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INDUCED MO-MAPPINGS

By

Janusz J. CHARATONIK and Wlodzimierz J. CHARATONIK

Abstract. A mapping f: X — Y between continua X and Y is
called an MO-mapping provided that it can be represented as the
composition of two mappings, f; : X — Z and f, : Z — Y, such that
/i is open and f, is monotone. Induced MO-mappings, 2/ and C(f),
between hyperspaces are studied. In particular an example is con-
structed of an open mapping f : [0, 1] — [0, 1] for which C(f) is not
an MO-mapping. This answers two questions asked by H. Hoso-
kawa.

All spaces considered in this paper are assumed to be metric. A mapping
means a continuous function. To exclude some trivial statements we assume that
all considered mappings are not constant. A continuwm means a compact
connected space. Given a continuum X with a metric d, we let 2% denote the
hyperspace of all nonempty closed subsets of X equipped with the Hausdorff
metric H defined by

H(A, B) = max{sup{d(a,B) : ae A}, sup{d(b,A) : b € B}}

(see e.g. [9, (0.1), p. 1 and (0.12), p. 10]). Further, we denote by C(X) the hyper-
space of all subcontinua of X, i.e., of all connected elements of 2%. The reader is
referred to Nadler’s book [9] for needed information on the structure of
hyperspaces.

Given a mapping f:X — Y between continua X and Y, we consider
mappings (called the induced ones)

2/ 2% 5 2Y and C(f): C(X) — C(Y)
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defined by
27(4) = f(A) for every Ae2* and C(f)(4) = f(A4) for every 4 e C(X).

A mapping f: X — Y between spaces X and Y is said to be:

— open, provided that the image of an open subset of the domain is open in the
range;

— monotone, provided that it has connected point-inverses;

— OM-mapping, provided that it can be represented as the composition of two
mappings, f = f, o f;, such that f; is monotone and f, is open;

— MO-mapping, provided that it can be represented as the composition of two
mappings, f = f, o f}, such that f; is open and f, is monotone;

— confluent, provided that for each subcontinuum @ of Y each component of
£7'(Q) is mapped onto Q under f.

Monotone, as well as open mappings of compact spaces are known to be
confluent, [12, Theorem 7.5, p. 148]. OM- and MO-mappings were introduced in
[7, Section 3, p. 104] and studied in [8]. It is known that OM-mappings coincide
with quasi-interior ones, as introduced in [13, p. 9], see [7, Corollary 3.1, p. 104],
and that all MO-mappings are OM-mappings, [7, Corollary 3.2, p. 104].

Let 9, where ie {1,2,3} be some three classes of mappings between
continua. A general problem which is related to a given mapping and to the two
induced mappings is to find all interrelations between the following three
statements:

(0.1) feMy;
(0.2) C(f) € My;
(0.3) 2/ e M;.

There are some papers in which particular results concerning this problem are
shown for various classes 9 of mappings. In the present paper we will discuss
possibly implications between (0.1)—(0.3) for the class of MO-mappings. We start
with recalling some related results.

The following results concerning induced mappings for the classes of
monotone, of open, and of OM-mappings are known. For monotone mappings
see [10, Lemma 2.1, p. 750]; compare {6, Theorem 1.1, p. 121], [3, Lemma 2.3,
p. 2], [2, Theorem 3.3, p. 4], and [5, Theorem 3.2, p. 241]. For open mappings
see [5, Theorem 4.3, p. 243]; compare also [4, Theorem 3.2]). For OM-mappings
see [5, Theorem 5.2, p. 244].
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1. THEOREM. Let a surjective mapping [ : X — Y between continua X and Y
be given. Then the following conditions are equivalent:
(1.1) f: X — Y is monotone;
(1.2) C(f): C(X) — C(Y) is monotone,
(1.3) 2/ :2X = 2Y is monotone.
2. THEOREM. Let a surjective mapping [ : X — Y between continua X and Y
be given. Consider the following conditions:
Q1) f: X — Y is open;
(2.2) C(f): C(X) — C(Y) is open;
(2.3) 2/ : 2% =27 s open.
Then (2.1) and (2.3) are equivalent, and each of them is implied by (2.2).
3. THEOREM. Let a surjective mapping f : X — Y between continua X and Y
be given. Then the following conditions are equivalent:
(3.1) f: X > Y is an OM-mapping,
(3.2) C(f): C(X) — C(Y) is an OM-mapping,;
(3.3) 27 : 2% =27 is an OM-mapping.
An example is known [5, Section 4, Example, p. 244] of an open surjective
mapping f : X — Y between locally connected continua X and Y such that the

induced mapping C(f): C(X) — C(Y) is not open. It is so because of the
following result, [1, Theorem 1].

4. THEOREM. If a comtinuum X is locally connected, and for a mapping
f X = Y the induced mapping C(f): C(X) — C(Y) is open, then f is monotone.

As a consequence of this theorem the following corollary has been shown in
[1, Corollary 2].

5. CorOLLARY. Let a continuum X be hereditarily locally connected, and a
mapping f: X — Y be such that the induced mapping C(f): C(X) — C(Y) is
open. Then f is a homeomorphism.
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The following result is a consequence of Theorems 1 and 2, see [5, Theorem
5.3, p. 245].

6. COROLLARY. If a mapping f: X — Y between continua X and Y is an
MO-mapping, then 2/ is also an MO-mapping.

Investigating the class MM of MO-mappings, H. Hosokawa asked in [4,
Remark 3.7] if the condition f € Mt implies that C(f) € M. Later, in [5, Section
8, Problem 2, p. 249] he asked if the implication holds under an additional
assumption that the mapping f'is open. Our next result presents a negative answer
to both these questions. To formulate it we recall a countable family of open
mappings of the closed unit interval onto itself. Let a positive integer k be given
and let me {0,1,...,k — 1}. Define a surjection

() gk : [0,1] = [0, 1]

by the following conditions.
(7.1) If m is even, then gx(m/k) =0, and if m is odd, then gx(m/k)=1.
(7.2) For each m the restriction gk|[m/k,(m+1)/k]: [m/k, (m+1)/k] —
[0,1] is defined to be linear.
Thus this restriction, and hence the mapping gi, is a surjection. Note that
gx(0) = 0 and gx(1) is either 1 or 0 according to k is either odd or even. Observe
that g, is the identity, and g, is the tent mapping defined by

(7.3) g2(x) =

2x, for x e0,1/2],
2 —2x, for xe[l/2,1].

Recall that two mappings f;: X1 — Y7 and f;: X, — Y, are said to be
topologically equivalent provided that there exist homeomorphisms Ay : X1 — X3
and hy : Y| — Y, such that f,(hy(x)) = hy(f1(x)) for each point x € X. Observe
that this relation is an equivalence in the class of mappings between topological
spaces (see [12, p. 127]). It is known (see [12, (1.3), p. 184]) that a mapping of
[0,1] into itself is open if and onmly if it is topologically equivalent to
gk : [0,1] — [0,1] for some positive integer k.

8. PROPOSITION. If g, :[0,1] — [0,1] is the tent mapping, then the induced
mapping C(g2) is an MO-mapping which is neither open nor monotone.

PROOF. Since any nonempty subcontinuum of [0, 1] is a closed interval [x, y]
with 0 < x < y < 1, where [x,x] = {x}, hence one can assign to [x, y] = [0,1] a
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point (x,y) of the triangle
T={(x,y)eR:0<x<y<l}

and, under this correspondence, the topology induced by the Hausdorff metric on
C([0,1]) coincides with the Euclidean topology inherited from the plane R?> on 7
(see e.g. [11, p. 62]). To simplify notations we omit the homeomorphism between
C([0,1]) and T. Thus the formula (7.3) for g, implies the following one for the
induced mapping C(g;): T — T

(2x,2y) if 0<y<1/2,
C(g2)((x,y)) =< (min{2x,2 -2y} 1) if 0<x<1/2<y<]1,
(2-2y,2-2x) if 1/2<xx<1.

To see that C(g;) so defined is an MO-mapping let us consider two ad-
ditional triangles: 7' = {(x,y)eT:x+ y <1} with vertices (0,0), (0,1),
(1/2,1/2), and T" ={(x,y)eT':0< y<1/2} with vertices (0,0), (0,1/2),
(1/2,1/2). Define a surjection f;: T — T’ such that f{|T’ is the identity and
SI(T\T") is the symmetry with respect to the straight line x + y = 1. Thus f; is
open, and we have

(x,») f 0<x+y<lI,

fl((x’y)):{(]—y,lvx) if x+y>1.

Next define a surjection f,: 7' — T” such that f,|T” is the identity, and
HI(T'\T") projects points on the side of T” that joins (0,1/2) with (1/2,1/2).
Thus f, is monotone, and its formula is

(x,y) fO0<y<l1/2

Hlx 7)) = {(x, 1/2) if y=1/2.

Finally, let #:T" — T be a homeomorphism defined by A((x,y)) = (2x,2y)
for all (x,y)e T". It can be verified (details are left to the reader) that C(g;) =
(ho f5)o f,. Thus C(g>) is an MO-mapping. The proof is complete.

9. PROPOSITION.  Let a mapping g : [0,1] — [0,1] be as in (7). Then for each
integer k >3 the induced mapping C(gx) is not an MO-mapping.

Proor. Suppose on the contrary that for some k > 3 the induced map-
ping C(gx) : C([0,1]) — C(|0,1]) can be represented as the composition of two
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mappings, C(gx) = f,0 f;, where f; is open and f, is monotone. Let Y =
H(C([0,1])), and put

| 2 1 2 22 1
4= ["ﬂ} B= [E'E’E]’ €= [m*ﬁ]-
Observe that C(gx)(A4) = C(gk)(B) = C(gx)(C) =1[0,1/2]. Let % = {P e C([0,1]) :
H(P, A) < 1/4k}. Then

9.1) the restriction C(gy)|# is one-to-one,

whence f}|% is one-to-one. We claim that
(9:2) fi(4) = /i(B).

Indeed, if not, we have f;(4) # f1(B), but f,(f,(4)) = f2(f1(B)) =[0,1/2], and
since f, is monotone, there is a continuum M < Y with f;(4), fi(B) € M and
£(M) ={[0,1/2]}. Let ¥ < C([0,1]) be the component of fi'(M) which
contains 4. Since f; is open, it is confluent, [12, Theorem 7.5, p. 148], so
fi(6) = M, and thus % is a nondegenerate continuum containing A. Then
C(gr)(4N%) is a one-point set {[0,1/2]}, contrary to (9.1). Thus (9.2) is
established.

Let v = {Pe C(B): H(P,B) < 1/4k}. Then C(gx)|?" is one-to-one, whence
fil?" is one-to-one as well. Note that ¥~ is not a neighborhood of B.

Let {B,} be a sequence of continua in [0,1] satisfying B,, = B and 2/k ¢ B,
for each m € N, and B = Lim B,,. Observe that (C(gx)) ' (C(gx)(By)) has exactly
k points. Therefore f7'(f(Bn)) is a subset of the finite set (C(g1)) " (Clgr) (Bm)),
so it is finite. Openness of f| implies that f fl is continuous, see [12, Theorem
4.32, p. 130], so

(9.3) f1 (f1(B)) is finite.

Let o/ be the (unique) order arc in C([0,1]) from B to BUC. By (9.3) the
set fi(«/) is a nondegenerate subcontinuum of Y. By (9.2) we see that
Ae fi'(fi(«)). Then the component " of f17'(fi(s#)) which contains A is
a nondegenerate subcontinuum of C([0,1]) by confluence of f;. Note that
Clg)(#) = {[0,1/2]}, whence Clgi)(#") = Clgi)(/) = {10,1/2]}, contrary to
(9.1). Thus the proof is finished.

As a consequence of Propositions 8 and 9 we have the following result.

10. THEOREM. The identity g, and the tent mapping g» are the only two (up to
equivalence) open mappings f : [0,1] — [0,1] for which the induced mapping C(f)
is an MO-mapping.
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11. REMARKS. (11.1) Taking as a mapping f : X — Y the mapping g, for

some integer kK > 3 we see, by Proposition 9, that even in the case when f'is open,
the induced mapping C(f) need not be an MO-mapping.

(11.2) Since openness of f is equivalent to that of 2/ (see Theorem 2), it

follows from (11.1) that even if 2/ is an open mapping (an MO-mapping, in
particular), then C(f) need not be an MO-mapping.

The following three questions remain open. The first two of them were asked

in [5, Section 8, Problem 2, p. 249].

12.

QuesTions.  (12.1) If 2/ is an MO-mapping, must f be an MO-mapping?

(12.2) If C(f) is an MO-mapping, must f be an MO-mapping?
(12.3) If C(f) is an MO-mapping, must 2/ be an MO-mapping?

>

S.
S.

S.

G.

G.

T oz om o=
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