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§1. Introduction

Atomic decomposition for the Hardy spaces Hp, 0 <p ^ 1, is well known.

In this paper, we shall give a variant of atomic decomposition which applies to

the Sobolev spaces and to the C" spaces of DeVore and Sharpley ([DS]) on

general domains. In this section, we shall briefly review our results.

We shall firstfix several notations which will be used throughout the paper.

In this paper we consider functions defined on R" or on a subset of Rn; the

letter n always denotes the dimension of the basic space Rn. We also use the

lettersk, a, p, and O in the following fixed meaning: k denotes a nonnegative

integer; a denotes a positive real number; p denotes a positive real number or

oo; and Q denotes an open subset of Rn. We shall call a Lebesgue measurable

function merely a function. For a Lebesgue measurable set E <= Rn, the If{E)-

quasinorm of a function / on E is defined by

ll/IU = ll/;r(i//>;20|| =
(I

＼/p

with the usual modification in the case p = oo, and the set of functions f on E

such that ＼＼f＼＼PiE< oo is denoted by If(E) or by Y{＼/p＼E).(Thus the two

symbols H/H^ and ＼＼f;Y(l/p;E)＼＼denote exactly the same thing and so do the

two symbols LP(E) and Y(l/p;E); we shall use whichever will be convenient.)

We often abbreviate H/l^ = ||/;r(l//i;*")|| to ||/||,= ||/;r(l//>)|| and

U>{Rn) = Y(l/p;Rn) to LP = Y{l/p). The Lebesgue measure of E c Rn is

denoted by ＼E＼.For x = (x＼,...,xn) Rn, we write

Received January 10, 1995.

y/2

and ||x||= max{|x,-|;/ = 1,.. .,n}



60 Akihiko Miyachi

By a cube, we mean a closed cube in Rn with sides parallel to the coordinate

axes, i.e.,a cube Q is a subset of R" of the form Q = {xe J?n;||jc―a＼＼̂ t},

0 < t < oo; we write xq = a (the center of 0) and /(0 = 2r (the sidelength of Q).

For a cube Q and for 0 < t < oo, we define tQ as the cube with the same center

as Q and with sidelength t times as large as Q. The symbol SPk denotes the set of

the polynomial functions on Rn of degree less than or equal to k. If a function

/ has classical derivatives dvf for all v with |v|―k, then we write ＼Vkf＼=

Yl＼v＼=kl^v/l- Some other notations will be explained at the last paragraph of this

section.

Now, let D be a cube or an open subset of Rn and let / a function on D.

For cubes Q c D, we define

We define

h,p,Q(f) = inf{ier1//7ii/ - p＼u, p e ?kY

/£,,(*) = supK(eP4,/>,e(/); Q cube, x e 0 c D}, x e D,

and

l/;c;^i))IHI/^IU

We shall often abbreviate |/;C;'*(JT)I as |/; Cpk＼.

Variants of the above f*ap and ＼f＼C^k{D)＼ are considered by many people.

At least, DeVore and Sharpley [DS], M. Christ [Chr], and Bojarski [B] gave

almost the same definitions as above. The idea can be traced back to many

older works; cf. Triebel [Tri; Remark 1.7.2/1].

In considering |/; C£>k(D)＼,the cases k < a ^ k + 1 and k ^ a < k + 1 seem

to be most important. In fact, it is known that the case k = a―＼ with a a

positive integer corresponds to the classical Sobolev space (see Remark (1°) to

be given at the last part of this section), and that, at least for sufficiently nice D,

the case k > a is essentially equivalent to the case k ^ a < k + 1 (see [DS;

Lemma 4.4]). We shall, however, give our results without imposing restrictions

on k so long as possible.

Let ft ^ Rn. For xeQ and for t with 0 < t < 1, we define

pa{x)=min{＼＼x-y＼＼;yeQ.c}

and

Qt(x) = {y',＼＼y-x＼＼£tpa(x)}.
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For functions/onfl and for 0 < t < 1, we define

/･･'(*)= ll/lkaw, ^^

We shalloften abbreviatef*>1/2to /*.

Now, let Q # ^", A:+ 1 ^ a, and p < oo. Suppose g is a smooth function on

O sur.lithat

(i-i) iip&+1-"iv*+i≫rn/,>n<oo.

Also suppose that {(pj)is a sequence of functions on Rn, {Qj} is a sequence of

cubes, and {A,-}is a sequence of nonnegative real numbers, and that they satisfy

(1.2) supp^cQ,, 2QjczQ, |tyCS*(*")|^,

and

(1.3) (E "UoA < 00

p

for q ―min{p, 1}. Then it is rather easy to see that the series YljVj converges in

L＼oc{R) for some r > 0 and the function /' = g + YljVj satisfies

(1.4) |/;C;'*(Q)|<oo;

see Theorems 3.1 and 4.1 of the present paper. It is the main purpose of the

present paper to prove the converse of thisfact.To be precise,we shall prove the

following result,which is slightlystronger than the pure converse: Every function

/ on Q, satisfying(1.4) can be written as/ = g + Y^jVj witria smooth function g

satisfying(1.1) and with (q>j,Qj,A.j)satisfying(1.2) and (1.3) for all q > 0. This

result willbe given in Theorems 4.2 and 5.1. We shall also give similar result for

the case Q = Rn; see Theorems 4.3 and 5.2.

R. G. Duran [Dur] has already obtained a result which is closely related to

our result.Duran treats a maximal function which is differentfrom ours, but it

is known that Duran's maximal function (for the case where his dilation

operator At is the usual dilation x ―>tx) is equivalent to our f*a with

k < a ^ & + 1 (see[DS; Theorem 5.3]).One of Duran's resultin [Dur] gives an

atomic decomposition of functions/ on Rn with ＼f;C^k(Rn)＼< oo in the case

k < a ^ k + 1 and 1 + atIn > l/p^ 1. Compared with this result of Duran,

our results contain the following improvements. First, we treat the functions

on arbitrary open subset of Rn; the function g is peculiar to our situation.

Secondly, we treat the full range 0 < a, p < oo; thus, in particular, our result



62 Akihiko Miyachi

covers also the case of classicalSobolev spaces (cf.Remark (1°)below). Thirdly,

we give several 'mod 0' estimates (for example we give Lq estimates for the

function g and for the series Y^jVj)-*whereas in [Dur] the convergence of the

atomic series is considered mod polynomials.

In a forthcoming paper, [Mi4], the same author will consider the estimates

of the pointwise product of functions in terms of |･;C£'k(Cl)＼,where the results

of the present paper will be effectivelyused.

The contents of the succeeding sections are as follows. In Section 2, we give

several preliminary lemmas. In Section 3, we consider the series Ylj9j arising

from (1.2) and (1.3). In Section 4, we consider functions g satisfying (1.1); in

particular, we give a method to associate with each function/ satisfying(1.4) a

function g satisfying (1.1). In Section 5, we give the main decomposition

theorems, Theorems 5.1 and 5.2.

The following remarks will help the reader to understand the meaning of

the quasinorm |･;C"*(Q)|.

Remark. (1°)If m is a positive integer and ＼/p< 1 +m/n, then for locally

integrable functions/ on Q the quasinorm ＼f;C 'm~l(Q)＼is equivalent to

Enav/iU (if>>1[) or

|v|=m

J2Wf＼＼Hna) (iflSl/p<l+m/n)

＼v＼=m

where dvf denotes the derivative in the sense of distribution and ||･ ＼＼HP(q)denotes

the quasinorm of the Hp space on O as given in [Mi2]. This result for p > 1 is

due to A. P. Calderon [Cal; Theorem 4 and Lemma 7]; proof can be found also

in [Chr; Lemma 2.2] or [DS; Theorem 6.2]. The result for p ^ 1 is due to Duran

[Dur] and Miyachi [Mi3].

(2°) Let k < a S k + 1 and let/ be a function on Q. Then |/; C%k(Q)＼ < oo

if and only if / can be modified on a set of measure 0 so that the modified

function, which shall be denoted by / again, is of class Ck and

I/Lip(a)
V^

＼dvf{x)~dvf(y)＼
> sup ' v

■ ■LyLll< oo
＼v＼=k ＼x-y＼

where the sup ranges over distinct points x and y in O for which there exists

a cube Q such that x,y e Q aQ.. Moreover, the quasinorm ＼f;C^k(D.)＼ is

equivalent to |/|Lip(a). This result is due to Campanato [Cml], [Cm2], and N. G.

Meyers [Mey].

(3°) Let m be a positive integer and / a function on Q. Then

|/; C^m(Q)＼ < a) if and only if/ can be modified on a set of measure 0 so that
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the modified function,which shallbe denoted by / again,is of classCm~l and

I/Iam - 2^

|v|=w-l

sup
＼dvf(x)-2d7((x + y)/2) + dV(y)＼

＼x-y＼
< 00

where the sup ranges over the same x, y as described in (2°).The quasinorm

|/; C -m(Q)| is equivalent to |/|A(m).For a proof of thisresult,see [Gre] or [Mil;

§6.2].

(4°)Let k ^ [a],1 + a/#i > 1/p, and let O be a bounded C°°domain. Then

the quasinorm ＼＼f;C*>k(Q)＼＼is equivalent to the quasinorm of the Triebel-

Lizorkin space i^)00(Q). This result is due to Seeger [Se] and Triebel [Tl]; see

also [T2; 1.7.2, 1.7.3, and 5.3].

We shall end this section by mentioning several other notations which will

be used throughout the paper. We use the letter c to denote various positive

constants. The value of c may be differentin each occasion. To show explicitly

the dependence of a constant on other parameters, we write as c(a,/?,...);this

denotes a positive-constant depending only on the parameters a,/?, Since ^

is a finite dimensional linear space, it admits a unique (up to isomorphism)

normed linear space structure. The convergence of a sequence or a series of

polynomials in ^ and the boundedness of a subset of ^ refer to the cor-

responding notions with respect to the unique normed linear space structure of

£!Pk-If D is a cube or an open subset of Rn, then for functions/ on D we define

the maximal function MR(f) by

Mf{f){x) = supder^H/ll^; Q cube, xegcD}, x e D.

We simply write Mp{f) = MR"{f). A dyadic cube is a cube of the form

{x e JT; 2mki ^ jc,-<; 2m(ki + 1),i = 1,...,n} with m and Mi =!,...,≪) integers.

§2. Preliminaries

The firstlemma follows from the fact that a finitedimensional linear space

admits unique structure of Hausdorff topological linear space and from the

invariance of ^t under dilation and translation.

Lemma 2.1. The followinginequalitiesholdfor allcubes Q and allPe^.

(1) For each p,

＼Qrl/p＼＼nP,Q£Moo.fi *c＼q＼-i≫＼＼p＼lq,

where c = c(n,k,p)
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(2) For each a^l,

＼＼P＼L,aQ^^＼＼P＼L,Q,

where c = c(n,k).

(3) For each multi-index v,

＼＼dvp＼＼^Q^ct{Qy^＼＼P＼L,Q,

where c = c(n,Ar).

In the rest of this section, we assume D is a cube or an open subset of Rn

and / is a function on D.

For each k, p, and each cube Q <= D, we define Hk,p,Q(f) as the set of the

polynomials n in ^V such that

＼＼f-n＼＼p,Q= min{＼＼f-P＼＼p,Q;Pe&k}.

Since ^ is a finitedimensional linear space, this set Hk,p,Q(f) is not empty. (If

f*U{Q)t then UkiPtQ{f) = 0>k.)

Lemma 2.2 (cf.[DS; §4, pp. 23-25, and §12, pp. 104-105]). Let Q, R, and

S he cubes included in D.

(1) Ifn lik^Q{f), then

＼＼AL,Q^c＼Q＼-llp＼＼f＼＼p^

where c = c(n,k,p).

(2) If 1 ^ 8 > 0, QUR c S, and t{Q＼ t{R) ^ df(S), and if nQ e UktPtQ(f)

and ur e Uk,pjt{f), then

hQ-^R＼＼oo,s^^(SrMf*

where c$ = c(n,k,p,8).

(3) If 1 ^ t < oo a≪rf QczRcztRczD, and if nQ e n^p^C/) and

nReUk,p,R{f), then

＼＼nQ-nR＼＼^Q1*cARTMfk%,

where ct = c(n,k, a,p, t).

(4) IfneTh^Qif), then

＼f(x)- n(x)＼̂ ct{Q)af*{x) for a.e.x s Q,

where c = c(n,k,a,p)
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For b with 1 < h < oo, we define

65

/*£?,(*)= s*P{t(QV*Ik,p,Q(f)＼ Q ^be, Q 3 x,bQ <= D}

for xeD1' (=the interior of D). Thus f*£p{x) =f*^p(x) for xe/)1". Of course,

Dz = D if D is an open subset of Rn and that D＼Dl has measure 0 if D is a cube;

in either case, f*f is defined a.e. on D.

Lemma 2.3 (cf. [DS; Theorem 4.3]). If 0 < q ^ oo, ＼/q+ a/n> l/p, and

1 < h < oo. then

c~l＼f＼

where c ― c(n, k, <x,p,q, h)

C?k(D)＼ S ＼＼fk*%j>£c＼f;C?k{D)＼,

Proof. If h = 1, the claim follows from the theorem of DeVore and

Sharpley mentioned in the lemma. We shallconsider the generalcase b^l. We

can easilygeneralizeTheorem 4.3 of [DS] to the case off*' with h^. 1 and,

using the generalized theorem, we see the following: If I Sb < oo, 0 < qi,

qj ^ oo, and l/qi + a/n > l/p(i ― 1,2), then

-l＼＼f#,bi| < ＼＼f#,b|| <r＼＼f#'bII
C ＼＼Jk,OL,qiWp,D= H//fc,a,92ll/?,D= C＼Uk,<x,q1Wp,D-

Hence, in order to prove the lemma, it is sufficientto prove the inequalities

(1 ＼＼ ＼＼f*'b＼＼< IIf* II < <-llf#i*ll＼LA) ＼＼h,o.,q＼＼p,D= ＼＼Jk,(i,q＼＼p,D= C＼＼Jk,<x,q＼＼p,D

forb>＼ and for q satisfying0 < q <p. Since the lefthand inequality of (2.1) is

obvious, we shall prove only the right hand inequality. We shall simply write

f#,b _ f*,b

Fix b > 1 and fix a cube R c= D. For each cube Q a R, we choose a

tiq e Uk,q,Q(f)- Let ^ be the set of the maximal dyadic cubes Q such that

3bQ a R. The interiors of the cubes in ^ are pairwise disjoint and the union of

all the cubes in ^ is equal to the interior of R. Fix a cube Qq e ^ which

contains xr. Let Q be a cube in ^. We can find a finite number of cubes,

0(/-=l,...,w), in ^ such that Q,-n0_i#0(y = l,...,m)) & = &

O <=c(n,h)Qj for each /, and

mE S(Q,)tt£c(n,b,*)t(R)a.
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(For example, Qj can be chosen from those cubes in ^ which intersects the line

segment joining xR and xq.) For each j, let Qj = 3Qj if /(Qj) > t(Qj-i) and let

Qj = 3Qj-i if otherwise. Then Qj＼JQj-＼c gj and, by Lemma 2.2(2),

＼＼*Qj~ *Qj-i＼L,Qj* cm'jT igf {f＼Q!j)t,q-

Since cgy => 2 and since hQj <=.R a D, the above inequality combined with

Lemma 2.1(2) implies that

INfi, - ≪e^ llco,ê ^(a)"i^/#>*

^ ^(e;)aiar1/?ii/#'*n,,e, ^ <*{&? ^f Mf (/#'*).

Taking the sum over j = 1,2,..., m, we obtain

IlKfio-wfilloo.fî̂ W'i^ <(/#t*)-

From this estimate, we obtain

||/ - KqXq ^ <＼＼f- "CHIC + ll≪fi- nfibllifi)

^cmr＼Q＼

Taking sum over Qe^, we obtain

+c/(Rr
(inf

Mf (f*'b)
JlSI

Wf
~ "QoWIr

^ ce{Rf* Y

finf
md( f+M

fr?L＼ O 1 KJ }

)

＼Q＼*cf(Rr＼＼M?(f*'b)＼＼<*

which implies

W"W/) ^ c＼R＼-lf<＼＼M?(f*>b)＼＼qtR.

Now taking the supremum over R's, we obtain

f*
^q{x)

<L cM≫(Mf(f#>b))(x) for allx D.

The right hand inequality of (2.1) follows from the above pointwise inequality.

Lemma 2.3 is proved.
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Lemma 2.4 (cf.[DS; Proof of Theorem 12.5, pp. 111-112]). // a > j$> 0,

0 < pi < p2 S oo, and l/pi - ol/u=＼/p2- fi/n, then

＼f;C*k(D)＼*c＼f;Ctf{D)＼,

where c = c(n k,aj,php2)

Lemma 2.5 (cf.[DS; Theorem 9.1 and Proof of Theorem 4.3]).

D = Q is a cube. Suppose l/p>ct/n or ＼/p= a/n~^.＼.Also

oo > t/q > l/p ―a/n and n n^g)g(/). Then

＼＼f-n-r(l/p-z/n;Q)＼＼Sc＼f;C≪/(Q)＼,

where c = c{n,k,a,p,q)

Suppose

suppose

Lemma 2.6. Let Q be a cube and {fj} a sequence of functions on Q.

Suppose ＼fj＼Cpk(Q)＼is bounded. Let 0<q^oo, l/q +a/n> l/p, and

itj£Hk,q,Q(J})-Then {fj ―te/}contains a subsequence which converges in LP(Q).

Proof. If is sufficientto show that the set {fj ―79} is totally bounded in

If(Q). For each positive integer m, let ^m be the set of the dyadic subcubes of

Q with side length 2~m^(Q). We take njjRe Iik^R{fj) for each R e (Jm&m, and

define fjtinby

fj,m = ^2 UJ,R%R-

We shall prove the following two facts:(i) As m ―>00, the sequence {fjim ― %j}m

converges to fj ―Uj in LP{Q) uniformly with respect to j; (ii)For each fixed m, te

set {fj,m - Tijjjis totallybounded in LP{Q). The totally boundedness of the set

{fj - 7i/}follows from these two facts. We shall simply write f* = {fj)t,a,q-

We shall prove (i) and (ii).First, by Lemma 2.2(4), we have

＼fj(x)-fj,m(x)＼̂ J2 WW - *jA*)＼Xr{x)^ c{2-m{{Q)Yfj*(*)

Hence, hv Lemma 2.3.

Wfj -fj,m＼＼P,Q^ c(2-mt(Q)nfj*＼＼P,Q ^ *(2-'Y(g))≪W; c;-*(fi)|,

which obviously implies (i) (since ＼J};C%'k(Q)＼is bounded). Next, the function
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fj,m ―Kj can be written as

fj,m-nj= ]T (nJ* ~ nj)*R-

Re<$m

Hence, in order to prove (ii),it is sufficientto show that for each fixed R the set

{nj,R ―nj}jis bounded in ^. But thislast fact can be immediately proved by the

use of Lemma 2.2(2). Lemma 2.6 is proved.

Lemma 2.7. Suppose {fj} is a sequence of functions on D such that

＼fj-fm;C≪'k(D)＼->0 asj,m-*M.

Then thefollowing(1) and (2) hold.

(1) There existsa function g on D such that

(2.2) ifj-g^C^m-*R asj-*cx>

and

(2.3) ＼g;Cfk{D)| ^lmmfW;C;-*(Z>)|

(2) Suppose, in addition, h is a function on D and suppose for each cube

Q a D there exists an r = tq > 0 such that

(2.4) Wfj-hl^^O asj^w.

Then (2.2) and (2.3) hold for g = h.

Proof. The inequality (2.3) follows from (2.2) with the aid of the tri-

angular inequality

|/ + ft C≪/{D)＼≪<;|/; C≪/(D)＼≪+ ＼g-C≪/{D)＼＼ q = min{p, 1}.

Hence it is sufficientto show only the assertions concerning (2.2).We shall prove

(2) first.

Proof of (2). We shall firstshow that (2.4) actually holds with r = p. In

order to prove this,it is sufficientto show that, for each cube Q c=D,

(2.5) ＼＼fj-fm＼＼p,Q-+0,asj,m-+oo.

Fix a cube Qcz D and let r be a positive number for which (2.4) holds. Replacing

r by a smaller number, if necessary, we may assume that l/r + a/n > lip. Take
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iijtme Tik,r,Q(fj―fm)' Then, by Lemma 2.2(4),Lemma 2.3,and by the assumption

of the lemma,

(2.6) Wfj -fm - nj,m＼＼Q t* cf(Q)a＼fj -fm; Cf{Q)＼ -. 0 asj,m -, c≫

On the other hand, by Lemma 2.2(1)and by the assumption (2.4),

(2.7) ＼＼nlm＼＼P
jQ

S c＼Q＼l/p-l/r＼＼fj-fml,Q - 0 asy,m - oo

The assertion(2.5)follows from (2.6)and (2.7).

Now, from the fact that (2.4)holds with r ―p, it follows that

hpM -h)= lim hpM -/≪)･
tn―>oo

From this,we obtain

(fj~h)tM{x) ^ liminf(j5-fm)tM{x)

for allxeD. Taking I/(D)-norm and using Fatou's lemma, we obtain

＼fj- h;C?k(D)＼£linnnf ＼fj-fm; C≪/{D)＼,

from which follows(2.2)with g = h. Thus (2) is proved.

Proof of (1). It is sufficient to show that {fj} contains a subsequence

which converges to a function with respect to |･;C^k{D)＼. We may and shall

assume that ＼fyC^k(D)＼ is bounded (if this is not the case, it is enough to

consider fj -fj0, with a fixed jo, instead of fj). For each Q a D, we take

kj,qe TLk,P,Q(fj)-

First we consider the case where D = Q is a cube. In this case, by Lemma

2.6,{fj ―Kj,q＼contains a subsequence {fj> ― tij^q}which converges in If(Q). If

we denote the limit by g, then, by (2) proved above, we have

＼fr~ 9; C;>k(Q)＼= ＼fr- nrtQ - g; C≪p>k{Q)＼- 0

as desired.

Next, suppose D is a connected open subset of R". We shall firstshow that

if Q and Q' are cubes included in D then {%j& ―nj,Q'}jis bounded in ^. This

immediately follows from Lemma 2.2(2) if there exists a cube R such that

Q U Q' a R a D. In the general case, we can find a finitenumber of cubes Qm,

m = 0, l,...,N, and cubes Rm, m = 1,2,... ,7V, such that Qo = Q, Qn = Q',

and Qm-i U Qm a Rm a D. Then, for each m, the sequence {ft/,gm_,- Kj,Qm}j is



70
Akihiko Miyachi

bounded in ^ as seen above, and, hence, the sum

N
5^(ty> Qm-l

~ Kj,Qm)
m=＼

nJ,Q ~ nJ,Q'

is also bounded. Now fix a cube Qq c= D. Let Q be an arbitrary cube included in

D. By Lemma 2.6, the sequence {fj ― Ttj^} contains a subsequence which

converges in If (Q). On the other hand, the sequence {%j,q - itj,Q0}is bounded in

0>k and hence any subsequence of it contains another subsequence which con-

verges in 0>k- Hence the sequence {fj ― njg0} = {fj - ti^q + %^q ― 7t/,g0}contains

a subsequence which converges in If (Q). Since this is true for every cube Q a D,

we obtain, by the diagonal method, a subsequence {fy ― ny^} which converges

in Ifloc{D). If we denote the limit by g, then by (2) proved above, we have

＼fy- g; C?k(D)＼ = ＼fy- nr,Qo - g- C?k(D)＼ - 0

as desired.

Finally, if D is an arbitrary open subset of Rn, then we can obtain the same

conclusion by considering on each connected component of D. Lemma 2.7 is

proved.

Lemma 2.8. Let f he a function on Rn, Q a cube, and let 0 < e, A < oo.

Suppose supp/ c=Q and suppose /(i?)~a4j^!i{(/)^ A for cubes R with f(R) ^

s/(Q). Then ＼f;C**(Rtt)＼£ceAwith ce = c{n,k,a,p,e).

Proof. We take tire Hk,P,R{f) for each cube R. If R is a cube with

t(R) ^ et(Q), then, by Lemma 2.2(4), we have

|/(x) - nR{x) | g cAt{Rf for a.e.xei?.

If R and i?' are cubes such that Rf)R' ^ 0, S(R) = t(R') S et(Q)/2} then, using

Lemma 2.2(2), we see that

II**-*jHI≪*u#^ **'(*)"･

Using these two facts and the assumption supp / <= Q, we can easily prove that

＼f(x)＼̂c£Adisix,^)* a.e.xer

Thus, in particular, H/H^ ^ c£^/(g)a. Hence, for cubes R with £(R) > s/(Q), we

have

mVh,PAf) ^ ^)-||/|L S cBA(t{Q)/S(R))< ^ ceA.
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Hence f^p{x) ^ cEA for all xeRn, and thus |/; C^k{Rn)＼ ^ cEA (by Lemma

2.3). Lemma 2.8 is proved.

The final lemma, below, easily follows from Taylor's formula.

Lemma 2.9. If f is a function of class Ck+l on a cube Q, then

h^Q{f)^cm)k+l＼＼＼^lf＼＼L,Q

with c = c(n,k).

§3. Atomic series

Before we state the main theorem of this section, we shall give a remark

and a definition. First, let Y,j Vj be a series of functions on Rn and fix k, a, and

p. The function g on Rn satisfying | J^jLi <Pj~ 9'î p'k＼-^ 0 as iV -^ oo (if there is

any such g) is not acutually unique but is unique only mod ^V Even so we

shall write g = YLjVj anc^ ca^ it the sum of the series Y^jVj- Notice that ＼g;C^k＼

is uniquely determined in spite of the non-uniqueness of g. Next, we define the

function space Co as follows: A function / on Rn belongs to Co if there exists

a continuous function h on Rn such that f(x) = h{x) a.e. and h(x) ― 0 as

|jc|―>■oo. We regard Co as a Banach space by identifying functions deffering

only on sets of measure 0 and by taking ||･ H^ as the norm.

Now, the purpose of this section is to prove the following theorem.

Theorem 3.1. Let {(pj)he a sequence of functions on Rn, {^} a sequence of

nonnegative real numbers, and {Rj} a sequence of cubes. Suppose

supptpjezRj and ＼9fiC≪*{Rn)＼^ Xh

and suppose p < oo and

(E 4%) = Mp < oo with ^ = min{/j, 1}

We write A = sup f(Rj){ ^ oo). Then the following hold with c ― c(n,k,tx,p) and

cr = c(n,k,a,p,r).

(1) The series Y^jVj unconditionally converges with respect to |-;Cp'k＼ and the

sum YsjVj satisfies ＼Y,j9j＼ Cp'k＼^cMp.

(2) If l/p > a/n, then the series Ylj 9j unconditionally converges in

Y{＼/p-z/n) and WEj^ni/p - a/n)＼＼̂ cMp.
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(3) If l/p = a/n ^ 1, then YljVj converges absolutely in Co and

IIEyPylL^JI/,.

(4) If 0 < l/p ― a/n < 1 a≪J .4 < oo, then, for each r with p S r < °°5the

series Yljfj unconditionally converges in IS and WYljVjWr = crAn!rMp.

(5) If 0 < l/p < a/n and A < oo, then YljVj unconditionally converges in Co

and ＼＼Y,j9j＼＼^^cA-nIPMp.

In order to prove this theorem, we use the lemmas below.

Lemma 3.1. Let f he a function on Rn and Q a cube. Suppose supp/ c Q

and |/; C^(JT)| = X < oo. Then:

(1) After modified on a set of measure zero, f is a continuous function and

WfWn^cMiQ)' with c = c{n,*,k);

(2) For each p,

f*
M{x)

s cx{＼+mrx ＼*- jfiip-"7', x e Rn,

where c ― c(n,k,ct,p).

Proof. (1) The continuity of/ follows from a stronger result of DeVore

and Sharpley [DS; Theorem 9.1]. (DeVore and Sharpley state the result for the

case k = a but their proof works for general k.) The inequality for H/H^ has

been proved in the proof of Lemma 2.8.

(2) The inequality is obvious for x e 2Q. Suppose x $ 2Q. Then, for cubes R

containing x and intersecting Q, we have £(R) ^ ||x ― xq＼＼/2 and hence

mvhpAf) ^ *{RYa~nlp＼＼f＼＼P** cmQ)/my+n/p

(the second inequality follows from the estimate of H/H^ as given in (1) and from

the assumption supp / c= Q). Taking supremum over R's, we obtain the desired

inequality. Lemma 3.1 is proved.

Lemma 3.2. Let {lj} be a sequence of nonnegative real numbers, {Rj} a

sequence of cubes, and let 0 ^ (3< oo and 0 < ft< oo. We write A ―

mpt(Rj)(S oo),/ = ZjljXRj, and

gpA*) = E VW'li + *(*iTl＼x- *j*ir"-

7

7%en f/iefollowing(1) ~(6) ZioW with c = cin.B.u.p).
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(1) If nip > n + B and u > nip - ft, then

＼＼0Mm/p-p/n)＼＼£c
( V*
(e w)

(2) If /?<n/p ^ ≪+ p and n>n, then

＼＼gp^n＼/p-^ln)＼＼^c＼＼f＼＼p.

(3) IfpZl, then

＼＼9nipA** E ＼W/P £ 11/11,

j

73

(4) If p > 1 and ＼i> n and if kj = 0 except for a finite number of j's, then

II0≫//≫,Jbmô c＼＼f＼＼p-

(5) If n/p < p, p ^ 1, and A < oo, f/r≪i

y

(6) 7/*n/p < P, I <p < oo, fi> n ―n/p, and A < oo, r/iera

＼＼gPJoo^cA^/p＼＼f＼＼p.

Proof. (1) Set ＼/q= ＼/p- fi/n.Then p<Lq<＼ and ＼i> n/q. Hence

7

j j ＼j /

(3) The left hand inequality is obvious. The right hand inequality is the

same as the inequality ]C/PyXRyllp = IIZ)/^/ZR/ll/>which holds for p ^ 1.

(4) Let ffj be the Dirac measure on Rn+l concentrated at the point

(xRjJ{Rj)) and let a = J2j Aj＼Rj＼1/p+l(Tj.Then we have

gn/pM =
|

r"(i + rl＼x-y＼)-'ld<i(y,t).

In order to prove the inequality of (4),it is sufficientto show that the inequality

(3.1) a(T(Q))^c＼＼f＼＼p＼Ql T(Q) = Q x (O,/(0),
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holds for every cube Q in Rn (cf.e.g.[Gar; Chapt. VI, Th. 1.61).If p ^ 1, then

a(T(Q)) ^ J2 XJ＼RJ＼1/P+1̂ c＼Q＼l/PE *j＼Xj＼

Rj^lQ Rj^lQ

£c＼Q＼l'>＼ f{x)dxSc＼＼f＼＼p＼Q＼

ho

(the firstinequality follows from the fact that (xRj,£(Rj))e T(Q) imlies Rj c 2Q)

If p < 1, then

a{T{Q))£ J2

Rj c 2fi

Thus (3.1) is proved.

(2) In the case nip

(3.2)

kj＼Rj＼l">+l<,c＼Q＼Y,^Rj＼llP

j

HeiEii^ii^^ieiii/iip.
j

―n + B, the proof is

＼＼gB,u,r{l/p-p/n)＼＼ = WspAi

easy

= cYikJ＼RJ＼xl^c＼＼f＼＼p

j

The claim for the case /?< n/p < n + /?follows from thisresult and from (3) and

(4) (proved above) by the use of the interpolation. Some comments shall be

necessary, however, since gptfiis not uniquely defined by / but depends on the

representation of/ as the sum YIj^j'Xr- First notice that it is sufficientto prove

the inequality in the case where all the cubes Rj are dyadic cubes; thiscan be seen

from the fact that for each cube Rj there exists a dyadic cube Qj such that

Qj cr Rj and t(Qj) > £(Rj)/4.Thus we assume Rj are dyadic cubes. We may also

assume that kj ― 0 except for a finite number of /s. Now, a key to the real

interpolation method is to decompose / as /=/'+//, 0 < t < oo, where

f＼x) = min{/(x),/} and/f(jc) =f{x) ―fl{x).In the present case, i.e.,in the case

where / = Y,j hiRj w*tn R = h < °°an<^
■$

dyadic cubes and with kj = 0 except

for a finite number of /s, the following holds: For each t > 0, there exist

nonnegative real numbers kj and k" such that kj = kj + k",fl ―J^ ･kj%R. a.e.,and

ft = J2j^j%Rj a-e-(proof of this factis left to the reader; everyone will convince

thisfact once he draws a picture of the graph of/ and willsee that it comes from

the fact that two dyadic cubes have disjointinteriors unless one is included in

the other). We define g'^ and g"^ in the same way as gptflusing kj and k",

respectively,in place of kj. Then we have gp,^ ―g'g, + g'l,･ Now we can use the

usual techniques of the real interpolation method to deduce the inequality of (2)

for B<n/p<n + B from (3), (4), and (3.2).
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(5) This immediately follows from (3) since f(Rjf ^ A^-n/P/(Rj)n/p.

(6) Take a function 6 e C^Rn) such that 0 ^ 0(x) g 1 for all x e Rn,

6(x) = 1 for x e Qo = [-1/2, l/2f, and supp 9 a 2QQ. For a cube Q, we define

6Q by 0Q(x) = 6((x-xQ)//(Q)). For t^ 1, we set

We shall prove that the following inequality holds for every t^.1 and every

c ＼ A-

(3.3) ll^lloo^^-/^"-"/^!!/!^

where ce = c{n,fi,p,&).Once thisis proved, the desired inequality can be derived

and hence

(i + /{r,)-1 ＼x- xRj＼y≫ tk c J2 2-m"e2mRj(x)

gA/((x)^
f2-^(x)

m=Q

Thus, using (3.3) with e satisfying n ―n/p + s < pi,we obtain

We shall prove (3.3). Fix an arbitrary xo 6 R" and set

*;=

where the sum Yl'j*s taken over the/s such that 2tRj 3 xq. Since t{Rj) S A < oo,

(3.4) suppAj c g = {x; ||x - xo||^ 2M}.

Take /:such that A:+ 1 ^ ^. By lemma 3.1(2) and a change of variables, we have

on/1 K*≫-nr>A

{tit)*Al{x)s *£ Va+'Wl＼* - x^r'"1

j
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Thus, using (2) twice,we have

IIMfiuM*"'

^ ctrp

j
p

kd ＼l-＼-l＼Kj) ＼X-XR＼)

j

S c£r^+£＼＼f＼＼p

p

Hence, using Lemma 2.4, we have

W-DJ ＼nvCoo I = C＼＼＼nt)k,p,l＼＼p= cst WJWp-

From (3.4), (3.5), and Lemma 3.1(1),we obtain

tit(x0)̂ c＼tit;C^k＼mf~nlP S csA^Ptn-n/P+E＼＼f＼＼p,

which implies (3.3) since h't(xQ)― ht{xo) and xo is arbitrary.Lemma 3.2 is proved.

Proof of Theorem 3.1. Proof of (1). By Lemma 3.1(2),

(3-6) Wt^ix) ^ cqXj{＼+ S{Bj)-l＼x- ^|)―-/*

for each q > 0. Suppose firstJ2j9j is a ^^Q sum- If P ^ 1, then, using (3.6) with

q =p, we have

£ v<cp"
' s E n

toOi; sc E ^1^1=cMp

j J J

If 1 </>< oo, then, using Lemma 2.3,(3.6)with q = 1, and lemma 3.2(2)with

P = 0, we have

j

<c

p

J2 kjK*j
p

cMp

In the general case, where ]T＼-(pjis an infinitesum, the unconditional convergence

and the estimate as mentioned in (1) can now be proved bv a routine argument.

Proof of (2)~(5). By lemma 3.1,

(3.7) 9jeCo and |?y(x)|g^)%W

The assertion (2) follows from (3.7),(1) and (2) of Lemma 3.2, and the fact that

(3.8) J2 lJ**j

j
,

･

＼lp

for/? S 1
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The assertion (3) folows from (3.7), Lemma 3.2(3),and (3.8). The assertion (4)

follows from (3.7) and Lemma 3.2(2);in fact, since t{Rj) ^A<co, (3.7) implies

Wj{x)＼̂ cAeX/(Rjy-eXRj(x), 0 < a ^ a,

and we can apply Lemma 3.2(2) with /?= a ―8. The assertion (5) follows from

(3.7),(5) and (6) of Lemma 3.2, and (3.8). Theorem 3.1 is proved.

§4. Smooth function

In Sections 4 and 5, we use the following notations. First, we use the letter

h to denote various absolute constants, which may be differentin each occasion.

When we need to distinguish a constant b from other h's, we write it with a

subscript as bo,h＼,b2,― Secondly, we assume a is a sufficientlylarge positive

number. A close examination of the arguments of Sections 4 and 5 will show

that all the arguments work for each a ^ 300, for example, but the exact value

of a is not very important. The reader should check that there exists bo such

that all the arguments of Sections 4 and 5 work for each a^. ho and such that,

in particular, the constants b and bj (j ^ 1) can be found independent of a so

long as a^.bo. Thirdly, we take a constant h＼ and define the relation ≪ as

follows: For two cubes Q and R, the relation Q ≪ R means that Q<^b＼R and

R<^b＼Q; for two positive real numbers s and t, the relation s ≪ t means that

s ^ bit and t^b＼s. The reader willeasily check that we can find a b＼so that the

arguments of Sections 4 and 5 work with this definition of ≪.

We begin with the following easy theorem.

Theorem 4.1. Let Q # Rn and suppose k+t^a. Then, for smooth

functions g on Q,

(4.1) |flf;C;'*(≪)|^c||^+1-|V*+1^r|Lo

with c = c(n,k,a,p).

Proof. We fix a sufficientlylarge realnumber s. Then, for x e Q and for

cubes g satisfyingxeg and sQ c Q, we have 2 <=2i/2(*) anci hence, by

Lemma 2.9,

'(er"JUe(0) ^ ^(fi)*+1""inv*+1^iii0Oie^ cP£i-≪＼vk+igUx).

Hence
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This inequality combined with Lemma 2.3 implies the desired inequality. The

theorem is proved.

In the rest of this section, we shall give a method to associate with each

function /onfia smooth function g on O. One of the property of the function

g is that the right side of (4.1) is majorized by c＼f;C£'k(Q)＼.We shall also give a

corresponding result for Q ― Rn. We shall begin with some preliminary results.

For open subset U of Q, we define ^q(U) as the set of the maximal dyadic

cubes Q such that a2Q c Q and aQaU. Notice that 9a(U) = 0 if ft =

U = Rn.

In Lemmas 4.1 ~ 4.3 below, U and V denote open subsets of Q.

Lemma 4.1. (1) If U ^Rn, then the cubes in ^q(U) have pairwise disjoint

interiors and the union of all the cubes in @n(U) is equal to U.

(2) If Qe^a(U) and xe2~laQ, then

£(Q) ≪ minjfl-1 dis(jc,Uc),a~2 dis(x,Oc)}.

(3) There exists b2 such that: If U a V, Qe^q(U), i?e^(K), and

2-laQn2~laR * 0, then t{Q) S b2t(R).

(4) If U c=V and Qe<g£i(U), then the number of the cubes R in &n(V)

satisfying 2~laQC＼2~laR ^ 0 does not exceed c(n,a).

Proof of the above lemma is left to the reader (cf.,e.g.,[St; Chapt. VI, §1]).

Let 6 and 6q be the functions as defined in the proof of Lemma 3.2(6). For

Qe9a(U), we define (p%u as follows:

≫&"(*) = 0Q(x)

＼Re9a(U)

Or(x)

)

if xe U

and ^qU{x) ― 0 if x $ U. For convenience' sake we also define <Pq = 0 for

dyadic cubes Q not belonging to ^n(U).

Proof of the next lemma is easy and is left to the reader.

Lemma 4.2. (1) <p%u e C^{Rn), supp^ c 2Q, and 0 S </qU(x) ^ 1

(2) IfU*R＼ then EQe*a(U)

(3) ＼dv<p%u(x)＼^c(n,a,vy(Qrl

q%u{x) = 1 for all xeU

'v'for each multi-index v.

The nextlemma can be immediately proved by the use of Leibniz'sformula

on differentiationand (1) and (3) of Lemma 4.2.
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Lemma 4.3. Let {/g; Qe^a(U)} be a family of smooth functionson U. Set

f = Y^Qe^a{u)fQ^QU･ Then, for each nonnegative integer m,

＼Vmf(x)＼Sc J2 E ＼V*fQ(xMQ)^X2Q(x),

m'+m"=m Qe<$n(U)

where c = c(n,a,m) and m! and m" denote nonegativeintegers.

Now, suppose Q,^ R" and fixk (a nonnegative integer)and q such that

0 < q ^ oo. Let / be a function on Q. For each cube Q e ^q(O), we take a

polynomial uq in n^;?!g(/).We define the function gn,k,q(f)o*1 Q by

^n,^(/)W= E *e(*)$n(*)-

ee≫o(n)

Notice that thisfunction depends also on the choice of %q.

Theorem 4.2. Let Q.^Rn, f a function on Q, anJ 0 < q fS oo. 7%e≫

^ = 9ajc,q(f)satisfiesthe following.

(1) g is a C00 function on O.

(2) If q < r ^ co, then,for each nonnegativeinteger m,

≫VVllr>Q^≫U/IU

w/i^recm = c(n,a,k, q,m, r).

(3) Ifl/q + a/n>l/p, then

l|p£+1-a|V*+1^r|Lo^C|/;C^(n)|

with c = c(n,a,k,a,p,q)

To prove thistheorem, we use the followinglemma.

Lemma 4.4. Let O # Rn, f a function on Q, and let aQ(Q e #n(Q)) &e mwi-

negative real numbers.

(1) For each t with 0<t< 1 and for each real number /?, f/iere exwte

c = c(≪,t,ft) such that

(2) For each t,f with 0 < t, f < 1 and for each p, there exists c = c(n,p, t,f)

C~1＼＼f*'t＼＼ <＼＼f*'l'＼＼ < r＼＼ f*''＼＼
c 11/ ||^,n ^ 11/ ＼＼P:Q ^ c＼＼j || o
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1 <S u < a2, and v = u + Aa2tl(I - t), then

aQluQ

*,t

Qe9a(Q)

<*qXvq(x) for all x en

Proof. (1) Easy.

(2) We shall simply write p = pn. We may assume t ^ t''.Then the left hand

inequality is obvious since /*)?^f*'1' pointwise. We shall prove the right hand

inequality. Fix an xeQ and write Qt>(x) = Q. Take a positive integer N such

that N~lt' <; r(l - t') and decompose Q into Nn cubes Qj (j = 1,... ,Nn) each

with sidelength {{Qj) = iV"V(g) = N-lt'p(x). For every y e Qj, we have tp{y) ^

t{＼-t')p{x)^N-U'p{x) = {Qj) and hence gy <= a(y). Hence H/H^g. ^

infQ.f*'1 for every y. Hence, for each r > 0,

/*'''(*)=max{||/||0Oifi}^ max

{

inf/*-'

Qj

<;max{|e;r1/rH/Vll,e,};

^ JV"/'|G|-1/r||/"'llr,e^ Nn'rM?(T't)(x).

Thus the desired inequality follows from the boundedness of Mf1, r < p, in If(Q).

(3) This can be readily deduced from the following simple geometric fact:If

Qe^o.{Q) and uQf)Qt(x) #= 0, then xevQ (with v given in the lemma).

Lemma 4.4 is proved.

Proof of Theorem 4.2. In this proof, sums over cubes are taken over

@q(Q). We shallsimply write p = pQ and f* =f*lxq.

(1) Obvious.

(2) By Lemma 2.2(1),

IlKglUe ^ c＼Q＼-l/q＼＼f＼＼q,Q^ c M m?(/).

Hence, using Lemma 4.3 and Lemma 2.1(3),we have

and, thus,

(4.2)

＼V≫g＼^ c J2 A0~m(i3nf M?(f))xiQ

AHV"0|£c£(irf^(/))fcfi
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We take / such that 0 < t < 1 and 2 + 4a2t/(l- t)^ 3. Then using (4.2) and

Lemma 4.4. we have

iip-iv^niro^c|i(p-|v^irn^^

^c y(infM^(f)
q V 32 q

c

(

w
e v

r.Q

?f W

< c

)**)
r,£l

II<(/)IU^II/IU

(3) Fix a Q e #n(Q). For cubes R e 9a(Q) satisfying2RH Q # 0, we have

R&Q (Lemma 4.1(3))and, hence,

ll**-M≪,e^(G)"igf/#

(by Lemma 2.2(2)).Using thisinequalitytogetherwith Lemma 2.1(3)and Lemma

4.3,we obtain

＼＼Vk+19＼L,o=

R

(we used also the fact that Vk+l J2r W?'°

00,g

^a{Qrk~lMf*

= yk+l%Q = 0 on Q). Hence

＼vk+ig＼scj2mrk-l(inff*)

Q ＼2U /
iQ

Taking t such that 0 < t < 1 and 1 +4a2t/(l - t)^ 2 and using Lemma 4.4(3),

we have

/+1-|V*+1<r S Cj^i^f*)^ ^ Cf*

which combined with (1) and (2) of Lemma 4.4 implies the desired inequality.

Theorem 4.2 is proved.

Finally we shall consider the case Q = Rn. We introduce some notations.

We define s0 as the set of functions/ on Rn such that the set {x; ＼f{x)＼> t} has

finite measure for every t > 0. If, for a given function / on Rn, there exists a

polynmial P such that f - P e s/, then such P is unique (since 0 is the only

polynomial contained in s/) and we write the unique P as Pq(D12S;).

Theorem 4.3. Suppose that either (i) l/p > a/n or (ii) ＼/p= a/n ^ 1 and

k + 1 ^ a. Let f he a function on Rn satisfying|/; C^k＼ < oo. rAe≪ the following

hold.



82 Akihiko Miyachi

(1) Po(/) exists and P0{f) e 9>k.

(2) There exists c = c(n,k,a,p) such that ＼＼f- PG(f);Y(l/p - a/#i)||S

c|/;c;.*|.

(3) Let {Rj} be a sequence of cubes such that t{Rj) ―> oo as j ―>■oo a^iif ?/ia?

?/iere exw^ a positive number u for which the intersection of the cubes {uRj}j is

nonempty. Suppose oo > l/q > l/p - ai/n and itje Hk,q,Rj{f)- Then nj -* Po(f) in

@>k as j ―> oo.

(4) In the case (ii), it holds that f - PQ(f) e Co.

Proof. Here we shall not completely prove the theorem; to be precise, for

the case (i),we shall prove all the claims, but for the case (ii),we shall prove

only a part of the claims. Proof for the case (ii)shall be completed in Section 5.

First consider the case (i). Suppose co > l/q > l/p - a/n. Let Qo =

[-1/2,1/2]" and Qm = 2mQ0 and let <,enM&(/). From Lemma 2.2(2), it

follows that

flfiU+il

J＼Qm＼

and (/#)~ denotes the nonincreasing reai

: have {f#)~{s) = o{s~llp)as s -* oo and !

(oo
(/#)~(5>K/"-1^< 00.

(4-3) HCu " <,L,ft. ^ c (msV/n-1 ds,
J＼Qm＼

where f* =f*aq and {f*)~ denotes the nonincreasing rearrangement of/#

Sincef* elf, we have (/#)~(s) = o(s~llp)as j -* oo and hence

(4.4)
f

(f#)~(s)sa/n-lds< oo.

From (4.3) and (4.4),it follows that X)m=i ll^+i ~^Hoo.&h < °°an^> a fortiori,

that limm_>Qo rfm existsin @k- Set P = lim^oo ufm.From Lemma 2.5 and Fatou's

lemma, we see that the inequality of (2) holds if Po(f) is replaced by P. In

particular f ―P eY{l/p - <x/n), which in turn implies / - P e si (since

＼/p> a/n) and thus P = Po(f). Finally let Rj and Uj be as mentioned in (3). For

each j, let m(j) be the integer such that 2m{j) <£{Rj) £2mW+l. Then, from

Lemma 2.2(2),

Jlivl

which combined with (4.4) implies that rfmrj＼―ft/―*0 in 2?k as j ―>oo. Hence

lim 7i/= lim 7^m = P = Pq(/). Thus the proof is complete in the case (i).

Next consider the case (ii).Since p rg 1,it holds that IP czIP'1 (where I/'1 is

the Lorentz space; cf. e.g. [SW; Chapt, V. §3]) and, hence, (4.4) holds again.

Hence, by the same reasoning as in the case (i),we can prove the following: (a)
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If {tij}is a sequence of polynomials as mentioned in (3), then lim,--^ nj existsin

&k and thislimit (may depend on q but) does not depend on the choice of {Rj}

and {itj} (we write lim %j = P); (b) the inequality of (2) holds if Po(f) is

replaced by P. (In fact,the assumption k + 1 ^ a is not necessary to prove these

results.)In Section 5, Proof of Theorem 5.2, we shall complete the proof by

showing that f - P e Co (which will imply P = PQ(f)).

§5. Atomic decomposition

Fix k, a, and p such that k + 1 ^ a and p < oo. Suppose Q, ^ Rn and {^-} is

a sequence of functions on R" which satisfiesthe assumptions of Theorem 3.1

with cubes Rj such that 2Rj cz Q and suppose g is a smooth function on Q

satisfying

Hp£+1-"|v*+VIUq = ^<≪>-

Then, by (2) ~(5) of Theorem 3.1,the seriesJ2j^j- converges unconditionally in

L[0C(O) for some r > 0. We set / = # + J2j <Pj-Combining Theorem 3.1(1) and

Theorem 4.1, we have

＼f;C;>km＼^c(B + Mp),

where Mp is as mentioned in Theorem 3.1 and c = c(n,k,a,p).

The main purpose of the present section is to prove the converse to the

above fact. The results are given in the following two theorems. Recall that we

are assuming a is a sufficientlylarge positive number.

Theorem 5.1. Suppose Q^Rn, k+l^.a, and p < oo. Also suppose

0 < q ^ oo and l/q +a/n> 1/p. Let f he a function on O such that

＼f;Cp'k(Q)＼< oo. Then there exist (pm, Qm, and Xm (m= 1,2,...) which satisfy

the following (0) ~(v):

(0) (pm are functions on Rn, Qm are cubes, and km are nonnegative numbers;

(1) supple Qm;

(ii) 2-la2QmcQ;

(iii)i^c^/U

(iv) for each r > 0.

E Kaa.
m

)"■

where cr = c{n, k, a,p, q, a, r)

(v) / = gajcAf) + Y,m<Pm-

^,l/;c;-*(n)|
p
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Theorem 5.2. Let k + 1 ^ a a≪J fe? f he a function on R" such that

|/; Cpk＼ < oo. Then:

(1) 7/" l/p > a/n or l/p = a/n ^ 1, ?/sew £/iere exwr 0>m, £)w, and km

(m=l,2,...) wfoc/z Aitis/y (0), (i), (iii), ≪≪^ (iv) (with Q-Rn and with

cr = c(n,k,0L,p,r)) of Theorem 5.1 am/ a/jo satisfy

(y')f = Po(f) + i:m(Pm-

(II) 1/0 < l/p < a/n or 0 < l/p = a/w < 1, ?/ie≪?/iere exw? ^OT, Qm, and Xm

(m= 1,2,...) w/w'c/isatisfy (0), (I), (iii),anrf (iv) (with the same replacement as in

(I)) of Theorem 5.1 and also satisfy

<y")f-Em9mePk-

Remark. The series ^2m(pm in Theorem 5.1 converges unconditionally in

L＼0C(Q) for some r > 0 as we already saw at the beginning of this section. The

series YLm^m m tne case U) °f Theorem 5.2 converges unconditionally in

T(l/p ― a/n) (when l/p > a/n) or converges absolutely in Co (when 1//? =

a/n ^ 1) by (2) and (3) of Theorem 3.1. The series J2m<Pm m tne case (H) °^

Theorem 5.2 converges unconditionally with respect to ＼-;C^k＼ by Theorem

3.1(1) (cf. also the remark given in the first paragraph of Section 3).

In the rest of this section, we shall prove the above theorems and, as a

corollary to the proof of the case (I) of Theorem 5.2, we shall complete the

proof of Theorem 4.3. The main idea of the proof of Theorem 5.1 is the same

as in [Mi2; §3].

For the proofs of Theorems 5.1 and 5.2, we use Lemmas 5.1 ~ 5.4 to be

given below. In these lemmas, we fix an Q and assume U, V, and W are open

subsets of O, and, for open subsets i)cfi, we abbreviate ^q(D) to &(D).

Lemma 5.1. (1) {Q e <$(Q);3aQ c U} = {Qe <$(U);3aQ c U}.

(2) There exists b^ such that: If Q is a dyadic cube satisfying b^aQ a U, then

a,u n,a
<PQ = <Pq

(3) There exists b4 such that:If U <= V c W, R <=<$(＼),b4aR cz U, and if Q

is a dyadic cube satisfying2Qf)2R^ 0, then ^'^ = ^qW = ^o'^

Proof. For a dyadic cube Q, we denote by Q the unique dyadic cube such

that gDgand S(Q) = 2/(0.

(1) Suppose Qe&(U) and 3ag c [/. Then the maximality of Qe#(I/)

implies that a2Q<£Q or aQ <£U. But the latterrelationis impossible since

aQ c 3aO c t/.Hence a2Q <£Q and, hence, Q e ^(O). This shows that the right
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hand set in (1) isincluded in the left hand set.The converse inclusion is obvious

from the definition of #(Q) and 9(U).

(2) We may and shall assume Qe&(Cl)＼J&(U). In order to show

(p^1 = (PqU, it is sufficientto show

(5.1) {Re9{ny,2Qn2R*0} = {Re9(U);2Qn2R*0}.

First, suppose 3aQ^U. Then Qe^{Q)n^(U) by (1). Hence, for cubes R

belonging to either the right or the left hand set of (5.1), we have t(R) ≪ f(Q)

(by Lemma 4.1(3)) and, hence, 3aR a h^aQ for some bi > 3. Now, with this 63,

assume b^aQ c U. Then: If R belongs to the left hand set of (5.1), then

3aR <=b^aQ c U and hence, by (1), R belongs to the right hand set of (5.1); and

the same holds if we interchange left' and 'right'.Thus (5.1) is proved.

(3) First suppose Re^(V) and 3aR c U. Then Re<g(Q)n<g(U)f)<g(W)

by (1). If Qe9{n)＼J9(U)＼J9(W) and 2RH2Q^0, then S{Q) & S(R) (by

Lemma 4.1(3))and hence h^aQ <=b^aR for some b&,> 3. Now assume Re^iV)

and bAaR c U and assume Q is a dyadic cube such that 20 (12R # 0. Then:

If Q e 9(Q) ＼J9(U)＼J<${W), then b3aQ czbAaR c U c IF and hence ^'° =

$

?%

u
= 9^w by (2); and if Q £0(Q) ＼J9{U) U%(W), then ^'° = ^ =

w
= 0. Lemma 5.1 is proved.

Lemma 5.2. If T is a cube such that a2T c ft a/i</aT <£U, and ifQe <3{U)

and 2gn T # 0, then t{Q) S 2^{T), Q c 77, awJ 4^^ <£U.

Proof. Suppose T and Q are cubes satisfyingthe assumptions of the

lemma. If S(T)<f(Q)/2, then, since 2QC＼T # 0 and a is large, we have

aT a (a/2 + b)Q <=aQ c (7, which contradictsthe assumption aT <£U. Thus

/(r) ^ /(0/2, which combined with the assumption 2gD r # 0 implies that

Q<=7T. If /(Q)<S(T)/3, then, since 2gnr#0 and ≪is large, we have

a2Q cz(2£i2/3+ b)T cza2T c O and hence, by the maximality of Q e ^(C/), we

have aQ<£U and thus 3ag <£U (since 3ag =>aQ). Finally,if rf(0 ^ t{T)/＼

then, since 2gD T # 0, we have aT c(3a + l>)gc 4ag and hence 4ag ££/

(since aT ^ £/).Lemma 5.2 is proved.

Lemma 5.3. If T is a cube such that a2T c Q and aT c U, and if Q,

Q'e9(U), 2QHT^0, and 2Q'nT^0, then S{T)£bf(Q), T^bQ, and
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The above lemma easilyfollows from (2) and (3) of Lemma 4.1.

Lemma 5.4. There exists b5 such that:If U <z V, Re9(V), hAaR <£U,

Q e 9(U), and IQHIR # 0, then b5a0 £ U.

Proof. Take b5 > 3 so that 2QC＼2R^0 and S(R)£b2t{Q) imply

b^aR c bsaQ. Now suppose U, V, R, and Q satisfy the assumptions of the

lemma. We shall prove b$aQ <fiU. This is obvious if 3aQ <£U. Hence we

assume 3aQ cz U. Then, by Lemma 5.1(1) and Lemma 4.1(3), we have Q e &(Q)

and £(R) ^ bi^{Q). Hence h%aR c b^aQ, which combined with the assumption

b$aR <£U implies that bsaQ <£U. The lemma is proved.

Proof of Theorem 5.1. In this proof, c denotes various positive constants

depending only on n, k, a, p, q, a, and other explicitly indicated parameters (if

any). We simply write f* =f*m and 9(U) = 9a(U).

For each cube Q czQ, we take a kq e Tik,q,Q{f)- With each pair (Q,R) of

dyadic cubes, we associate a dyadic cube K(Q,R) in such a way that K(Q,R) is

equal to either Q or R, /(K(Q,R)) = min{S(Q),S(R)}, and that K(Q,R) =

K(R, Q) for all Q and R. We set PQtR ― kK(q,r) for dyadic cubes Q, RczQ.

Notice that Pq,r ― Pr,q.

If |/; Cp'k(Q)＼ = 0, then / = ga,k,q(f) and tne conclusion of the theorem is

obvious. Thus we assume |/; Cp'k(Cl)＼ > 0. We take a continuous function h on

O such that h(x) > 0 for all x e Q, and ＼＼h＼＼Pta^ |/; C^k(Q)＼. For each integer j,

we set

Uj = {x e <Q;/# (x) + h(x) > 2J}.

Since f* + h is a lower semicontinuous function, Uj is an open subset of Q. We

shall simply write g>JQ= <Pq ' and <p^ = qf^1. In the sequel, sums over cubes shall

be taken over all the dyadic cubes unless the contrary is explicitlystated. Now we

define

9j =/Xn＼Uj + J2 pR,sfWs~l-

R,S

It is easy to see that gJ'+l―gj can be written as

gJ+l-gj =
/ J K
R



with

Atomic decomposition for Sobolev

4 = ^if

It is obvious that

(5.2)

and

(5.3)

f-fXuJ+l+Y,PQ*VQl

Q

hJR*0 only if Re ^{Uj)

supp hi cz2R.

The following estimate is the core of the proof:

(5.4)
＼nRi Coo I = CZ

87

For the moment we assume this estimate, (5.4), and show that this implies the

desired decomposition of/.

It is obvious that gJ(x) ―>/(x) a.e. as j ―>･oo (since Uj => Uj+i and ＼Uj＼―>0

as j ―> oo). On the other hand, since Uj-*R. as 7―> ―00 (this is because

A(jc) > 0 for all x e O), it holds that

for every x e Q (cf. [Mi2; Proof of (3.12), pp

and, thus,

(5.5)

/-
R,S

/ - gajcAf) =

oo
E

y=-oo

(

219-2201). Hence

R

R,S

00
£

/=-oo

)

a.e.

(E*4 a.e..

We shall prove that the right side of thisequality forms a serieswhich satisfiesthe

estimates as mentioned in the theorem.

First, for each r > 0,

2JrX2R(x) )'(･
＼1/r

SCr(f*(x)+h(x)),
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and hence

(e e
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V"
£cr＼＼f* +h＼＼pjl£cr＼f',C}k(a)＼

p

which together with (5.2) ~ (5.4) implies that the families{hJR}, {2R}, and {c2j}

each indexed by the set {(j, R);j e Z, R e &(Uj)} form a triplet of sequences

satisfying the conditions as mentioned in (0) ~(iv) of the theorem.

Next, the firstsum on the right side of (5.5) can be written as Y＼RhR with

hn
S

If q%($ # 0, then 2RH2S # 0, f(S) ≪ f(R), and S ≪i? (by Lemma 4.1(3)),and

hence A"(U, 5) ≪i? and

Lis.

for every nonnegative integer m (by Lemma 2.2(2) and Lemma 2.1(3)) Using

these estimates and Lemma 4.2(3), we obtain

＼＼yk+'hR＼＼x^a{Rrk-lMf*
ZK

From this,using Lemmas 2.9 and 2.8, we obtain

(5.6) ＼hR;C^k＼<,cMf*

(here we also used the assumption k+＼ ^ a). For each r > 0, we have

(5.7) [ y (inff*

＼1A

)

X2R) £＼＼crf*＼＼P
ta£cr＼f;Cpk{n)＼p

The estimates (5.6) and (5.7) together with the obvious fact supphR c 2R imply

that the families{Hr}, {2R}, and {cinf2Jtf*} each indexed by ^(Q) also form a

tripletof sequences satisfying the conditions as mentioned in (0) ~(iv) of the

theorem.

Now the rest of the proof is to show (5.4). In order to do this, we first

observe that

(5.8) hJR = 0 if b4aR cz £//+1
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In fact this can be seen as follows. If R $ &(Uj), then obviously hJR = 0. Suppose

R e 9(Uj) and b4aR c Uj+＼.By Lemma 5.1(3),we have (pjQl = (pJgl = g^ for all

dyadic cubes Q satisfying 2Rf)2Q # 0. Hence, on 2R,

E *W£' ~E P",sVJi'= E PQ*<% ~E P≪.s$ = 0

where thelastequalityfollows from the symmetry property Pq,r = Pr,q- On the

other hand, / -fxu+l ―0 on 2R since2R <=b^aR c Uj+＼.Hence hR = 0. Thus

(5.8) holds.

We shallnow prove (5.4).By (5.2)and (5.8), we may and shallassume

Re'g(Uj) and b^aR^ Uj+＼.We shallprove the estimate

(5.9)

for cubes T such that

(5.10)

^(iya4,oo,r(4) ^ cV

T (12R # 0 and ^(T) ^ ^f(i?)/2.

This estimate together with (5.3) willimply (5.4) (by Lemma 2.8).In the sequel,

we assume T is a cube satisfying (5.10). Notice that T c 3R and

a2rc (a2/2 + b)R c a2R c Q.

Case 1: aT <£Uj+＼.

We decompose hJR as follows:

hJR=hi+h2 + h3,

hi =ri(f ~nT)Xn＼uJ+i>

e

h3=<PJRY.(7tT-PR's^s~1-

s

We shall prove the estimate

(5.11) S{T)-ttIktao,T(hi)£c2J

for i= 1,2, and 3, which will of course imply (5.9).

We first estimate hi. By Lemma 2.2(4), the following holds for a.e.

xeTn(Q＼Uj+l):

＼f(x)- nT(x)＼S c/(T)y#(x) ^ ct{TfV.

Hence ＼＼h＼＼＼x
T ^

c^{TfV, which implies (5.11) for i=＼.
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Next, we estimate hi. Suppose Q is a dyadic cube such that

(5.12) Qe9(UJ+i) and 2Qf]2Rf)T # 0.

By Lemma 5.2,we have /(0 ^ 2J(T), Q c 77, and 4ag ^ (/7-+1.By Lemma

4.1(3),we have S(Q) ^ M(R) and thus A"(g,i{)≪ Q. Thus A"(g,fl)c *6T for

some £?6> 1- Since 4ag c biaK(Q,R) for some ^7 and sinceh-jabeTa a2T aQ,

we can use Lemma 2.2(3)to obtain

W(q,r) - n6T＼L,m,R) S cf(T)u inff* ^ a{Tfv

(the last inequality follows from the relation AaQ gt Uj+i). Similarly, using

Lemma 2.2(2), we have

(the last inequality follows from the assumption aT <£.Uj+＼). Using these

inequalities and using Lemma 2.1(2), we obtain

ll^a* - nT＼L,2Q ^ c＼＼kk{q,r)- ^rlloo,^^) + c＼＼nb6T- 7cr||oo,r̂ ctiTfV

and thus

IMoo.7- Vr
E

2(5.12)

(PQ,R ~ TlT)(pJQ
oo. T

^ ^{TfV

which implies (5.11) for i = 2.

Finally, we shall estimate /13.Suppose S is a dyadic cube such that

(5.13) Se^{Uj-i) and 2RH2S * 0.

By Lemma 4.1(3),we have S(R) ^ M(S) and hence K(R, S) w U. We take 68 > 3

such that T c ^8i? and A"(/{,5) c ^8i? and take cubes Tt (i = 0,l,...,N) such

that

T = To c ri c ･･･ c T# = fe8U,

(5.14) /(7i) = 2^(7;_i) for 1 ^ 1 < TV, and /(7V_i) < S(TN) ^ 2/{TN-i).

From the assumption aT <£Uj+i, it follows that infflr,/# ^2J+l for each i

(notice that aTj cz ab%R c= a2R a Q). Hence, by lemma 2.2(2) and Lemma 2.1(3),

＼＼V≫(nTi- KiyJIUr, S ctiTtY-" inf /# ^ ctfr) *
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and

and thus
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||V-(JV - *tn)＼＼^TnS ct(TNrm Mf* ^ c{{TNf-mV
aTN

＼＼Vm(PR,s- niOlUr ^ ＼＼Vm(PR,s- nTN)＼L,rN+ E ll^^, - ^rJIL,,

≫=1
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where m denotes an arbitrary nonnegative integer. Using thisinequality, Leibniz'

formula on differentiation,and Lemma 4.2(3), we obtain

(5.15) IIV^'AjIL,,. S c £ J2

m,m!,m" S:(5.13)

£{RYm
(*

i=＼

t{sym"

where the sum with respect to m, rn', and m" is taken over the nonnegative

integers m, mf, and m" satisfyingm + m1 + m" = k + 1 and m' ^ k (the restriction

ni ^ k comes from the fact that Vm'{PR7s -nT)=0 for m! > k). Using (3) and

(4) of Lemma 4.1, we see that the right side of (5.15) is majorized by

cV
k
Y

^
t{RTk~l+m

w=0

ND

1=1

2^{T)f-m

Evaluating this seriesand using Lemma 2.9, we finallyobtain the following

estimates:If k < a. then

if k ^ a, then

Wa4,oo,r(/*3)

tm-'h^Ahs) ^ cV
(

^ c2J(S(T)U(R))k+l-*;

S(T)n 1+log
)

t(R)

bt{R)

(the log term is necessary only when a is a positiveinteger). Since k + 1 ^ a and

since t{T) £/(R)/2, the above estimates imply (5.11) for i = 3. Thus (5.9) is

proved in Case 1.

Case 2: aT <= Ui+＼.
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From the cubes Q satisfying(5.12),choose a cube Qq. On Uj+＼(and hence

on T in particular),the function hJRcan be written as follows:

hJR= h4 + h5,

Q

h

s

We shall prove that (5.11) holds for i = 4 and 5.

Suppose Q is a dyadic cube satisfying(5.12). In the present case, we have

S(T) ^ M(Q), T c=b9Q with some b9, and Q ≪ Qo (by Lemma 5.3). By Lemma

4.1(3), we have /(Q) ^ bt{R) and, hence, K(Q,R) ≪ Q and Z(0, J?)≪ g0- By

Lemma 5.4, we have h^aQt- Uj+＼ and hence inf^5flg/# ^l7'"1"1.

Now we shall estimate h*. For Q satisfying (5.12), we have

II^C^ " *fl≫lloo,â <So)a inf /# g c2V(eo)a

and hence

＼＼ym{pQ,R- nQa)＼L,T ^ 4vm(pQ,R - 7ta)Lifib ^ c2V(eo)a-w

for every nonnegative integer m. Using this estimate and Lemma 4.3, we obtain

＼＼vk+lh4＼＼^T^c2U(Q0rk-1.

Hence, by Lemma 2.9,

^TY^h^Tih) S c2J{t{T)/f{Qo))k+1-* S cV.

This proves (5.11) for i = A.

Next we shall estimate h$. The argument is similar to that given in the

estimate of hi in Case 1. In the present case, we take b＼Qsuch that Qo g b＼oR

and that K(R,S)czbi0R for every S satisfying (5.13). We take cubes Tt

{i = 0,l,...,N) such that Qo = TQ a T＼c ･･･ c TN = b＼0R and that (5.14)

holds. Since bsaQo <£.Uj+＼, we have infbsaTtf# ^ 2;+1 for every i. Hence,

arguing in the same way as in the estimate of hi in Case 1, we obtain

＼＼vk+lh5＼L,b9Qo^c2j

f;m-k-l+m

w=0

N
£(

1=1

2V(Oo)rw.

From thisand from the fact that T c bqQa, we obtain,using Lemma 2.9,the
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following estimates: If k < a, then

if k ^ a, then

^TVh^Ahs) S cV

(5.16)

(5.17)

/ ＼k+l-ct /

1+log

00
/

W

a.e..

(

nQo)

93

/

(70

(R)

f(x)-g≫(x) =

bt{R)

/(go)

(the log term appears only when a is a positive integer). Since

ZrV(r) ^ S(Qo) S bt(R), the above estimatesimply (5.11)for i = 5. Thus (5.9)

is proved in Case 2 as well.Theorem 5.1 is proved.

Proof of Theorem 5.2. We use the same notations as in the proof of

Theorem 5.1 (we only replace O by Rn). We take q such that 0 < q <p and

define gJ and hR in the same way as in the proof of Theorem 5.1 (notice that

Uj # Rn). By exactly the same argument as in the proof of Theorem 5.1, we see

the following: (1°)The families {hJR}, {2R}, and {c2j} each indexed by the set

{(j,R);j e Z,Re@(Uj)} form a tripletwhich satisfiesthe conditions as men-

tioned in (0). (i),(iii),and (iv) of Theorem 5.1; (2°)for each integer TV,

E 4w

R

)

In the rest of the proof, we shall treat the cases (

Case (I) ＼/p> a/n or l/p = a/n ^ 1.

Tt.is sufficientto show that

I) and (II) separately

gN{x)->PQ(f)(x) as N^-oo for all xeR"

If l/p > a/n, then (5.17) is easily seen from Theorem 4.3.(Recall that Theorem

4.3 for the case l/p > oc/nis completely proved.) Suppose ＼/p― oc/n^ 1. Let P

be the polynomial as given in the claim (a) in the proof of Theorem 4.3. Then, by

that claim (a), we have gN(x) ―>P(x)(N ―*■oo) for every xeR". By the above

(1°) and by Theorem 3.1(3), the series YIjr^r converges absolutely in Co.

Conbining these facts with the above (2°),we see that f - P e Cq and hence

P = Pq{/)- Thus (5.17) is proved in the case l/p = oc/n^ 1 as well.(Notice that

this argument also completes the proof of Theorem 4.3.)

Case (II) 0<l/p< a/n or 0 < l/p = a/n < 1.

The series Yjj,r^r unconditionally converges with respect to ＼-＼C^k＼(this

follows from (1°)and Theorem 3.1(1)).For each integer TV, the series J2jr^r
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unconditionally converges in Co (when 0 < ＼/p< ct/ri) or in II (when

0 < ＼/p = a/n < 1); this follows from the assertion (1°)and the fact that f(R)

for R e 9(Uj), j ^ N, is bounded, with the aid of (4) and (5) of Theorem 3.1.

Hence the function on the right side of (5.16) coincides mod 0*k with the

I･;Cp'k＼-unconditional sum Y1j>nr^r (c^- Lemma 2.7). Thus it is sufficientto

show that

(5.18) ＼gN;C"'k＼->0 as N->-oo

To show this,we shall prove that the following two estimates hold for allintegers

j and all xeRn:

(5.19)

(5.20) (A*≪*(*U^(/#)(*)

The claim (5.18) will follow from these estimates with the aid of Lebesgue's

convergence theorem.

The estimates (5.19) and (5.20) can be proved in a way similar to the proof

of (5.4) given in the proof of Theorem 5.1; here we shall only indicate the key

steps.(A similar argument can also be found in [DS; Lemma 8.1].)To make the

reference to the proof of Theorem 5.1 easy, we shall treat gi+l instead of gK We

fix a cube T. We shall prove

(5.21) {(T)-%,qA9J+l) ^cmin{2A|r|-1^j|/#||^}

which willimply (5.19) and (5.20),We write

(*) = (the rightsideof (5.21)).

First,suppose aT gt Uj+i.We consider gJ+l ―ut, which can be written as

gJ+l ―ut = h＼+hi with

hx = {f - nT)Xn＼u,+l and h2 =
Q,R

For h＼,we have

＼T＼-≪ln-llq＼＼h＼＼qJ< in-/"-1/'!!/ - nT＼＼qĴ c Mf* <,(*).

If Q and R are dyadic cubes for which ^^+Vi ^ 0 on T, the QalT and

＼＼PQ,R-^T＼＼^Q^c^Tf mm {2JW}
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＼h2{x)＼S ct{T)amin{2jJ*(x)} for alljce T
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and thus

＼T＼-*ln-xlq＼＼h2＼＼q
iT£{*).

The inequality(5.21) follows from the above estimatesof h＼and hi.

Next, suppose aT c= Uj+＼. We fix a cube Qoe^(Uj+＼) such that

2QqH T # 0. If Q and i? are dyadic cubes for which (pjQl(pjR# 0 on T, then

TczbQo and

||Vw(Pfti?- nQo)＼L,T£ ct{QQrm inf /# ^ ^(fib)-"(*)

for every nonnegative integer m. Hence

HV*+V+1|Lr =
Q,R oo,r

sm*rk~-＼*),

from which follows(5.21).Theorem 5.2is proved.

As we mentioned in the above proof, Theorem 4.3 is also completely

proved.
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