| <
if and only if f can be modified on a set of measure 0 so that the modified
function, which shall be denoted by f again, is of class C* and

v 4
ey = 3 sup 27 =070

oy < 00,
Iv]=k Ix =yl

where the sup ranges over distinct points x and y in Q for which there exists
a cube Q such that x,y e Q< Q. Moreover, the quasinorm |f;C%(Q)| is
equivalent to |f |Lip(a). This result is due to Campanato [Cml], [Cm2], and N. G.
Meyers [Mey].

(3°) Let m be a positive integer and f a function on Q. Then
|f; C™™(Q)| < oo if and only if f can be modified on a set of measure 0 so that
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the modified function, which shall be denoted by f again, is of class C"™! and

Flay = > sup lavf(X)—26"f'()(cx_+yf)/2)+3vf(y)l<OO7

|v|=m—1

where the sup ranges over the same x, y as described in (2°). The quasinorm
|5 C™(Q)] is equivalent to |f| A(m)- For a proof of this result, see [Gre] or [Mil;
§6.2].

(4°) Let k = [o), 14+ a/n > 1/p, and let Q be a bounded C* domain. Then
the quasinorm ||f; C;*"(Q)H is equivalent to the quasinorm of the Triebel-
Lizorkin space F;,(€2). This result is due to Seeger [Se] and Triebel [T1]; see
also [T2; 1.7.2, 1.7.3, and 5.3].

We shall end this section by mentioning several other notations which will
be used throughout the paper. We use the letter ¢ to denote various positive
constants. The value of ¢ may be different in each occasion. To show explicitly
the dependence of a constant on other parameters, we write as c(«, §,...); this
denotes a positive constant depending only on the parameters «, §,. ... Since 2
is a finite dimensional linear space, it admits a unique (up to isomorphism)
normed linear space structure. The convergence of a sequence or a series of
polynomials in %, and the boundedness of a subset of %, refer to the cor-
responding notions with respect to the unique normed linear space structure of
Py If D is a cube or an open subset of R”, then for functions f on D we define
the maximal function MP(f) by

M(f)(x) = sup{|Q| 7| /|, g; Q cube,xe 0 = D}, xeD.
We simply write M,(f) =M1‘f"( f). A dyadic cube is a cube of the form
{xeR"2"k; < x; £ 2"(ki+1),i=1,...,n} with m and k;(i = 1,...,n) integers.
§2. Preliminaries

The first lemma follows from the fact that a finite dimensional linear space
admits unique structure of Hausdorff topological linear space and from the
invariance of % under dilation and translation.

LemMA 2.1.  The following inequalities hold for all cubes Q and all P € Py.
(1) For each p,

-1 -1
1017 1Pll,0 < 1Pl g < Q7 7)1PI, 0,

where ¢ = c(n,k,p).
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(2) For each a = 1,

1Pl os,a0 < €@ [|Plleo, 01
where ¢ = c(n,k).
(3) For each multi-index v,
18" Plls.p = c£(Q) 1Pl 0
where ¢ = c(n,k).
In the rest of this section, we assume D is a cube or an open subset of R”
and f is a function on D.

For each k, p, and each cube Q < D, we define II; , o(f) as the set of the
polynomials 7 in £ such that

1 =l g = minlf ~ Pl g; P € i}
Since 2 is a finite dimensional linear space, this set Il ,o(f) is not empty. (If

f ¢ 17(Q), then I p0(/f) = P&.)

LemMa 2.2 (cf. [DS; §4, pp. 23-25, and §12, pp. 104-105)). Let Q, R, and
S be cubes included in D.

(1) IfTL'EHk,p,Q(f), then

I7lleo,0 < €lQI 711100
where ¢ = c(n, k,p).
(2)If126>0, QURCS, and £(Q), £(R) 2 6/(S), and if ng €k p,o(f)
and ng € i pr(f), then

Ing — 7Rl s < €5£(S)*inf £, ,»

where cs = c(n, k,p, ).
(3)If 1St<ow and QcRctRceD, and if mgelly,po(f) and
g € i, pr(f), then

Img = nalle o S e (RY"inf £

where ¢, = c(n,k,q,p,t).
(4) If neXly p0o(f), then

|f(x) — n(x)| £ ct(Q)f, ,(x) foraexeQ,

where ¢ = c¢(n,k,a,p).
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For b with 1 £ b < o0, we define

S5(x) = sup{£(Q) Ik p0(f); @ cube, 0 5 x,bQ <= D}

for x e D' (=the interior of D). Thus fka p( x) = fi, ,(x) for x e D'. Of course,
D'=Dif Dis an open subset of R" and that D\ D' has measure 0 if D is a cube;
in either case, fka » 1s defined a.e. on D.

Lemma 2.3 (cf. [DS; Theorem 4.3]). If 0<g=< 0, 1/q+a/n>1/p, and
1=b< 0, then

~1|fa Ca, (D)| = ” kacq

. ,k
ol < elf; CHH(D)),

where ¢ = c(n,k,a,p,q,b).

Proor. If b=1, the claim follows from the theorem of DeVore and
Sharpley mentioned in the lemma. We shall consider the general case b= 1. We
can easily generalize Theorem 4.3 of [DS] to the case of fka o With b= 1 and,
using the generalized theorem, we see the following: If 1£bh< 0, 0< g,
g2 =00, and 1/g;+a/n>1/p(i =1,2), then

! #,b
| ka,qnnpD = ” ka,qz |p,D = C“fk,a,m”p.D'

Hence, in order to prove the lemma, it is sufficient to prove the inequalities

(2.1) 1 Zglnn S 1Ak glln < el f&aln

for b > 1 and for g satisfying 0 < ¢ < p. Since the left hand inequality of (2.1) is
obvious, we shall prove only the right hand inequality. We shall simply write
fHb = ka,q

Fix 5>1 and fix a cube R< D. For each cube 0 — R, we choose a
ng € lggo(f). Let % be the set of the maximal dyadic cubes Q such that
3bQ < R. The interiors of the cubes in ¥ are pairwise disjoint and the union of
all the cubes in ¥ is equal to the interior of R. Fix a cube Qy e % which
contains xg. Let O be a cube in 4. We can find a finite number of cubes,
QiG=1,...,m), in % such that QNQ1#FJ(=1,....m), Qn=20,
0 < ¢(n,b)Q; for each j, and

Xm: 2(0))" < c(n,b,a)t(R)".

J=1
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(For example, Q; can be chosen from those cubes in 4 which intersects the line
segment joining xg and xg.) For each j, let Q) = 3Q; if £(Q;) > £(Q;-1) and let
Q; = 3Q; if otherwise. Then Q;U Q) = Q; and, by Lemma 2.2(2),

”7sz - an—l”co,Qj —S— CZ(Q;)a Hgl,f (le]l)za,q

Since ¢Q; > Q and since bQ; = R< D, the above inequality combined with
Lemma 2.1(2) implies that

”7sz —TQ;, “oo,Q = C[(Qj)a lIQlf f#’b
J
< Q1O g g, S c£(Q)" inf MP(f*).
Taking the sum over j=1,2,...,m, we obtain
I, = Tollug S c/(R)" inf MP(/**).
From this estimate, we obtain
ILf = 7gllf o < c(llf = moll g + Ime — 7g,ll5 0)
q q
< (@10l (igf 1) “vee(ry(inf 205 ) Il

Taking sum over Q € 4, we obtain

q
1 =l s ot 3 (igf MPU*) 1015 AR

which implies
H(R) " lqr(f) = elRITNMP(f#) g r-
Now taking the supremum over R’s, we obtain

fk?;q(x) < CM;)(MqD(f#’b))(x) for all x e D.

The right hand inequality of (2.1) follows from the above pointwise inequality.
Lemma 2.3 is proved.
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LeEMMA 2.4 (cf. [DS; Proof of Theorem 12.5, pp. 111-112]). Ifa > >0,
0<pi<p2= o0, and 1/p1 —a/n=1/py — B/n, then

. K . ok
|f; CHE(D)| £ el f; CE (D)),
where ¢ = c(n,k,a, B, p1,p2).
Lemma 2.5 (cf. [DS; Theorem 9.1 and Proof of Theorem 4.3]). Suppose

D=Q is a cube. Suppose 1/p>a/n or l/p=a/n=1. Also suppose
0 >1/g>1/p—a/n and ne T yo(f). Then

If = mT(1/p - a/m Q)| < c|f; CF¥(Q),

where ¢ = c(n,k, o, p, q)'

LEMMA 2.6. Let Q be a cube and {f;} a sequence of functions on Q.
Suppose |f}; C;"(Q)! is bounded. Let 0<g=<o, 1/g+a/n>1/p, and
7 € Ik g,0(f). Then {fj — m;} contains a subsequence which converges in I(Q).

Proor. If is sufficient to show that the set {f; — m;} is totally bounded in
I7(Q). For each positive integer m, let 4, be the set of the dyadic subcubes of
Q with side length 27"¢(Q). We take ;g € Ilx 4 r(f;) for each Re U,,%m, and
define f;,, by

j;',m = Z T RXR-

Re%,

We shall prove the following two facts: (i) As m — oo, the sequence {f;» — 7},

converges to f; — n; in L?(Q) uniformly with respect to j; (i) For each fixed m, te

set {fm — m}; is totally bounded in I7(Q). The totally boundedness of the set

{fi — m} follows from these two facts. We shall simply write j;.# =( fj),’f 0
We shall prove (i) and (ii). First, by Lemma 2.2(4), we have

156 =fimX) £ Y 1) — mr(®)|xa(x) < c7"¢(Q))%* (x).

Re%,,

Hence, by Lemma 2.3,

15 = Fimllpo = €27 (@)L17 I,.0 < c@7"€(D))° 15 C4(Q),

which obviously implies (i) (since |f}; C;"k (Q)| is bounded). Next, the function
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‘m — T; can be written as
iz j

fim ==Y _ (MR — ).

Re¥%,,
Hence, in order to prove (ii), it is sufficient to show that for each fixed R the set
{mjr — m}; is bounded in Z;. But this last fact can be immediately proved by the
use of Lemma 2.2(2). Lemma 2.6 is proved.
Lemma 2.7. Suppose {fj} is a sequence of functions on D such that
1y =S D)) = 0 asjom — co.

Then the following (1) and (2) hold.
(1) There exists a function g on D such that

(2.2) i — g C3¥(D)| =0 asj—
and
(2.3) lgs G*(D)] < liminf | CyE(D)|.

(2) Suppose, in addition, h is a function on D and suppose for each cube
Q < D there exists an r=rg > 0 such that

(2.4) Ifi—kl,p—0 asj— oo.
Then (2.2) and (2.3) hold for g = h.
Proor. The inequality (2.3) follows from (2.2) with the aid of the tri-
angular inequality
[f +g; CHD)* SIS GHDI +1gs GA(D)IY, g =min{p, 1}.

Hence it is sufficient to show only the assertions concerning (2.2). We shall prove
(2) first.

PROOF OF (2). We shall first show that (2.4) actually holds with r=p. In
order to prove this, it is sufficient to show that, for each cube Q < D,

(2.5) i = fmlpo — 0, asjm— co.

Fix a cube O < D and let r be a positive number for which (2.4) holds. Replacing
r by a smaller number, if necessary, we may assume that 1/r+a/n > 1/p. Take
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m € Hr0(fj — fm). Then, by Lemma 2.2(4), Lemma 2.3, and by the assumption
of the lemma,

(2.6) 15 = fon = Tl < €£(Q)1f5 = fons C¥(Q)] = 0 asj,m — co0.

On the other hand, by Lemma 2.2(1) and by the assumption (2.4),

2.7) ITmllp0 < Q1771 f = frull, g — O asj,m — oo,

The assertion (2.5) follows from (2.6) and (2.7).
Now, from the fact that (2.4) holds with r = p, it follows that

Tepo(fy—h) = lim Tipo(f ~ fu).
From this, we obtain
(fi = Wi p () < Bminf (f; — fn) (%)
for all x e D. Taking LP(D)-norm and using Fatou’s lemma, we obtain
1y~ s CH(D)| < liminf | — s C4(D),

from which follows (2.2) with g = h. Thus (2) is proved.

Proor oF (1). It is sufficient to show that {f;} contains a subsequence
which converges to a function with respect to |-; Cl'j"k(D)|. We may and shall
assume that |f}; C;’k(D)I is bounded (if this is not the case, it is enough to
consider f; —f;,, with a fixed jp, instead of f;). For each Q< D, we take
7,0 € Uk, p.0(/f)-

First we consider the case where D = Q is a cube. In this case, by Lemma
2.6, {fj — mj o} contains a subsequence {f — my g} which converges in I7(Q). If
we denote the limit by g, then, by (2) proved above, we have

5 =6 GHDI=1fr — 10— 9: GFHQ)] - 0

as desired.

Next, suppose D is a connected open subset of R”. We shall first show that
if 0 and Q' are cubes included in D then {m;p — 7; o'}, is bounded in #. This
immediately follows from Lemma 2.2(2) if there exists a cube R such that
QU Q' <« R = D. In the general case, we can find a finite number of cubes @,
m=0,1,...,N, and cubes R,, m=1,2,...,N, such that Qo= Q, Onv =0,
and Q,—1UQn < Ry, < D. Then, for each m, the sequence {9, , — 70, }j is
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bounded in #; as seen above, and, hence, the sum

N
D (%, Om1 — y0,) = Wi — W0

m=1

is also bounded. Now fix a cube Qp = D. Let Q be an arbitrary cube included in
D. By Lemma 2.6, the sequence {fj —mp} contains a subsequence which
converges in L7(Q). On the other hand, the sequence {n; o — m;g,} is bounded in
2 and hence any subsequence of it contains another subsequence which con-
verges in 2. Hence the sequence {f;j — g, } = {f; — m;,0 + m;,0 — m; g, } contains
a subsequence which converges in L7(Q). Since this is true for every cube Q = D,
we obtain, by the diagonal method, a subsequence {f; — 7y g, } which converges
in IP (D). If we denote the limit by g, then by (2) proved above, we have

loc
= 6 GHD) = 1y = my00 — g5 GH(D)| = 0

as desired.

Finally, if D is an arbitrary open subset of R”, then we can obtain the same
conclusion by considering on each connected component of D. Lemma 2.7 is
proved. ’

LemMmaA 2.8. Let f be a function on R", Q a cube, and let 0 <e, A < c0.
Suppose suppf < Q and suppose {(R) "Iy pr(f) < A for cubes R with {(R) <
e£(Q). Then |f; C3*(R™)| £ ¢4 with ¢, = c(n,k,a,p,e).

Proor. We take mg elIli,r(f) for each cube R. If R is a cube with
Z(R) < e/(Q), then, by Lemma 2.2(4), we have
|f(x) = nr(x)| £ cAZ/(R)* forae.xeR.

If R and R’ are cubes such that RN R # &, £/(R) = £(R') £ ¢£(Q)/2, then, using
Lemma 2.2(2), we see that

Inr = nrlloo gur S cAZ(R)".
Using these two facts and the assumption supp f < 0, we can easily prove that
|f(x)] £ c.Adis(x, Q)" ae.xeR"

Thus, in particular, ||f],, < c.44(Q)". Hence, for cubes R with Z(R) > &/(Q), we
have

C(R)“Iepr(f) S CR) NS Nl < ceA(Q)/¢(R))" < cod.
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Hence kip(x) < ¢4 for all xeR", and thus |f;C%*(R")| £ c.A (by Lemma
2.3). Lemma 2.8 is proved.

The final lemma, below, easily follows from Taylor’s formula.
LeMMA 2.9. If f is a function of class C**' on a cube Q, then

Lo o(f) £ (@ IV fll 0

with ¢ = c(n, k).

§3. Atomic series

Before we state the main theorem of this section, we shall give a remark
and a definition. First, let Zj ¢; be a series of functions on R” and fix k, «, and
p. The function g on R" satisfying ]Z]A; 19— C;;‘*"l — 0 as N — oo (if there is
any such g) is not acutually unique but is unique only mod #;. Even so we
shall write g =3, ¢; and call it the sum of the series ;9. Notice that |g; C;’k
is uniquely determined in spite of the non-uniqueness of g. Next, we define the
function space Cp as follows: A function f on R" belongs to Cy if there exists
a continuous function & on R” such that f(x) = h(x) a.e. and A(x) —» 0 as
|x| — co. We regard Cp as a Banach space by identifying functions deffering
only on sets of measure 0 and by taking |- ||, as the norm.

Now, the purpose of this section is to prove the following theorem.

THEOREM 3.1.  Let {9;} be a sequence of functions on R", {1} a sequence of
nonnegative real numbers, and {R;} a sequence of cubes. Suppose

suppp; = R; and |p; CEF(R™)| < 4y,

and suppose p < oo and

1/q
(5 4
J

We write A = sup/(R;)( £ o). Then the following hold with ¢ = c(n,k,a,p) and
¢ =c(nk,a,p,r).

(1) The series Zj ¢, unconditionally converges with respect to |-; C:’k | and the
sum 3. ¢; satisfies |3, 9;; C2*| < cM,.

(2) If 1/p>a/n, then the series 2.9 unconditionally converges in
L(1/p—a/n) and | 32,05 T(1/p — a/n)|| < cM,.

=M, < with g=min{p,1}.
P
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() If l/p=a/nzl, then 3 ;¢; converges absolutely in Co and
11225 9ille = cMp.

4 If0<1/p=ua/n<1 and A < o, then, for each r with p r < o0, the
series Y ¢; unconditionally converges in L™ and 1220l < ¢ A" M.

(5) If 0<1/p < a/n and A < o, then 3 _; ¢; unconditionally converges in Co
and || 35 9jlle, S AP M.

In order to prove this theorem, we use the lemmas below.

LemMma 3.1. Let f be a function on R" and Q a cube. Suppose supp f < Q
and |f; C¥(R")| = A < oo. Then:

(1) After modified on a set of measure zero, f is a continuous function and
I £l S cA2(Q)* with ¢ = c(n,a,k);

(2) For each p,

fki,p(x) ScA(l+ 2(Q) ' |x - XQ|)_a—"/p, xeR",
where ¢ = c(n,k,a,p).

Proor. (1) The continuity of f follows from a stronger result of DeVore
and Sharpley [DS; Theorem 9.1]. (DeVore and Sharpley state the result for the
case k = o but their proof works for general k.) The inequality for | f]|,, has
been proved in the proof of Lemma 2.8.

(2) The inequality is obvious for x € 2Q. Suppose x ¢ 20. Then, for cubes R
containing x and intersecting Q, we have /(R) = |x — xg||/2 and hence

L(R)ipr(f) S LR £, S cAL(Q)/£(R))HP
< cA(¢(Q)/Ix — xg|)**"P

(the second inequality follows from the estimate of || f||., as given in (1) and from
the assumption supp f < Q). Taking supremum over R’s, we obtain the desired
inequality. Lemma 3.1 is proved.

Lemma 3.2. Let {A;} be a sequence of nonnegative real numbers, {R;} a
sequence of cubes, and let 0XB<oo and O0<pu<oo. We write A=

sup/(R;)(£ o), f =3 ; 4jxr, and

gpu(x) = 32 HRY(L+£(R)x = xg )7~
J

Then the following (1) ~ (6) hold with ¢ = c(n, B, u,p).
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M Ifnfp>n+p and u>n/p— B, then

1/p
lgsw T(1/p = B/m)l| < C(Z ij-’lel) :
J

) If B<n/p<n+f and p>n, then

98, T(1/p = B/n)|| = el f1l,-
(3) If p£L 1, then

lgnpullo < > 42 R)™? < |1 £,-
J

(4) If p>1 and p>n and if 4; =0 except for a finite number of j’s, then

I Gn/p.ullBmo = ll f1l,-

(5) If n/p< B, p=1, and A < o0, then
lggulleo S Y HE(R)P < 457 f1]),.
J

6) If nfp< B, 1<p< oo, u>n—n/p, and A < oo, then

lgg.ulleo < cAPPIf1,.

Proor. (1) Set 1/g=1/p— f/n. Then p < g <1 and u> n/q. Hence

lggulld < D Me@®)P) (1 +(R)™'| - )72
J

q/p
<c Z MR = c Z M|R;|P < c(z A |Rj|) :
J J J

(3) The left hand inequality is obvious. The right hand inequality is the
same as the inequality }_; [|4xgll, < | 25 4tz ||, Which holds for p < 1.

(4) Let a; be the Dirac measure on R"™! concentrated at the point
(xr;,Z(R;)) and let ¢ = Zj2j|Rj|l/”+1a]~. Then we have

ipa(0) = [ 771+ 7 x = 3 dar, ).
In order to prove the inequality of (4), it is sufficient to show that the inequality

(3.1) o(T(Q)) £ cllf1,12l, T(Q) =2 x(0,£(Q)),
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holds for every cube Q in R" (cf. e.g. [Gar; Chapt. VI, Th. 1.6]). If p = 1, then

o(T(@) S D, MR <c0]'? > 4R

Ric20 R;c29Q

< c|Q|'/? LQf(x) dx < c||f1,12]

(the first inequality follows from the fact that (xz,7(R;)) € T(Q) imlies R; < 2Q).
If p <1, then

d(T@)s Y A|R|‘/"+‘<c|Q|ZA|R, /e

R; <20

=c|Q| Z 14xg 11, = cl QI lp-

Thus (3.1) is proved.
(2) In the case n/p=n+ f, the proof is easy:

(3-2) 95,5 T(1/p = B/l = llggulls = ¢ D 4IR)|"? < el f1],.
j

The claim for the case § < n/p < n+ f follows from this result and from (3) and
(4) (proved above) by the use of the interpolation. Some comments shall be
necessary, however, since gg , is not uniquely defined by f but depends on the
representation of f* as the sum }°, A;xg . First notice that it is sufficient to prove
the inequality in the case where all the cubes R; are dyadic cubes; this can be seen
from the fact that for each cube R; there exists a dyadic cube Q; such that
0 < R; and #(Q;) > /(R;)/4. Thus we assume R; are dyadic cubes. We may also
assume that A; =0 except for a finite number of j’s. Now, a key to the real
interpolation method is to decompose f as f=f'+f, 0<t< co, where
S1(x) = min{f(x),?} and fi(x) = f(x) — f'(x). In the present case, i.c., in the case
where [ =}, Ajxg, With 0 < 4; < 0 and R; dyadic cubes and with 4; = 0 except
for a finite number of ;’s, the following holds: For each #> 0, there exist
nonnegative real numbers Z; and A/ such that 4; = 4, + &/, ' = 3, Az, a.e., and
fi=% ,1}’ Xg, a.e. (proof of this fact is left to the reader; everyone will convince
this fact once he draws a picture of the graph of / and will see that it comes from
the fact that two dyadic cubes have disjoint interiors unless one is included in
the other). We define g; , and g, in the same way as gp, using 4; and A,
respectively, in place of 4;. Then we have gg, = gﬁ ut gﬂ 4 Now we can use the
usual techniques of the real interpolation method to deduce the inequality of (2)
for f<n/p <n+ B from (3), (4), and (3.2).
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(5) This immediately follows from (3) since ¢(R;)’ < 4F~"/p¢(R;)"?.

(6) Take a function 6e CR") such that 0 <0(x) <1 for all xeR”,
8(x) =1 for xe Qo = [-1/2,1/2]", and supp 6 = 2Qy. For a cube Q, we define
0o by 8o(x) = 0((x — x0)/£(Q)). For t =1, we set

b= At(R) Oz,
J

We shall prove that the following inequality holds for every ¢ =1 and every
e>0:

(3.3) el o < codPrlpen=rivte) gl |

lleo

where ¢; = ¢(n, B, p, ). Once this is proved, the desired inequality can be derived
as follows. We have

(L +2R) = xg)* S e > 27 Gpmg (x)

m=0

and hence

gpu(x) S ¢ Z 27 hom (x).

m=0

Thus, using (3.3) with ¢ satisfying n —n/p +¢ < pu, we obtain

l9p.ulloe < € 27 AP IR nIRL0)| £ < caPIP| £

m=0

We shall prove (3.3). Fix an arbitrary xo € R" and set
H,=Y""2¢(R) o,
J

where the sum Zj' is taken over the ;’s such that 2¢R; 5 xo. Since /(R;) £ 4 < oo,

(3.4) supp/, = 0 = {x;||x — xo|| < 214}.

Take & such that k + 1 = 8. By lemma 3.1(2) and a change of variables, we have
(Ocr ) g1 (%) < ct(1R) P (1 + £(1Ry) ™" | = xg |) P

and hence

() (x) < cz’ Lt P14+ £(tR;) ™ x — xg ) "
J
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Thus, using (2} twice, we have

/
Y XtR;

gl < ct™”

St it (L4 (R T x = xg )T S P £
p
Hence, using Lemma 2.4, we have
(3.5) |t CEPR| < el| (B g ll, S cat Pl A 1],

From (3.4), (3.5), and Lemma 3.1(1), we obtain
Ky(x0) < clhl; CEMPRI0(Q)F P < coaP o lPre| 1],
which implies (3.3) since #/(xo) = h:(xo) and xq is arbitrary. Lemma 3.2 is proved.
ProoF oF THEOREM 3.1. Proor orF (1). By Lemma 3.1(2),

(3.6) (O)F ) S cgdi(1+ (R x — xg )54

for each ¢ > 0. Suppose first > _; ¢; is a finite sum. If p < 1, then, using (3.6) with
g = p, we have

Cotk

ZII o)L lly CZAPIRI—CM”

If 1<p< o, then, using Lemma 2.3, (3.6) with ¢ =1, and lemma 3.2(2) with
B =0, we have

d g Le > g,
7 7 p

In the general case, where Zj @; is an infinite sum, the unconditional convergence

# -
‘)k,a,l =c = cM).

and the estimate as mentioned in (1) can now be proved by a routine argument.

ProOF OF (2) ~ (5). By lemma 3.1,
(3.7) 9;€Co and |g;(x)| < At (R)) g, (x)-

The assertion (2) follows from (3.7), (1) and (2) of Lemma 3.2, and the fact that

t/p
< (Z if[Rﬂ) forp < 1.
p J

(3.8)

JXR;
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The assertion (3) folows from (3.7), Lemma 3.2(3), and (3.8). The assertion (4)
follows from (3.7) and Lemma 3.2(2); in fact, since /(R;) < 4 < oo, (3.7) implies

|(Pj(x)l = CAE’%]'{(R]')“_GXR,- (x)’ 0<eZa,

and we can apply Lemma 3.2(2) with f = a —&. The assertion (5) follows from
(3.7), (5) and (6) of Lemma 3.2, and (3.8). Theorem 3.1 is proved.

§4. Smooth function

In Sections 4 and 5, we use the following notations. First, we use the letter
b to denote various absolute constants, which may be different in each occasion.
When we need to distinguish a constant b from other b’s, we write it with a
subscript as bg, b1,by,.... Secondly, we assume a is a sufficiently large positive
number. A close examination of the arguments of Sections 4 and 5 will show
that all the arguments work for each a = 300, for example, but the exact value
of a is not very important. The reader should check that there exists by such
that all the arguments of Sections 4 and 5 work for each a = by and such that,
in particular, the constants b and b; (j = 1) can be found independent of a so
long as a = by. Thirdly, we take a constant b; and define the relation ~ as
follows: For two cubes Q and R, the relation Q ~ R means that @ < 5 R and
R < b, Q; for two positive real numbers s and ¢, the relation s ~ ¢t means that
s < b1t and ¢ £ bys. The reader will easily check that we can find a b; so that the
arguments of Sections 4 and 5 work with this definition of ~.

We begin with the following easy theorem.

THEOREM 4.1. Let Q # R" and suppose k+12=a. Then, for smooth
functions g on Q,

(4.1) lg; Q)] < el IV gl .0
with ¢ = c(n,k, o, p).

Proor. We fix a sufficiently large real number s. Then, for x € Q and for
cubes @ satisfying x € Q and sQ = Q, we have Q c Q;,>(x) and hence, by
Lemma 2.9,

(Q) i o,0(9) < c£(Q) 7| [VEHg]l| .o < oo VEH gl ().

Hence

ionreo(¥) < oG T IVEH gl (x).
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This inequality combined with Lemma 2.3 implies the desired inequality. The
theorem is proved.

In the rest of this section, we shall give a method to associate with each
function f on Q a smooth function g on Q. One of the property of the function
g is that the right side of (4.1) is majorized by c|f; Cp“*k(Q)|. We shall also give a
corresponding result for @ = R”. We shall begin with some preliminary results.

For open subset U of Q, we define %q(U) as the set of the maximal dyadic
cubes Q such that a’Q < Q and aQ c U. Notice that 9o(U) = if Q=
U=R"

In Lemmas 4.1 ~ 4.3 below, U and V denote open subsets of €.

Lemma 4.1. (1) If U # R", then the cubes in 9o(U) have pairwise disjoint
interiors and the union of all the cubes in %q(U) is equal to U.
(2) If Qe %q(U) and x €27 'aQ, then

£(Q) ~ min{a™"! dis(x, U°), a2 dis(x, Q%) }.

(3) There exists by such that: If UcV, Qe%q(U), Re%q(V), and
271a@N271aR # &, then £(Q) < by/(R).

(4) If UcV and Qe 9o(U), then the number of the cubes R in %qo(V)
satisfying 2~-'aQ N2 'aR # & does not exceed c(n,a).

Proof of the above lemma is left to the reader (cf., e.g., [St; Chapt. VI, §1]).
Let 6 and 6y be the functions as defined in the proof of Lemma 3.2(6). For
Qe %a(U), we define gog’U as follows:

-1
¢KQ1’U(X) = bg(x) ( Z OR(X)) ifxeU
U)

Regn(

and q)(Qz’U(x) =0 if x¢ U. For convenience’ sake we also define (pg’U =0 for
dyadic cubes Q not belonging to %q(U).
Proof of the next lemma is easy and is left to the reader.

LemMa 4.2. (1) ¢g¥ € CP(R"), suppgly” =20, and 0 < gp¥(x) < 1.
(2) If U#R", then } 5 g0 (pg’U(x) =1 for all xe U.
(3) |8V¢2’U(x)| < ¢(n,a, v)t’(Q)_|v| for each multi-index v.

The next lemma can be immediately proved by the use of Leibniz’s formula
on differentiation and (1) and (3) of Lemma 4.2.
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LeMMA 4.3.  Let {fp; 0 € 9o(U)} be a family of smooth functions on U. Set
f= de%(v) fQ(pg’U. Then, for each nonnegative integer m,

Vflse > > IV'"fQ X)NE(0) ™ 120(x),

m'+m'=m Qe%qo(U
where ¢ = c(n,a,m) and m' and m" denote nonegative integers.
Now, suppose Q # R” and fix k (a nonnegative integer) and ¢ such that

0 <g=<oo. Let f be a function on Q. For each cube Qe %o(Q), we take a
polynomial mg in Iz, o(f). We define the function go,(f) on Q by

dorg(N)X) = D np(x)gy(x).

QE % (Q)

Notice that this function depends also on the choice of mp.

THEOREM 4.2. Let Q#R", f a function on Q, and 0 < g < 0. Then

g = gaiqe(f) satisfies the following.
(1) g is a C*® function on Q.
(2) If g <r =< oo, then, for each nonnegative integer m,

12619v7gl" .0 < emll 1,

where ¢, = c(n,a,k,q,m,r).

3) If 1/g+a/n>1/p, then
o6 IV gl [0 < elf; CHE(Q)|

with ¢ = c(n,a,k,a,p, q).
To prove this theorem, we use the following lemma.

LeEmMMA 4.4. Let Q # R", f a function on Q, and let ag(Q € 9o(Q)) be non-
negative real numbers.

(1) For each t with 0 <t <1 and for each real number B, there exists
c=c(n,t,B) such that

T OB S) (%) < pa(x)Pr™i(x) < c(obf) ' (x).

(2) For each t, { with 0 < t, ¢ <1 and for each p, there exists ¢ = c(n, p, t, )
such that

Sy S 1 e el f 00
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B)If0<t<l, 1Su<a® and v=u+4a’/(1—1), then

y
( Z anuQ) (x) = Z agxyo(x) forall x e Q.
Qe90(Q) Qe%o(Q)

Proor. (1) Easy.

(2) We shall simply write p = pg. We may assume ¢ < ¢. Then the left hand
inequality is obvious since f*' < f ' pointwise. We shall prove the right hand
inequality. Fix an x € Q and write O (x) = Q. Take a positive integer N such
that N~'¢' < (1 — ¢') and decompose Q into N" cubes Q; (j=1,...,N") each
with sidelength £(Q;) = N~1¢(Q) = N~'¢'p(x) . For every y € Q;, we have tp(y) 2
(1 —t)p(x) = N''p(x) =¢(Q;) and hence Q; < Qi(y). Hence |[fl, 0, =
infg, /' for every j. Hence, for each r > 0,

79 =max{1f g}, Smax{igt 7} S mas(IQI 1 o}

J
< NIQIY g < N MP(f) ().

Thus the desired inequality follows from the boundedness of M2, r < p, in I7(Q).

(3) This can be readily deduced from the following simple geometric fact: If
Qe %(Q) and uQNQi(x) # &, then xevQ (with v given in the lemma).
Lemma 4.4 is proved.

Proor oF THEOREM 4.2. In this proof, sums over cubes are taken over
%o(Q). We shall simply write p = po and f* =f7 .

(1) Obvious.
(2) By Lemma 2.2(1),

170l ,0 S Q™I g0 < ¢ inf MZ().

Hence, using Lemma 4.3 and Lemma 2.1(3), we have

77l s 3 40)™ (igf M) o

@2) vl s 3 (inf M2 o
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We take ¢ such that 0 << 1 and 2 +4a%t/(1 —t) < 3. Then using (4.2) and
Lemma 4.4, we have

1671Vl [l < cll(0™IV"g) "0 S €

(§Qj (iaf M?(f))ng)*’t .
> (iaf 201 )

(3) Fix a 0 € 9o(Q). For cubes R € %o(Q) satisfying 2RN @ # J, we have
R~ Q (Lemma 4.1(3)) and, hence,

7R — 7ol < C/(Q)“izngff#

<c

< dIMG(N)lla £ €l fll0-
Q

r

(by Lemma 2.2(2)). Using this inequality together with Lemma 2.1(3) and Lemma
4.3, we obtain

k+1
|w+mug={

VE S (g — m)gp®
R

< ct(Q)* % linf £*
oS (0) 2Qf

(we used also the fact that V¥*!' " mppfe™ = V¥*n, = 0 on Q). Hence
Vgl e 3 a0 inf 1* e
o

Taking ¢ such that 0 << 1 and 1+4a%t/(1 —¢) £2 and using Lemma 4.4(3),
we have

pk+1—alvk+lgl*,l <c Z(inff#)ng < Cf#,
g \*

which combined with (1) and (2) of Lemma 4.4 implies the desired inequality.
Theorem 4.2 is proved.

Finally we shall consider the case Q = R". We introduce some notations.
We define o/ as the set of functions " on R" such that the set {x;|f(x)| > ¢} has
finite measure for every ¢ > 0. If, for a given function f on R”", there exists a
polynmial P such that f — P e o/, then such P is unique (since 0 is the only
polynomial contained in /) and we write the unique P as Py( D128;).

THeoREM 4.3.  Suppose that either (i) 1/p > a/n or (ii) 1/p=0a/n=1 and
k+12=oa Let f be a function on R" satisfying |f’; C[f’k| < 00. Then the following
hold.
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(1) Po(f) exists and Py(f) € Ps.

(2) There exists ¢ =c(n k,a,p) such that | f — Po(f);T(1/p—a/n)| <
o f; CoH|.

(3) Let {R;} be a sequence of cubes such that £(R;) — o0 as j — oo and that
there exists a positive number u for which the intersection of the cubes {uR;}; is
nonempty. Suppose o > 1/q > 1/p — a/n and nj € Uy gz (f). Then mj — Po(f) in
Py as j — o0.

(4) In the case (ii), it holds that f — Po(f) € Cp.

ProoF. Here we shall not completely prove the theorem; to be precise, for
the case (i), we shall prove all the claims, but for the case (ii), we shall prove
only a part of the claims. Proof for the case (ii) shall be completed in Section 5.

First consider the case (i). Suppose oo >1/g>1/p—a/n. Let Qo=
[-1/2,1/2]" and Q, =2"Qo and let n, € x40, (f). From Lemma 2.2(2), it
follows that

|Qm+l|
(4.3) ||7t:n+1 - n;n”oo,Q,,, <c J (f#)“’(s)s“/n—l ds,

|Om|

where f# = fki,q and (f#)~ denotes the nonincreasing rearrangement of f*.
Since f# e L7, we have (f*)~(s) = o(s™'/?) as s — co and hence

[e o]
(4.4) L (f*)~ (s)s*" 1 ds < co.
From (4.3) and (4.4), it follows that 3 ", |7, — Tonll 0,0, < 0 and, a fortiori,
that limy, 7, exists in Pg. Set P = limy_. ;. From Lemma 2.5 and Fatou’s
lemma, we see that the inequality of (2) holds if Py(f) is replaced by P. In
particular f — PeI(1/p—a/n), which in turn implies f—Pe ./ (since
1/p > a/n) and thus P = Py(f). Finally let R; and n; be as mentioned in (3). For
each j, let m(j) be the integer such that 2"() < £(R;) < 2™UM+1. Then, from
Lemma 2.2(2),

A

2|R;|
1oy = Wl S € | (F#) (6)5 s,

IRyl

which combined with (4.4) implies that m,
lim n; = lim @, = P = Py(f). Thus the proof is complete in the case (i).

Next consider the case (ii). Since p < 1, it holds that I? c I»! (where L?! is
the Lorentz space; cf. e.g. [SW; Chapt, V. §3]) and, hence, (4.4) holds again.

Hence, by the same reasoning as in the case (i), we can prove the following: (a)

j)—n]-—>0 in #; as j — oo. Hence
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If {n;} is a sequence of polynomials as mentioned in (3), then lim;_, o, 7; exists in
#x and this limit (may depend on g but) does not depend on the choice of {Rj}
and {m;} (we write lim n; = P); (b) the inequality of (2) holds if Py(f) is
replaced by P. (In fact, the assumption k + 1 = « is not necessary to prove these
results.) In Section 5, Proof of Theorem 5.2, we shall complete the proof by
showing that f — P e Cy (which will imply P = Py(f)).

§5. Atomic decomposition

Fix k, o, and p such that K+ 1 2 « and p < . Suppose Q # R" and {g;} is

a sequence of functions on R” which satisfies the assumptions of Theorem 3.1

with cubes R; such that 2R; = Q and suppose g is a smooth function on Q
satisfying

lle

Then, by (2) ~ (5) of Theorem 3.1, the series 2_j ¢;- converges unconditionally in
L}, .(Q) for some r>0. We set f =g+ > #;- Combining Theorem 3.1(1) and
Theorem 4.1, we have

oV g 0 = B < w.

|f; G X Q)] £ e(B+ Mp),

where M, is as mentioned in Theorem 3.1 and ¢ = ¢(n,k,a, p).

The main purpose of the present section is to prove the converse to the
above fact. The results are given in the following two theorems. Recall that we
are assuming a is a sufficiently large positive number.

THEOREM 5.1. Suppose Q#R", k+12«a, and p < . Also suppose
0<g=o0 and 1/q+a/n>1/p. Let f be a function on Q such that
If3 C;"‘(Q)] < 0. Then there exist ¢,, Qm, and Ay, (m=1,2,...) which satisfy
the following (0) ~ (v):

0) @, are functions on R", Q,, are cubes, and A, are nonnegative numbers;

(i) supp@, < Om;

(i) 27'a*Q,, = O

(i) @m; CZ*| £ Ams

(iv) for each r > 0,

()

where ¢, = c(n,k,a,p,q,a,r);

(V) f = gQ,k,q(f) + Zm Pm-

< alf; CHRQ)),
4
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THEOREM 5.2. Let k+ 1= and let f be a function on R" such that
|f; C2*| < co. Then:

(1) If 1/p>a/n or 1/p=oa/n=1, then there exist @¢,, Qm, and in
(m=1,2,...) which satisfy (0), (i), (iii), and (iv) (with Q=R" and with
¢, = c(n,k,a,p,r)) of Theorem 5.1 and also satisfy

(V) 1 = Polf) + Lm0

(II) If 0 < 1/p<a/nor 0 <1/p=oa/n<], then there exist ¢,,, Om, and im
(m=1,2,...) which satisfy (0), (i), (iii), and (iv) (with the same replacement as in
(1)) of Theorem 5.1 and also satisfy

(V") f = S Om € P

REMARK. The series )., ¢, in Theorem 5.1 converges unconditionally in
L; (Q) for some r > 0 as we already saw at the beginning of this section. The
series »_, ¢, in the case (I) of Theorem 5.2 converges unconditionally in
I'(1/p—a/n) (when 1/p > a/n) or converges absolutely in Co (when 1/p=
a/n=1) by (2) and (3) of Theorem 3.1. The series ), ¢,, in the case (II) of
Theorem 5.2 converges unconditionally with respect to |; C;"k| by Theorem
3.1(1) (cf. also the remark given in the first paragraph of Section 3).

In the rest of this section, we shall prove the above theorems and, as a
corollary to the proof of the case (I) of Theorem 5.2, we shall complete the
proof of Theorem 4.3. The main idea of the proof of Theorem 5.1 is the same
as in [Mi2; §3].

For the proofs of Theorems 5.1 and 5.2, we use Lemmas 5.1 ~ 5.4 to be
given below. In these lemmas, we fix an Q and assume U, V, and W are open
subsets of Q, and, for open subsets D = , we abbreviate %q(D) to 4(D).

LemMa 5.1. (1) {Qe¥%(Q);3aQ0 c U} ={Q e ¥9(U);3aQ < U}.

(2) There exists by such that: If Q is a dyadic cube satisfying bsaQ < U, then
¢3,U _ w(Q:,n_

(3) There exists by such that: f U<V < W, Re 4(V), bsaR < U, and if Q
is a dyadic cube satisfying 2Q0N2R # (5, then (pg’U = gog’W = (pg’g.

Proor. For a dyadic cube Q, we denote by O the unique dyadic cube such
that Q0 > Q and ¢(Q) = 2£(Q).

(1) Suppose Q€ %(U) and 3aQ < U. Then the maximality of Qe %(U)
implies that a0 ¢ Q or aQ ¢ U. But the latter relation is impossible since
aQ = 3aQ < U. Hence a2Q ¢ Q and, hence, Q € (). This shows that the right
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hand set in (1) is included in the left hand set. The converse inclusion is obvious
from the definition of 4(Q) and 9(U).

(2) We may and shall assume Qe¥%(Q)U¥(U). In order to show
(pg’g = (og’U, it is sufficient to show

(5.1) {Re%(Q);20N2R # J} = {Re 4(U);20N2R # J}.

First, suppose 3aQ < U. Then Qe %(Q)N%(U) by (1). Hence, for cubes R
belonging to either the right or the left hand set of (5.1), we have /(R) =~ ¢(Q)
(by Lemma 4.1(3)) and, hence, 3aR < b3aQ for some b3 > 3. Now, with this b3,
assume b3aQ < U. Then: If R belongs to the left hand set of (5.1), then
3aR < b3aQ < U and hence, by (1), R belongs to the right hand set of (5.1); and
the same holds if we interchange ‘left’ and ‘right’. Thus (5.1) is proved.

(3) First suppose Re 4(V) and 3aR < U. Then Re 9(Q)NY(U)N%(W)
by (1). If Qe%(Q)UI(U)U%(W) and 2RN2Q # &, then ¢(Q) ~ ¢(R) (by
Lemma 4.1(3)) and hence b3aQ < bsaR for some by > 3. Now assume Re 4(V)
and bsaR < U and assume Q is a dyadic cube such that 20N 2R # . Then:
If Qe9(Q)UEU)UY (W), then b3aQ c bsyaR < U =« W and hence (og’g =
ool =0g" by (2); and if Q¢4(QUI(U)UF(W), then ¢ =gp" =
¢§Q2’W =0. Lemma 5.1 is proved.

LemMA 5.2. If T is a cube such that a*T < Q and aT ¢ U, and if @ € 9(U)
and 20NT # &, then £(Q) £2/(T), Q< T, and 4aQ ¢ U.

Proor. Suppose T and Q are cubes satisfying the assumptions of the
lemma. If £(T) < £(Q)/2, then, since 20NT # J and a is large, we have
aT = (a/2+ b)Q < aQ = U, which contradicts the assumption a7 ¢ U. Thus
£(T) = £(Q)/2, which combined with the assumption 2QN T # & implies that
QcT. If £(Q) < £(T)/3, then, since 20NT # & and a is large, we have
Q0 < (2a*/3+ b)T < T < Q and hence, by the maximality of Qe 4(U), we
have aQ ¢ U and thus 3aQ ¢ U (since 3aQ > aQ). Finally, if £(Q) = ¢(T)/3,
then, since 20NT # &, we have aT < (3a+ b)Q = 4aQ and hence 4aQ ¢ U
(since aT ¢ U). Lemma 5.2 is proved.

LemMa 5.3. If T is a cube such that a*T < Q and aT < U, and if Q,
Q' egU), 20NT #F, and 20'NT # &, then ((T) < b((0), T < bQ, and
o~ Q"
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The above lemma easily follows from (2) and (3) of Lemma 4.1.

LEMMA 5.4. There exists bs such that: If UcV, Re¥%(V), bsaR ¢ U,
Qe%U), and 2QN2R # J, then bsaQ ¢ U.

Proor. Take bs>3 so that 20N2R# F and Z(R) < by/(Q) imply
bsaR < bsaQ. Now suppose U, V, R, and Q satisfy the assumptions of the
lemma. We shall prove bsaQ ¢ U. This is obvious if 3aQ ¢ U. Hence we
assume 3aQ < U. Then, by Lemma 5.1(1) and Lemma 4.1(3), we have Q € 4(Q)
and /(R) < by/(Q). Hence bsaR < bsaQ, which combined with the assumption
bsaR ¢ U implies that bsaQ ¢ U. The lemma is proved.

Proor oF THEOREM 5.1. In this proof, ¢ denotes various positive constants
depending only on n, k, a, p, q, a, and other explicitly indicated parameters (if
any). We simply write /* = f7 = and 4(U) = 9o(U).

For each cube O = Q, we take a mg € Ili 4 o(f). With each pair (Q, R) of
dyadic cubes, we associate a dyadic cube K(Q, R) in such a way that K(Q, R) is
equal to either @ or R, £(K(Q,R)) =min{/(Q),/(R)}, and that K(Q,R) =
K(R,Q) for all Q and R. We set Pgr = mgg g for dyadic cubes 0, R< Q.
Notice that Pgg = Prg.

If |f; CI",""(Q)[ =0, then f = goi4(f) and the conclusion of the theorem is
obvious. Thus we assume |f; Cg’k(Q)l > 0. We take a continuous function 4 on
Q such that A(x) > 0 for all x € Q and |4, o < |f; Cg’k(ﬂ)|. For each integer j,
we set

Uy = {xeQ;f*(x) + h(x) > 2'}.

Since f# + & is a lower semicontinuous function, U; is an open subset of Q. We
shall simply write (oé = ;og’Uj and ¢g = gpg’g. In the sequel, sums over cubes shall
be taken over all the dyadic cubes unless the contrary is explicitly stated. Now we
define

j i -1
9/ =fraw +Y_ Prsvhol .
RS

It is easy to see that g/*! — g/ can be written as

o .
gt —g' = I
R
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with

hg = ?’{e(f‘f)wj+l + Z PQ,R¢£3+1 - Z PR,S¢§_1>-
) 5

It is obvious that

(5.2) By #0 onlyif R e %(U))
and
(5.3) supp h{z < 2R.

The following estimate is the core of the proof:
(5.4) |g; Ca| < 2.

For the moment we assume this estimate, (5.4), and show that this implies the
desired decomposition of f.

It is obvious that g/(x) — f(x) a.e. as j — oo (since U; > Uy and |Uj| — 0
as j— o0). On the other hand, since U; — Q as j— —co (this is because
h(x) > 0 for all xeQ), it holds that

g'(x) = D Prs(x)eR(x)¢8(x) asj— —co
RS

for every x € Q (cf. [Mi2; Proof of (3.12), pp. 219-220]). Hence

Q0
F-% rrseht = 3 (T) ne
RS j=—w \ R
and, thus,
Q0
(5.5) S —9axq(f) = Z(PR,S — TR)PRYS + Z (Z hfe) ae.
R,S Jj=— R

We shall prove that the right side of this equality forms a series which satisfies the
estimates as mentioned in the theorem.
First, for each r > 0,

© 1/r 1/r
(Z > 2f'x2R(x>) é(cz_zj'XU,(S)> < e (f*() + (),

j=— Re%(U))
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and hence

1/r
H(Z > 2j'X2R)
7 Re%(Uy)

which together with (5.2) ~ (5.4) implies that the families {/%}, {2R}, and {c2/}
each indexed by the set {(j,R);je€ Z,Re %(U;)} form a triplet of sequences
satisfying the conditions as mentioned in (0) ~ (iv) of the theorem.

Next, the first sum on the right side of (5.5) can be written as g kg with

S ol f* +hlpa S olf; GHQ),
p

hr=")_(Prs — mR)9RYS-
N

If g292 # 0, then 2RN2S # &, £(S) =~ £(R), and S ~ R (by Lemma 4.1(3)), and
hence K(R,S) ~ R and

IV (Prs = 7)llo 2 < ¢f(R)*™ inf f*

for every nonnegative integer m (by Lemma 2.2(2) and Lemma 2.1(3)) Using
these estimates and Lemma 4.2(3), we obtain

1Vl < ct(R)*™*Hinf £,

From this, using Lemmas 2.9 and 2.8, we obtain
(5.6) |he; Cif| < c inf f#

(here we also used the assumption k + 1 = a). For each » > 0, we have

, 1/r
inff#) Yo

The estimates (5.6) and (5.7) together with the obvious fact supphgr < 2R imply
that the families {Az}, {2R}, and {cinfgf#} each indexed by ¥(Q) also form a
triplet of sequences satisfying the conditions as mentioned in (0) ~ (iv) of the
theorem.

Now the rest of the proof is to show (5.4). In order to do this, we first
observe that

(5.7) '

= lerf*llp 0 S alf; GFHQ).
P

(5.8) B =0 if bsaR < Uy
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In fact this can be seen as follows. If R ¢ %(U;), then obviously hJ, = 0. Suppose
R e %(U;) and bsaR < Uj;y. By Lemma 5.1(3), we have ¢gl = ¢’Q—1 = (pg for all
dyadic cubes Q satisfying 2RN2Q # 4. Hence, on 2R,

Z PQ,R%+1 - Z Prspl ' = Z Porog — Z Prso§ =0,
] N 1] S

where the last equality follows from the symmetry property Por = Prg. On the
other hand, f' —fxy,, =0 on 2R since 2R < bsaR < Uj;;. Hence h{z = 0. Thus
(5.8) holds.

We shall now prove (5.4). By (5.2) and (5.8), we may and shall assume
Re%(U;) and bsaR & U;,1. We shall prove the estimate

(5.9) H(T) I o7 (h}) € 27
for cubes T such that
(5.10) TN2R#F and ¢(T) = /¢(R)/2.

This estimate together with (5.3) will imply (5.4) (by Lemma 2.8). In the sequel,
we assume 7T is a cube satisfying (5.10). Notice that 7 < 3R and
@T < (i*/2+b)Rca*Rc Q.

Case 1: aT & Ujy;y.

We decompose hj as follows:

iy =hi + hy + b3,
hy =ph(f = n7)Xa\up»
h =03 ) (Por—mr)ey,
Q
hy =p% ;(nr — Prs)oi .
We shall prove the estimate

(5.11) L(T) I oo 7 (hi) € 27

for i =1,2, and 3, which will of course imply (5.9).
We first estimate A;. By Lemma 2.2(4), the following holds for a.e.
x e T N(Q\Uj41):

|f (%) = ar(x)| £ c£(T)'f*(x) < c£(T)*2.
Hence A1, r < ¢/(T)*2/, which implies (5.11) for i = 1.
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Next, we estimate /,. Suppose Q is a dyadic cube such that
(5.12) Q€% Uy1) and 20N2RNT # .

By Lemma 5.2, we have £(Q) < 2/(T), Q 7T, and 4aQ & U;;;. By Lemma
4.1(3), we have #(Q) < b/(R) and thus K(Q,R) ~ Q. Thus K(Q,R) c bgT for
some bg > 1. Since 4aQ < b7aK(Q, R) for some b; and since brabsT < a’T < Q,
we can use Lemma 2.2(3) to obtain

Imx0.R) = Moo lloo k(0.0) = €Z(T)" infs F S l(T)Y

(the last inequality follows from the relation 4aQ ¢ Uj.i). Similarly, using
Lemma 2.2(2), we have

Imssr =zl r S c£(T)* inf # < cl(T)"2!
’ a

(the last inequality follows from the assumption a7 ¢ Uj.q). Using these
inequalities and using Lemma 2.1(2), we obtain

1Por — "T”oo,zg < cllmkor) — nbsT”oo,K(Q,R) + ¢l mper — nT”oo,T < et(T)2

and thus

<ct(T)*2/,
,T

j i+1
ok > (Por—mr)ply
0:(5.12)

2]l oo, =

which implies (5.11) for i =2.
Finally, we shall estimate A3;. Suppose S is a dyadic cube such that

(5.13) Se%(Up;) and 2RN2S # .

By Lemma 4.1(3), we have ¢(R) < b/(S) and hence K(R, S) ~ R. We take bg > 3
such that 7 < bgR and K(R,S) < bgR and take cubes 7; (i=0,1,...,N) such
that

T=T0CT1C CTN=bSRa
(5.14) £(Ti) =2£(Ti_)) for 1<i<N, and ¢(Ty_1)<(Ty) < 26(Tw_1).

From the assumption aT & Uy, it follows that inf,r, f* < 2/*! for each i
(notice that aT; < abgsR < a*R = Q). Hence, by lemma 2.2(2) and Lemma 2.1(3),

”Vm(nT; - 7"5T,_1)||oo r = Cf(T,-)“_m ll}‘ff# < cl(Ti)a—mzj
141 a A
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and
V" (Prs = 12 )llco,myy < /(Tw)*™" inf f* < et(Tw)* "2/,

and thus

N
IV"(Prs = 21) 0,7 S IV"(Prs = 21 )leo 7y + D IV (e, = 77, )|

i=1

©,T;

M-

<2/ H(T)F,

i=1

where m denotes an arbitrary nonnegative integer. Using this inequality, Leibniz’
formula on differentiation, and Lemma 4.2(3), we obtain

N
(515)  IV*'Bsllpr e > DO f(R)"”(szf(m“""')asrm",
i=1

map';m" S:(5.13)

where the sum with respect to m, m’, and m" is taken over the nonnegative
integers m, m’, and m” satisfying m +m' +m" = k + 1 and m' < k (the restriction
m' < k comes from the fact that V'"'(PR,S —nr) =0 for m > k). Using (3) and
(4) of Lemma 4.1, we see that the right side of (5.15) is majorized by

2/ i £(R) <1 i(zv(r))“—'".
m=0 i=1

Evaluating this series and using Lemma 2.9, we finally obtain the following
estimates: If k < o, then
H(T) o, r(h3) < 20 (£(T)/£(R) '

if k= a, then

k+1-a
(T) *lio,r(h3) < 2 (%) (1 +log %) +c2)

¢£(T)
/(R)

(the log term is necessary only when o is a positive integer). Since kK + 1 = « and
since 7(T) < /(R)/2, the above estimates imply (5.11) for i = 3. Thus (5.9) is
proved in Case 1.

Case 2: aT < Uyyy.



92 Akihiko MIvAcHI

From the cubes Q satisfying (5.12), choose a cube Qp. On Uj;; (and hence
on T in particular), the function A% can be written as follows:

hé = h4 + hS)
ha =0} Y (Por—mg,)0l
0

. -
hs = Y (mg, — Prs)o% -
5

We shall prove that (5.11) holds for i =4 and 5.

Suppose Q is a dyadic cube satisfying (5.12). In the present case, we have
¢(T) £b£(Q), T < byQ with some by, and Q ~ Qo (by Lemma 5.3). By Lemma
4.1(3), we have £(Q) < b/(R) and, hence, K(Q,R) ~ Q and K(Q,R) ~ Qo. By
Lemma 5.4, we have bsaQ ¢ Uy and hence infpof* < 2%

Now we shall estimate k4. For Q satisfying (5.12), we have

1Po.r — gyl 0,0 < €£(D0)* bislalgof# < 274(Qo)”
and hence
[V(Po.r — 1) |leo 1 S V™ (Por — 70|l 0.0, < €27€(Q0)* ™
for every nonnegative integer m. Using this estimate and Lemma 4.3, we obtain
1V | < €27(Q0)*
Hence, by Lemma 2.9,
£(T) *Eeco,r(ha) < €2 (¢(T)/£(Q0))"' ™" S c2/.

This proves (5.11) for i=4.

Next we shall estimate #s. The argument is similar to that given in the
estimate of 43 in Case 1. In the present case, we take by such that Qo & b1oR
and that K(R,S) c boR for every S satisfying (5.13). We take cubes T;
(i=0,1,...,N) such that Qo=To<=Tic --- c Ty =bjpR and that (5.14)
holds. Since bsaQp ¢ Ujy1, we have infp,r, f # <2/*1 for every i. Hence,
arguing in the same way as in the estimate of /43 in Case 1, we obtain

k N
(V¥ s | gy < €27 D (RN (274(00))* ™.
m=0 i=1

From this and from the fact that T < beQy, we obtain, using Lemma 2.9, the
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following estimates: If k < a, then
/(T)—alk,oo,T(hS) b c2j([(T)/{(R))k+l~rx;
if k = o, then
—a i /(T) k+1-a b/(R) {(T) /(T) k—a
D) hnrllhs) = ¥ (7(7)) (1 +log /(Qo)> TR (f(Qo))

(the log term appears only when « is a positive integer). Since
b~'4(T) < ¢(Qo) < b4(R), the above estimates imply (5.11) for i = 5. Thus (5.9)
is proved in Case 2 as well. Theorem 5.1 is proved.

PrOOF OF THEOREM 5.2. We use the same notations as in the proof of
Theorem 5.1 (we only replace Q by R"). We take g such that 0 < ¢ < p and
define g/ and hﬁ in the same way as in the proof of Theorem 5.1 (notice that
U; # R"). By exactly the same argument as in the proof of Theorem 5.1, we see
the following: (1°) The families {/%}, {2R}, and {c2’/} each indexed by the set
{(j,R);je Z,Re %(U;)} form a triplet which satisfies the conditions as men-
tioned in (0), (i), (iii), and (iv) of Theorem 5.1; (2°) for each integer N,

(5.16) fx) —g¥(x) = i (Z h;;(x)) ae.
R

j=N

In the rest of the proof, we shall treat the cases (I) and (II) separately.
Case (I) 1/p>a/nor 1/p=a/n=1.
It is sufficient to show that

(5.17) g (x) = Po(f)(x) as N— —oo forall xeR™

If 1/p > a/n, then (5.17) is easily seen from Theorem 4.3. (Recall that Theorem
4.3 for the case 1/p > a/n is completely proved.) Suppose 1/p = a/n = 1. Let P
be the polynomial as given in the claim (a) in the proof of Theorem 4.3. Then, by
that claim (a), we have g¥(x) — P(x)(N — o) for every x € R". By the above
(1°) and by Theorem 3.1(3), the series Ej’ R hf{ converges absolutely in Cj.
Conbining these facts with the above (2°), we see that f — P e Cy and hence
P = Py(f). Thus (5.17) is proved in the case 1/p = a/n = 1 as well. (Notice that
this argument also completes the proof of Theorem 4.3.)

Case (II) 0<1/p<a/nor 0<1/p=a/n<l.

The series }, » hj; unconditionally converges with respect to |-; C:’k[ (this
follows from (1°) and Theorem 3.1(1)). For each integer N, the series Zj’R h%
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unconditionally converges in C; (when 0<1/p<a/n) or in L7 (when
0 < 1/p =a/n < 1); this follows from the assertion (1°) and the fact that /(R)
for Re 9(U;), j = N, is bounded, with the aid of (4) and (5) of Theorem 3.1.
Hence the function on the right side of (5.16) coincides mod ) with the
|~;C1‘;"" |-unconditional sum } ;> vz % (cf. Lemma 2.7). Thus it is sufficient to
show that

(5.18) g% C3*| >0 as N — —oo.

To show this, we shall prove that the following two estimates hold for all integers
j and all xe R™

(5.19) (@) ag(x) £ 2,
(5-20) (@) 0a(¥) S eMy(f*)(x).

The claim (5.18) will follow from these estimates with the aid of Lebesgue’s
convergence theorem.

The estimates (5.19) and (5.20) can be proved in a way similar to the proof
of (5.4) given in the proof of Theorem 5.1; here we shall only indicate the key
steps. (A similar argument can also be found in [DS; Lemma 8.1].) To make the
reference to the proof of Theorem 5.1 easy, we shall treat g/*! instead of g/. We
fix a cube 7. We shall prove

(5:21) £(T) *licgr(g’*") < emind2/, | T4 £#]|, 1},
which will imply (5.19) and (5.20), We write
(x) = (the right side of (5.21)).

First, suppose aT ¢ Uj.1. We consider g/t! — ny, which can be written as
g/t — nr = hy + hy with

h=(f-n)iop, end h=> (Por—mr)e, ok
O.R

For h;, we have
T il S \TT" 007~ mrlr S o inf 1% < ().

If 0 and R are dyadic cubes for which (pgl(o{{ #0 on T, the Q< 7T and

Pzl o S cf(T)" min{2/,inf 7 }.
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Hence
|hy(x)| < c£(T)*min{2/,f*(x)} forallxeT
and thus

—a/n—1
|77 Ry, < (%).

The inequality (5.21) follows from the above estimates of h; and h,.

Next, suppose al < Uj;. We fix a cube Qpe%(Uj) such that
200NT # @. If @ and R are dyadic cubes for which ¢]é+l¢§ #0 on T, then
T < bQp and

V" (Po.g = ngy)llco,r < €£(Q0)"™ inf /7 < £(Q0)* ™ (+)
for every nonnegative integer m. Hence

< £(Q0) ' (+),

(VEG = ]

o

VN " (Por — 10,0l ok
0

O,R oo, T

from which follows (5.21). Theorem 5.2 is proved.
As we mentioned in the above proof, Theorem 4.3 is also completely
proved.
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