CAUCHY PROBLEMS RELATED TO DIFFERENTIAL OPERATORS WITH COEFFICIENTS OF GENERALIZED HERMITE OPERATORS

By

Xiaowei Xu

1. Introduction

As an example, let us consider the Schrödinger equation:

$$
\left\{D_{t}+D_{x}^{2}+V(x)\right\} u(t, x)=0
$$

where $D_{t}=(1 / i)(\partial / \partial t), D_{x}=(1 / i)(\partial / \partial x)$. In the harmonic oscillator case, where the potential energy function $V(x)$ is equal to x^{2}, X. Feng ([1]) considered it as follows.

As is well known, the Hermite function

$$
\Phi_{\alpha}(x)=\left(\alpha!2^{\alpha}\right)^{-1 / 2}(-1)^{\alpha} \pi^{-1 / 4} e^{x^{2} / 2}\left(\frac{\partial}{\partial x}\right)^{\alpha} e^{-x^{2}}
$$

is an eigenfunction of the Hermite operator $H=D_{x}^{2}+x^{2}$, corresponding to an eigenvalue $2 \alpha+1$, that is,

$$
H \Phi_{\alpha}(x)=(2 \alpha+1) \Phi_{\alpha}(x)
$$

for any $\alpha \in I_{+}=\{0,1, \ldots\}$. Moreover, $\left\{\Phi_{\alpha} \mid \alpha \in I_{+}\right\}$is a complete orthonormal system of $L^{2}(R)$, and $\Phi_{\alpha}(x)$ belongs to $S(R)$, where $S(R)$ is the L. Schwartz space of rapidly decreasing functions in R ([2]).

Suppose $u(t, x) \in S^{\prime}\left(R_{x}\right)$ for fixed t, where $S^{\prime}(R)$ is the conjugate space of $S(R)$, and set

$$
u_{\alpha}(t)=\left\langle u(t, x), \Phi_{\alpha}(x)\right\rangle .
$$

Then the Cauchy problem

$$
\text { (A) } \begin{cases}\left(D_{t}+H\right) u(t, x)=0 & (0 \leq t \leq T, x \in R), \\ u(0, x)=\delta(x) & (x \in R)\end{cases}
$$

is reduced to the Cauchy problems of ordinary differential equations

$$
(a)_{\alpha}\left\{\begin{array}{l}
\left\{D_{t}+(2 \alpha+1)\right\} u_{\alpha}(t)=0 \quad(0 \leq t \leq T) \\
u_{\alpha}(0)=\Phi_{\alpha}(0)
\end{array}\right.
$$

Therefore, the solution $u(t, x)$ of the problem (A) can be formally represented by making use of solutions $\left\{u_{\alpha}(t)\right\}$ of the problems $(a)_{\alpha}$. More precisely,

$$
u(t, x)=\sum_{\alpha \in I_{+}} u_{\alpha}(t) \Phi_{\alpha}(x)=\sum_{\alpha \in I_{+}} \Phi_{\alpha}(0) e^{-i(2 \alpha+1) t} \Phi_{\alpha}(x)
$$

X. Feng proved that $u(t, x) \in S^{\prime}\left(R_{x}\right)$, owing to the Hermite expression theory in $S^{\prime}(R)$ (B. Simon [3]).

How about anharmonic oscillator cases? Suppose that $\left\{\phi_{\alpha}(x)\right\}$ is a complete orthonormal system in $L^{2}(R)$, where $\phi_{\alpha}(x)$ is an eigenfunction of the generalized Hermite operator $L=D_{x}^{2}+x^{2}+x^{4}+1$, corresponding to an eigenvalue λ_{α}. Then the solution of the Cauchy problem of the Schrödinger equation

$$
\begin{cases}\left(D_{t}+L\right) u(t, x)=0 & (0 \leq t \leq T, x \in R) \\ u(0, x)=\delta(x) & (x \in R)\end{cases}
$$

can be given by

$$
u(t, x)=\sum_{\alpha \in I_{+}} \phi_{\alpha}(0) e^{-i \lambda_{\alpha} t} \phi_{\alpha}(x) .
$$

Our aim in this paper is to prove $u(t, x) \in S^{\prime}\left(R_{x}\right)$. In the following, this problem will be considered in a more general situation.

2. Preparations

Let us define a generalized Hermite operator L by

$$
\begin{gathered}
L=\left(L_{1}, \ldots, L_{n}\right) \\
L_{j}=D_{x_{j}}^{2}+V_{j}\left(x_{j}\right) \quad(j=1,2, \ldots, n)
\end{gathered}
$$

where $V_{j}(s)$ is a $C^{\infty}(R)$-function satisfying the following conditions: there exist $\delta_{j}>0, c_{0}>0$, and $C_{k}>0\left(k \in I_{+}\right)$such that

$$
\begin{cases}V_{j}(s) \geq c_{0}(1+|s|)^{2 \delta_{j}} & (\forall s \in R) \\ \left|D_{s}^{k} V_{j}(s)\right| \leq C_{k}(1+|s|)^{2 \delta_{j}} & (\forall s \in R)\end{cases}
$$

Lemma 1. There exist $\left\{\phi_{j k}(s)\right\}_{k \in I_{+}}$satisfying the following conditions, where $\phi_{j k}(s)$ is an eigenfuction of L_{j}, corresponding to an eigenvalue $\lambda_{j k}$.

1) $0<\lambda_{j 0} \leq \lambda_{j 1} \leq \cdots \leq \lambda_{j k} \leq \cdots$, and there exists $p_{0}>0$ such that

$$
\sum_{k=0}^{\infty} \lambda_{j k}^{-p_{0}}<+\infty
$$

2) $\phi_{j k}(s)$ is real valued, and $\left\{\phi_{j k}(s)\right\}_{k \in I_{+}}$is a complete orthonomal system of $L^{2}(R)$.
3) $\phi_{j k}(s) \in S(R)$, and there exist $C(l)>0$ and $p(l)>0$ for any $l \in I_{+}$such that

$$
\left\|\phi_{j k}\right\|_{l}:=\sum_{\alpha+\beta \leq l} \sup _{x \in R}\left|s^{\alpha} D_{s}^{\beta} \phi_{j k}(s)\right| \leq C(l) \lambda_{j k}^{p(l)} \quad\left(\forall k \in I_{+}\right)
$$

holds.

Lemma 1 is proved in [4] under assumptions slightly different to ours, but it is proved similarly.

Now, for any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in I_{+}^{n}$, we put

$$
\begin{aligned}
\phi_{\alpha}(x)=\Pi_{j=1}^{n} \phi_{j, \alpha_{j}}\left(x_{j}\right), \quad \lambda_{\alpha}=\left(\lambda_{1, \alpha_{1}}, \ldots, \lambda_{n, \alpha_{n}}\right), \\
L^{\beta}=\Pi_{j=1}^{n} L_{j}^{\beta_{j}} \quad \lambda_{\alpha}^{\beta}=\Pi_{j=1}^{n} \lambda_{j, \alpha_{j}}^{\beta_{j}}
\end{aligned}
$$

and denote

$$
\begin{aligned}
\Lambda & =\left\{\lambda_{\alpha} \mid \alpha \in I_{+}^{n}\right\} \\
& =\left\{\left(\lambda_{10}, \lambda_{20}, \ldots, \lambda_{n 0}\right),\left(\lambda_{11}, \lambda_{20}, \ldots, \lambda_{n 0}\right),\left(\lambda_{10}, \lambda_{21}, \ldots, \lambda_{n 0}\right), \ldots\right\} .
\end{aligned}
$$

Using Lemma 1, it is easy to prove
Lemma 2. $\phi_{\alpha}(x)$ is an eigenfunction of L^{β} corresponding to an eigenvalue λ_{α}^{β}, and they satisfy

1) there exists $p_{0}>0$ such that

$$
\sum_{\alpha \in I_{+}^{n}}\left|\lambda_{\alpha}\right|^{-p_{0}}<+\infty
$$

2) $\left\{\phi_{\alpha}(x)\right\}_{\alpha \in I_{+}^{n}}$ is a complete orthonomal system of $L^{2}\left(R^{n}\right)$,
3) $\phi_{\alpha}(x) \in S\left(R^{n}\right)$, and there exist $C(l)>0$ and $p(l)>0$ for any $l \in I_{+}$such that

$$
\left\|\phi_{\alpha}\right\|_{l} \leq C(l)\left|\lambda_{\alpha}\right|^{p(l)} \quad\left(\forall \alpha \in I_{+}^{n}\right)
$$

Here we call $\left\{\phi_{\alpha}(x)\right\}_{\alpha \in I_{+}^{n}}$ a family of generalized Hermite functions.

Let s be a space, whose element

$$
a=\left(a_{\alpha}\right)_{\alpha \in I_{+}^{n}}=\left(a_{0, \ldots, 0}, a_{1,0, \ldots, 0}, a_{0,1,0, \ldots, 0}, \ldots\right) \quad\left(a_{\alpha} \in C\right)
$$

satisfies

$$
|a|_{h}:=\sup _{\alpha \in I_{+}^{n}}\left|a_{\alpha}\right|\left|\lambda_{\alpha}\right|^{h / 2}<+\infty \quad\left(\forall h \in I_{+}\right) .
$$

s is a Fréchet space with a countable set of seminorms $\left\{|a|_{h}\right\}_{h \in I_{+}}$. Let s^{\prime} be the conjugate space of s. Namely, s^{\prime} is a set of all linear continuous mappings from s to C. More precisely, let $b \in s^{\prime}$, that is, $b: s \ni a \rightarrow\langle b, a\rangle \in C$. Then there exist $h>0$ and $C>0$ such that it holds

$$
|\langle b, a\rangle| \leq C|a|_{h} \quad(\forall a \in s) .
$$

Lemma 3. 1) Let $f(x) \in S\left(R^{n}\right)$ and set

$$
a(f)=\left\{a_{\alpha}(f)\right\}_{\alpha \in I_{+}^{n}}, \quad a_{\alpha}(f)=\left\langle f, \phi_{\alpha}\right\rangle .
$$

Then

$$
S\left(R^{n}\right) \ni f(x) \rightarrow a(f) \in s
$$

is linear continuous. More precisely, there exists $C_{h}>0$ for any h such that

$$
|a(f)|_{h} \leq C_{h}\|f\|_{2 n+(\delta+1) h} \quad\left(\delta=\max _{j} \delta_{j}\right)
$$

2) Conversely, let $a \in s$ and set

$$
f(x)=\sum_{\alpha} a_{\alpha} \phi_{\alpha}(x) .
$$

Then

$$
s \ni a \rightarrow f \in S\left(R^{n}\right)
$$

is linear and continuous. More precisely, there exists $C_{l}>0$ for any l such that

$$
\|f\|_{l} \leq C_{l}|a|_{2 p(l)+2 p_{0}}
$$

Moreover, $a(f)=a$ holds.
Proof. 1) For any $h \in I_{+}$, it holds

$$
\begin{aligned}
|a(f)|_{2 h} & =\sup _{\alpha \in I_{+}^{n}}\left|a_{\alpha}(f) \| \lambda_{\alpha}\right|^{h} \\
& \leq C_{h} \sup _{\alpha \in I_{+}^{n}}\left(\lambda_{1, \alpha_{1}}^{h}+\cdots+\lambda_{n, \partial_{n}}^{h}\right)\left|\left\langle f, \phi_{\alpha}\right\rangle\right|
\end{aligned}
$$

and

$$
\lambda_{j ; \alpha_{j}}^{h}\left|\left\langle f, \phi_{\alpha}\right\rangle\right|=\left|\left\langle f, L_{j}^{h} \phi_{\alpha}\right\rangle\right|=\left|\left\langle L_{j}^{h} f, \phi_{\alpha}\right\rangle\right| \leq\left\|L_{j}^{h} f\right\|_{L^{2}} .
$$

Hence

$$
|a(f)|_{2 h} \leq C_{h} \sum_{j=1}^{n}\left\|L_{j}^{h} f\right\|_{L^{2}} .
$$

On the other hand, since

$$
\left|D_{x_{j}}^{k} V_{j}\left(x_{j}\right)\right| \leq C_{k}\left(1+\left|x_{j}\right|\right)^{2 \delta_{j}}
$$

we have

$$
\left\|L_{j}^{h} f\right\|_{L^{2}}=\left\|\left(D_{x_{j}}^{2}+V\left(x_{j}\right)\right)^{h} f\right\|_{L^{2}} \leq C_{h} \sum_{\substack{r \leq 2 \delta h \\ \beta \leq 2 h}}\left\|x_{j}^{r} D_{x_{j}}^{\beta} f\right\|_{L^{2}} \leq C_{h}^{\prime}\|f\|_{2 n+2(\delta+1) h .}
$$

Therefore, we have

$$
|a(f)|_{2 h} \leq C_{h}\|f\|_{2 n+2(\delta+1) h} .
$$

2) Conversely, let $a=\left\{a_{\alpha}\right\}_{\alpha \in I_{+}^{n}}$, then we have from 1) and 3) of Lemma 2,

$$
\begin{aligned}
\sum_{\alpha \in I_{+}^{n}}\left\|a_{\alpha} \phi_{\alpha}\right\|_{l} & =\sum_{\alpha \in I_{+}^{n}}\left|a_{\alpha}\right|\left\|\phi_{\alpha}\right\|_{l} \\
& \leq \sum_{\alpha \in I_{+}^{n}}\left|a_{\alpha}\right| C(l)\left|\lambda_{\alpha}\right|^{p(l)} \\
& \leq C(l) \sup _{\alpha}\left|a_{\alpha}\right|\left|\lambda_{\alpha}\right|^{p(l)+p_{0}} \sum_{\alpha \in I_{+}^{n}}\left|\lambda_{\alpha}\right|^{-p_{0}} \\
& =C^{\prime}(l)|a|_{2 p(l)+2 p_{0}}
\end{aligned}
$$

for any l. Therefore, $\sum_{\alpha \in I_{+}^{n}} a_{\alpha} \phi_{\alpha}(x)$ is a convegent sequence in $S(R)$. Hence, set

$$
f(x)=\sum_{\alpha \in I_{+}^{n}} a_{\alpha} \phi_{\alpha}(x)
$$

Then it holds that

$$
\|f\|_{l} \leq C^{\prime}(l)|a|_{2 p(l)+2 p_{0}}
$$

and

$$
a_{\beta}(f)=\left\langle f, \phi_{\beta}\right\rangle=\sum_{\alpha \in I_{+}^{n}} a_{\alpha}\left\langle\phi_{\alpha}, \phi_{\beta}\right\rangle=a_{\beta} .
$$

Thus $a(f)=a$ holds.

Lemma 4. 1) Let $T \in S^{\prime}\left(R^{n}\right)$, and put

$$
b=\left\{b_{\alpha}\right\}_{\alpha \in I_{+}^{n}}, \quad b_{\alpha}=\left\langle T, \phi_{\alpha}\right\rangle .
$$

Then
i) there exists $h>0$ such that $|b|_{-h}:=\sup \left|b_{\alpha}\right|\left|\lambda_{\alpha}\right|^{-h / 2}<\infty$,
ii) $b: s \ni \forall a \rightarrow \sum_{\alpha} a_{\alpha} b_{\alpha} \in C$ belongs to s^{\prime},
iii) for any $f \in S^{\alpha}\left(R^{n}\right)$, it holds

$$
\langle T, f\rangle=\sum_{\alpha} b_{\alpha} a_{\alpha}(f), \quad a_{\alpha}(f)=\left\langle f, \phi_{\alpha}\right\rangle
$$

2) Conversely, let $b \in s^{\prime}$. Then $T: S\left(R^{n}\right) \ni f \rightarrow\langle b, a(f)\rangle$ belongs to $S^{\prime}\left(R^{n}\right)$.

Proof. 1) i) Since $T: S\left(R^{n}\right) \ni \phi \rightarrow\langle T, \phi\rangle \in C$ is continuous, there exist $C>0$ and $l>0$ such that

$$
\left|b_{\alpha}\right|=\left|\left\langle T, \phi_{\alpha}\right\rangle\right| \leq C\left\|\phi_{\alpha}\right\|_{l} \leq C C(l)\left|\lambda_{\alpha}\right|^{p(l)},
$$

using 3) of Lemma 2. Hence we have $|b|_{-2 p(l)}<+\infty$.
ii) Let h be the number in i). Then we have

$$
\left|b_{\alpha}\right|\left|\lambda_{\alpha}\right|^{-h / 2} \leq C \quad\left(\forall \alpha \in I_{+}^{n}\right) .
$$

Therefore, we have

$$
\begin{aligned}
\sum_{\alpha}\left|a_{\alpha}\right|\left|b_{\alpha}\right| & \leq C \sum_{\alpha}\left|a_{\alpha}\right|\left|\lambda_{\alpha}\right|^{h / 2} \\
& \leq C \sum_{\alpha}\left|\lambda_{\alpha}\right|^{-p_{0}} \sup _{\alpha}\left|a_{\alpha}\right|\left|\lambda_{\alpha}\right|^{h / 2+p_{0}} \\
& =C^{\prime} \mid a_{h+2 p_{0}}
\end{aligned}
$$

for any $a=\left\{a_{\alpha}\right\}_{\alpha \in I_{+}^{n}} \in s$, where we used 1) of Lemma 2. Hence

$$
b: s \ni a \rightarrow\langle b, a\rangle=\sum_{\alpha} a_{\alpha} b_{\alpha} \in C
$$

is a linear continuous mapping, that is, b belong to s^{\prime}.
iii) Let $f(x) \in S\left(R^{n}\right)$. Then we have

$$
f(x)=\sum_{\alpha} a_{\alpha}(f) \phi_{\alpha}(x) \quad \text { in } S\left(R^{n}\right)
$$

where $a_{\alpha}(f)=\left\langle f, \phi_{\alpha}\right\rangle\left(\alpha \in I_{+}^{n}\right)$ from 2) of Lemma 3. Hence we have

$$
\langle T, f\rangle=\left\langle T, \sum_{\alpha} a_{\alpha}(f) \phi_{\alpha}\right\rangle=\sum_{\alpha} a_{\alpha}(f)\left\langle T, \phi_{\alpha}\right\rangle=\sum_{\alpha} a_{\alpha}(f) b_{\alpha} .
$$

2) Conversely, for any $f(x) \in S\left(R^{n}\right)$, we have $a(f)=\left\{a_{\alpha}(f)\right\} \in s$, and there exists $C_{h}>0$ for any $h \in I_{+}$such that

$$
|a(f)|_{h} \leq C_{h}\|f\|_{2 n+(\delta+1) h}
$$

from 1) of Lemma 3. Let $b \in s^{\prime}$. Then there exist $C>0$ and $h>0$ such that

$$
|\langle b, a(f)\rangle| \leq C|a(f)|_{h}
$$

Therefore, we have

$$
|\langle b, a(f)\rangle| \leq C\|f\|_{2 n+(\delta+1) h} .
$$

Hence

$$
T: S\left(R^{n}\right) \ni f \rightarrow\langle b, a(f)\rangle \in C
$$

is a linear continuous mapping, namely $T \in S^{\prime}\left(R^{n}\right)$.
We say that $u(t, x) \in B^{h}\left([0, T], S^{\prime}\left(R^{n}\right)\right)$, iff

$$
u:[0, T] \ni t \rightarrow u(t, x) \in S^{\prime}\left(R^{n}\right)
$$

is continuously differentiable up to order h in the sense of simple topology of $S^{\prime}\left(R^{n}\right)$.

Lemma 5. 1) Suppose $u(t, x) \in B^{h}\left([0, T], S^{\prime}\left(R_{x}^{n}\right)\right)$, and set

$$
u_{\alpha}(t)=\left\langle u(t, x), \phi_{\alpha}(x)\right\rangle .
$$

Then there exist $C>0$ and $p>0$ such that

$$
\left|D_{t}^{j} u_{\alpha}(t)\right| \leq C\left|\lambda_{\alpha}\right|^{p} \quad\left(\alpha \in I_{+}^{n}, 0 \leq j \leq h\right)
$$

2) Conversely, suppose

$$
\left|D_{t}^{j} u_{\alpha}(t)\right| \leq C\left|\lambda_{\alpha}\right|^{p} \quad\left(\alpha \in I_{+}^{n}, 0 \leq j \leq h\right),
$$

and set

$$
u(t, x)=\sum_{\alpha} u_{\alpha}(t) \phi_{\alpha}(x)
$$

that is,

$$
u: S\left(R^{n}\right) \ni f \rightarrow\langle u(t, x), f\rangle=\sum_{\alpha} u_{\alpha}(t)\left\langle\phi_{\alpha}(x), f(x)\right\rangle=\sum_{\alpha} u_{\alpha}(t) a_{\alpha}(f) \in C
$$

for $t \in[0, T]$. Then $u(t, x) \in B^{h}\left([0, T], S^{\prime}\left(R_{x}^{n}\right)\right)$.
Proof. 1) Suppose $u(t, x) \in B^{h}\left([0, T], S^{\prime}\left(R^{n}\right)\right)$, then $H=\{u(t, x) \mid t \in[0, T]\}$ is a bounded set in $S^{\prime}\left(R^{n}\right)$ in the sense of simple topology. By using the fundamental lemma of Fréchet space ([5]), there exist $C>0$ and $l_{0}>0$ such that

$$
|\langle u(t, x), \phi(x)\rangle| \leq C\|\phi\|_{l_{0}} \quad\left(\forall t \in[0, T], \forall \phi \in S\left(R^{n}\right)\right) .
$$

Therefore, it holds

$$
\left|u_{\alpha}(t)\right|=\left|\left\langle u(t, x), \phi_{\alpha}(x)\right\rangle\right| \leq C\left\|\phi_{\alpha}\right\|_{l_{0}} \quad\left(\alpha \in I_{+}^{n}\right) .
$$

Besides, since

$$
\left\|\phi_{\alpha}\right\|_{l_{0}} \leq C\left(l_{0}\right)\left|\lambda_{\alpha}\right|^{p\left(l_{0}\right)}
$$

from 3) of Lemma 2, we have

$$
\left|u_{\alpha}(t)\right| \leq C C\left(l_{0}\right)\left|\lambda_{\alpha}\right|^{p\left(l_{0}\right)} .
$$

In the same way, we have

$$
\left|D_{t}^{j} u_{\alpha}(t)\right| \leq C\left|\lambda_{\alpha}\right|^{p} \quad\left(\alpha \in I_{+}^{n}, j=0,1,2, \ldots, h\right)
$$

2) Conversely, suppose

$$
\left|D_{t}^{j} u_{\alpha}(t)\right| \leq C\left|\lambda_{\alpha}\right|^{p} . \quad\left(\alpha \in I_{+}^{n}, j=0,1,2, \ldots, h\right)
$$

and set

$$
u: S\left(R^{n}\right) \ni f \rightarrow\langle u(t, x), f(x)\rangle=\sum_{\alpha \in I_{+}^{n}} u_{\alpha}(t) a_{\alpha}(f) \in C, \quad a_{\alpha}(f)=\left\langle f, \phi_{\alpha}\right\rangle
$$

Then $u(t, x)$ belongs to $S^{\prime}\left(R^{n}\right)$, from 2) of Lemma 4. Since

$$
\sum_{\alpha \in I_{+}^{n}} D_{t}^{j} u_{\alpha}(t) a_{\alpha}(f) \quad(j=0,1, \ldots, h)
$$

are uniformly convergent sequences in $[0, T]$,

$$
\begin{aligned}
D_{t}^{j}\langle u(t, x), f(x)\rangle & =D_{t}^{j} \sum_{\alpha} u_{\alpha}(t) a_{\alpha}(f) \\
& =\sum_{\alpha} D_{t}^{j} u_{\alpha}(t) a_{\alpha}(f)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left|D_{t}^{j}\langle u(t, x), f(x)\rangle\right| & \leq \sum_{\alpha}\left|a_{\alpha}(f) \| D_{t}^{j} u_{\alpha}(t)\right| \\
& \leq C \sum_{\alpha}\left|a_{\alpha}(f) \| \lambda_{\alpha}\right|^{p}
\end{aligned}
$$

By using 1) of Lemma 2, we have

$$
\begin{aligned}
\sum_{\alpha}\left|a_{\alpha}(f)\right|\left|\lambda_{\alpha}\right|^{p} & =\sup _{\alpha \in I_{+}^{n}}\left|a_{\alpha}(f)\right|\left|\lambda_{\alpha}\right|^{p+p_{0}} \sum_{\alpha \in I_{+}^{n}}\left|\lambda_{\alpha}\right|^{-p_{0}} \\
& \leq|a(f)|_{2 p+2 p_{0}} \sum_{\alpha \in I_{+}^{n}}\left|\lambda_{\alpha}\right|^{-p_{0}} \\
& =C|a(f)|_{2 p+2 p_{0}} .
\end{aligned}
$$

On the other hand, by using 1) of Lemma 3, we have

$$
|a(f)|_{2 p+2 p_{0}} \leq C\|f\|_{2 n+2(\delta+1)\left(p+p_{0}\right)}
$$

Hence

$$
\left|D_{t}^{j}\langle u(t, x), f(x)\rangle\right| \leq C\|f\|_{2 n+2(\delta+1)\left(p+p_{0}\right)}<+\infty \quad(t \in[0, T], j=0,1, \ldots, h)
$$

that is, $u(t, x) \in B^{h}\left([0, T], S^{\prime}\left(R_{x}^{n}\right)\right)$.

3. Cauchy problems

Let us consider Cauchy problems related to differential operators with coefficients of generalized Hermite operators

$$
\begin{gathered}
P\left(D_{t}, L\right)=P_{m}(L) D_{t}^{m}+\cdots+P_{0}(L), \\
P_{j}(L)=\sum_{|\beta| \leq m_{j}} a_{j, \beta} L^{\beta}=\sum_{\beta_{1}+\cdots+\beta_{n} \leq m_{j}} a_{j, \beta_{1}, \ldots, \beta_{n}} L_{1}^{\beta_{1}} \cdots L_{n}^{\beta_{n}},
\end{gathered}
$$

where $a_{j, \alpha}$ are constants and m_{j} are non-negatve integers. $P\left(D_{t}, L\right)$ is called an evolution differential operator with coefficients of generalized Hermite operators, iff
(I) there exist $C_{1}>0$ and $p_{1}>0$ such that

$$
\left|P_{m}(\lambda)\right| \geq C_{1}|\lambda|^{-p_{1}} \quad(\forall \lambda \in \Lambda),
$$

(II) there exists $k>0$ such that

$$
I_{m} \tau_{j}(\lambda) \geq-k . \quad(\forall \lambda \in \Lambda, 1 \leq j \leq m)
$$

where

$$
P(\tau, \lambda)=P_{m}(\lambda)\left(\tau-\tau_{1}(\lambda)\right) \cdots\left(\tau-\tau_{m}(\lambda)\right) .
$$

Theorem 1. Suppose $P\left(D_{t}, L\right)$ is an evolution differential operator with coefficients of generalized Hermite operators. Let

$$
f(t, x) \in B^{h}\left([0, T], S^{\prime}\left(R_{x}^{n}\right)\right), \quad g_{j}(x) \in S^{\prime}\left(R_{x}^{n}\right) \quad(0 \leq j \leq m-1) .
$$

Then there exists unique solution $u(t, x)$, belonging to $B^{h+m}\left([0, T], S^{\prime}\left(R^{n}\right)\right)$, of the Cauchy problem:

$$
(A) \begin{cases}P\left(D_{t}, L\right) u(t, x)=f(t, x) & \left(0 \leq t \leq T, x \in R^{n}\right), \\ \left.D_{t}^{j} u(t, x)\right|_{t=0}=g_{j}(x) & \left(x \in R^{n}, 0 \leq j \leq m-1\right) .\end{cases}
$$

Proof. Let

$$
\begin{aligned}
u_{\alpha}(t) & =\left\langle u(t, x), \phi_{\alpha}(x)\right\rangle \\
f_{\alpha}(t) & =\left\langle f(t, x), \phi_{\alpha}(x)\right\rangle, \quad g_{j, \alpha}=\left\langle g_{j}(x), \phi_{\alpha}(x)\right\rangle .
\end{aligned}
$$

Then the problem (A) is reduced to the Cauchy problems of ordinary differential equations:

$$
(a)_{\alpha} \begin{cases}\left\{P_{m}\left(\lambda_{\alpha}\right) D_{t}^{m}+\cdots+P_{0}\left(\lambda_{\alpha}\right)\right\} u_{\alpha}(t)=f_{\alpha}(t) & (0 \leq t \leq T), \\ \left.D_{t}^{j} u_{\alpha}(t)\right|_{t=0}=g_{j, \alpha} & (j=0,1,2, \ldots, m-1) .\end{cases}
$$

The solutions of $(a)_{\alpha}$ can be represented as

$$
u_{\alpha}(t)=\sum_{j=1}^{m} b_{j-1, \alpha} D_{t}^{m-j} W\left(t, \lambda_{\alpha}\right)+i P_{m}\left(\lambda_{\alpha}\right)^{-1} \int_{0}^{t} f_{\alpha}(s) W\left(t-s, \lambda_{\alpha}\right) d s,
$$

where

$$
\begin{aligned}
W\left(t, \lambda_{\alpha}\right) & =\frac{P_{m}\left(\lambda_{\alpha}\right)}{2 \pi i} \oint_{\gamma} \frac{e^{i t z}}{P\left(z, \lambda_{\alpha}\right)} d z \\
b_{0, \alpha} & =g_{0, \alpha}, \quad b_{j, \alpha}=g_{j, \alpha}-\sum_{i=1}^{j} b_{i-1, \alpha} D_{t}^{m+j-i} W\left(0, \lambda_{\alpha}\right) \quad(1 \leq j \leq m-1),
\end{aligned}
$$

and γ is a closed curve inside of which all zeros of $P\left(z, \lambda_{\alpha}\right)$ with respect to z are containd. By evaluating the above representation, there exist $C>0$ and $p>0$ such that

$$
\begin{gathered}
\left|D_{t}^{k} u_{\alpha}(t)\right| \leq C\left|\lambda_{\alpha}\right|^{p}\left\{\sum_{j=0}^{m-1}\left|g_{j, \alpha}\right|+\sum_{j=0}^{\max (k-m, 0)} \sup _{0 \leq s \leq t}\left|D_{s}^{j} f_{\alpha}(s)\right|\right\} \\
(0 \leq t \leq T, 0 \leq k \leq m+h) .
\end{gathered}
$$

Since $g_{j}(x) \in S^{\prime}\left(R^{n}\right)(0 \leq j \leq m-1)$, there exists $q_{1}>0$ such that

$$
\sup _{\alpha \in I_{+}^{n}}\left|g_{j, \alpha}\right|\left|\lambda_{\alpha}\right|^{-q_{1}}<+\infty
$$

from 1) of Lemma 4, and since $f(t, x) \in B^{h}\left([0, T], S^{\prime}\left(R^{n}\right)\right)$, there exists $q_{2}>0$ such that

$$
\sup _{\alpha \in I_{+}^{n}} \sup _{0 \leq t \leq T}\left|D_{t}^{j} f_{\alpha}(t)\right|\left|\lambda_{\alpha}\right|^{-q_{2}}<+\infty
$$

from 1) of Lemma 5. Therefore, we have

$$
\left.\left|D_{t}^{k} u_{\alpha}(t)\right| \leq C^{\prime}\left|\lambda_{\alpha}\right|^{p+q} \quad(t \in[0, T]), \alpha \in I_{+}^{n}, 0 \leq k \leq m+h\right),
$$

where $q=\max \left(q_{1}, q_{2}\right)$. Finally, set

$$
u(t, x)=\sum_{\alpha} u_{\alpha}(t) \phi_{\alpha}(x)
$$

Then $u(t, x)$ belongs to $B^{h+m}\left([0, T], S^{\prime}\left(R_{x}^{n}\right)\right)$, from 2) of Lemma 5, and becomes a solution of the problem (A). The uniqueness of the problem (A) follows from the uniqueness of the problems $(a)_{\alpha}$.

Remark 1. Let

$$
P\left(D_{t}, L\right)=D_{t}-\sum_{|\beta| \leq N} a_{\beta} L^{\beta} .
$$

Then P is an evolution operator, iff there exists $k>0$ such that

$$
I_{m} \sum_{|\beta| \leq N} a_{\beta} \lambda_{\alpha}^{\beta} \geq-k \quad\left(\forall \lambda_{\alpha} \in \Lambda\right) .
$$

Remark 2. Let

$$
P\left(D_{t}, L\right)=D_{t}^{2}-\sum_{|\beta| \leq N} a_{\beta} L^{\beta} .
$$

Then P is an evolution operator, iff there exists $k>0$ such that

$$
\left(\sum_{|\beta| \leq N} R_{e} a_{\beta} \lambda_{\alpha}^{\beta}, \sum_{|\beta| \leq N} I_{m} a_{\beta} \lambda_{\alpha}^{\beta}\right) \in \Omega_{k} \quad\left(\forall \lambda_{\alpha} \in \Lambda\right),
$$

where

$$
\Omega_{k}=\left\{(X, Y) \mid Y^{2} \leq k X \text { or } X^{2}+Y^{2} \leq k\right\} .
$$

For example,

$$
\begin{aligned}
& D_{t}^{2}-\left\{L_{1}^{2}+\cdots+L_{n}^{2}+i\left(L_{1}-L_{2}\right)\right\}, \\
& D_{t}^{2}-\left\{L_{1}^{3}+\cdots+L_{n}^{3}+i\left(L_{1}-L_{2}\right)\right\}, \\
& D_{t}^{2}-\left\{L_{1}^{2} L_{2}^{2}+i\left(L_{1}-L_{2}\right)\right\}
\end{aligned}
$$

are evolution operators.
The paper has finished under the kind guidance of Prof. Reiko Sakamoto and Prof. Sadao Miyatake. I am deeply greateful to them.

References

[1] X. Feng, Solutions to the Cauchy Problems for a Number of Linear Partial Differential eguations in the Space of Tempered Distributions, Master's thesis of Lanzhou University, 1986, 1-47.
[2] L. Schwartz, Theorie des Distributions, Hermann Paris, 1966.
[3] B. Simon, Distributions and Their Hermite Expressions, J. Math. Phys. 12, 1971, 140-148.
[4] D. Robert, Proprietes spectrales d' operateurs pseuds-differentiels, Comm. in partial differential equations, 3 (9), 1978, 755-826.
[5] S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, 1973.
Graduate School of Human Culture, Nara Woman's University

