ON THE STRUCTURE OF TAKAHASHI MANIFOLDS

By
Beatrice Ruint-Fulvia Spaggiari

Abstract

We study the topological structure of the closed orientable 3-manifolds obtained by Dehn surgeries along certain links, first considered by Takahashi in [23]. The interest about such manifolds arises from the fact that they include well-known families of 3manifolds, previously studied by several authors, as the Fibonacci manifolds [7], [10], [11], the Fractional Fibonacci manifolds [14], and the Sieradski manifolds [5], [6], respectively. Our main result states that the Takahashi manifolds are 2 -fold coverings of the 3 -sphere branched along the closures of specified 3 -string braids. We also describe many of the above-mentioned manifolds as n-fold cyclic branched coverings of the 3 -sphere.

1. Introduction and main results

The goal of the paper is to study the topological structure of the closed connected orientable 3-manifolds obtained by Dehn surgeries along certain chains of unknotted oriented circles in the oriented 3 -sphere. Our results complete in a sense the ones of a previous paper of Takahashi [23]. It turns out that the above manifolds contemporarily include well-known families of manifolds, treated in the literature (see references), as the (Fractional) Fibonacci manifolds and the Sieradski manifolds. So we can re-obtain several results of the quoted papers as simple corollaries of our main theorem. To state it we first consider the link $L_{2 n}$ resp. L_{n}^{\prime} with $2 n$ resp. n components, $n \geq 2$, each of which is unknotted oriented and linked with exactly two adjacent components as shown in Figure 1a resp. 1b.

[^0]

Figure 1a: the link $L_{2 n}$.

Figure 1b: the link L_{n}^{\prime}.

Let us denote by $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ resp. $M^{\prime}\left(a_{1} / b_{1}, \ldots\right.$, a_{n} / b_{n}) the closed connected orientable 3-manifold obtained by Dehn surgery along $L_{2 n}$ resp. L_{n}^{\prime} with surgery coefficients p_{i} / q_{i} and r_{i} / s_{i} resp. a_{i} / b_{i}, $i=1,2, \ldots, n$, according to Figure 1. In [23] Takahashi gave finite presentations of the fundamental group of the manifolds $M\left(p_{i} / q_{i} ; r_{i} / s_{i}\right)$, so for convenience we refer to such manifolds as the Takahashi manifolds.

These presentations actually coincide with the standard ones of the Fibonacci groups

$$
F(2,2 n)=\left\langle x_{1}, x_{2}, \ldots, x_{2 n}: x_{i} x_{i+1}=x_{i+2}(\text { indices } \bmod 2 n)\right\rangle
$$

resp. the Fractional Fibonacci groups

$$
F^{k / l}(2,2 n)=\left\langle x_{1}, x_{2}, \ldots, x_{2 n}: x_{i}^{l} x_{i+1}^{k}=x_{i+2}^{l}(\text { indices } \bmod 2 n)\right\rangle
$$

when $p_{i} / q_{i}=1$ and $r_{i} / s_{i}=-1$ resp. $p_{i} / q_{i}=k / l$ and $r_{i} / s_{i}=-k / l$ for every $i=1,2, \ldots, n$. It is well-known that the above presentations correspond to spines of closed orientable 3-manifolds, called the Fibonacci manifolds and the Fractional Fibonacci manifolds, respectively. It was also proved that the Fibonacci manifolds resp. the Fractional Fibonacci manifolds are two-fold cyclic coverings of the 3 -sphere branched over the Turk's head links $T h_{n}$ resp. the links $T h_{n}^{k / l}$, that are the closures of the 3 -string braids $\left(\sigma_{1} \sigma_{2}^{-1}\right)^{n}$ resp. $\left(\sigma_{1}^{k / l} \sigma_{2}^{-k / l}\right)^{n}$ (see [7], [10], [11] and [14]). Our main theorem extends these results to the case of Takahashi manifolds.

Theorem 1. For any coprime integers p_{i} and q_{i} resp. r_{i} and $s_{i}, i=1,2, \ldots, n$, and for any integer $n \geq 2$, the Takahashi manifold $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right.$; $\left.r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ is the two-fold cyclic covering of the 3 -sphere branched along the closure of the rational 3-string braid

$$
\sigma_{1}^{p_{1} / q_{1}} \sigma_{2}^{r_{1} / s_{1}} \cdots \sigma_{1}^{p_{n} / q_{n}} \sigma_{2}^{r_{n} / s_{n}}
$$

We also obtain finite presentations of the fundamental group of the manifolds $M^{\prime}\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$, and further prove that these manifolds are still examples of Takahashi manifolds. Our presentations coincide with the standard ones of the Sieradski groups

$$
S(n)=\left\langle x_{1}, x_{2}, \ldots, x_{n}: x_{i} x_{i+2}=x_{i+1}(\text { indices } \bmod n)\right\rangle
$$

when $a_{i} / b_{i}=-1$, for every $i=1,2, \ldots, n$. It was proved that $S(n)$ corresponds to a spine of the n-fold cyclic covering of the 3 -sphere branched over the trefoil knot (see [5], also for other types of generalizations).

The following extends this result to the case of manifolds $M^{\prime}\left(a_{i} / b_{i}\right)$.

Theorem 2. For any coprime integers a_{i} and $b_{i}, i=1,2, \ldots, n$, and for any integer $n \geq 2$, the manifold $M^{\prime}\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$ is homeomorphic to the Takahashi manifold $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$, where $r_{i} / s_{i}=1$ and $p_{i} / q_{i}=$ $a_{i} / b_{i}+2$, and so it is the two-fold cyclic covering of the 3 -sphere branched along the closure of the rational 3-string braid

$$
\sigma_{1}^{a_{1} / b_{1}+2} \sigma_{2} \cdots \sigma_{1}^{a_{n} / b_{n}+2} \sigma_{2}
$$

Finally we remark that the link $L_{2 n}$ is hyperbolic (see [1], p. 222) so according to the Thurston-Jorgensen theory of hyperbolic surgery (see [24]) we get the following result:

Theorem 3. For any integer $n \geq 2$, and for all but a finite number of pairs $\left(p_{i}, q_{i}\right)$ and $\left(r_{i}, s_{i}\right)$, the Takahashi manifolds $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ are hyperbolic.

2. The Takahashi manifolds

The following was proved by Takahashi in [23].
Theorem 4. The fundamental group of the 3-manifold $M\left(p_{i} / q_{i} ; r_{i} / s_{i}\right)$ obtained by Dehn surgery along the oriented link $L_{2 n}$ with surgery coefficients p_{i} / q_{i} and $r_{i} / s_{i}, i=1,2, \ldots, n$, admits the finite presentation

$$
\Pi_{1}\left(M\left(p_{i} / q_{i} ; r_{i} / s_{i}\right)\right)=\left\langle x_{1}, x_{2}, \ldots, x_{2 n}: x_{2 i}^{s_{i}} x_{2 i+1}^{p_{i+1}}=x_{2(i+1)}^{s_{i+1}}, x_{2 i-1}^{q_{i}} x_{2 i}^{-r_{i}}=x_{2 i+1}^{q_{i+1}}\right.
$$

(indices $\bmod n)\rangle$.
Generalizing an example given in [23] (case $n=3$) yields the following
TheOrem 5. The fundamental group of the 3-manifold $M^{\prime}\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$ obtained by Dehn surgery along the oriented link L_{n}^{\prime} with surgery coefficients a_{i} / b_{i}, $i=1,2, \ldots, n$, admits the finite presentation

$$
\Pi_{1}\left(M^{\prime}\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)\right)=\left\langle x_{1}, x_{2}, \ldots, x_{n}: x_{i}^{a_{i}+b_{i}} x_{i+1}^{b_{i+1}} x_{i}^{-b_{i}} x_{i-1}^{b_{i-1}}=1\right.
$$

(indices mod n) \rangle.

Proof. Let

$$
\begin{array}{r}
\Pi_{1}\left(S^{3} \backslash L_{n}^{\prime}\right)=\left\langle u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{n}: w_{i} u_{i-1}=u_{i-1} u_{i}\left(R_{i}\right)\right. \\
u_{i} w_{i+1}=w_{i+1} w_{i}\left(Q_{i}\right) \\
(\text { indices } \bmod n)\rangle
\end{array}
$$

be the Wirtinger presentation of the link group of L_{n}^{\prime} where the generators u_{i}, w_{i} are taken as shown in Figure lb . If m_{i} and l_{i} denote the meridian and the longitude, respectively, of the i-th component of L_{n}^{\prime}, then we have

$$
m_{i}=u_{i}, \quad l_{i}=w_{i+1} u_{i-1}, \quad\left[m_{i}, l_{i}\right]=1 .
$$

The presentation of $\Pi_{1}\left(M^{\prime}\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)\right)$ comes from the one of $\Pi_{1}\left(S^{3} \backslash L_{n}^{\prime}\right)$ by adding the relations $m_{i}^{a_{i}} l_{i}^{b_{i}}=1$, for any $i=1,2, \ldots, n$.

Since a_{i} and b_{i} are coprime integers, there exist two integers c_{i} and d_{i} such that

$$
b_{i} c_{i}-a_{i} d_{i}=1
$$

for every $i=1,2, \ldots, n$.
Setting

$$
x_{i}=m_{i}^{c_{i}} l_{i}^{d_{i}}
$$

it follows that

$$
\begin{aligned}
m_{i} & =x_{i}^{b_{i}} \\
l_{i} & =x_{i}^{-a_{i}} \\
u_{i} & =x_{i}^{b_{i}},
\end{aligned}
$$

and hence

$$
w_{i}=l_{i-1} u_{i-2}^{-1}=x_{i-1}^{-a_{i-1}} x_{i-2}^{-b_{i-2}}\left(S_{i}\right) .
$$

Now relations R_{i} and S_{i} directly imply

$$
x_{i}^{a_{i}+b_{i}} x_{i+1}^{b_{i+1}} x_{i}^{-b_{i}} x_{i-1}^{b_{i-1}}=1,
$$

where the indices are taken $\bmod n$ as usual. Finally, using these relations and S_{i}, one can verify that relations Q_{i} become identities for every $i=1,2, \ldots, n$. Thus the proof is completed.

Now we are going to prove that the finite group presentations of Theorems 4 and 5 correspond to spines of the represented manifolds. For that, we first recall
some definitions about $R R$-systems (see [20]). Let D be a regular hexagon in the plane E^{2}. For each pair of opposite faces construct a finite set (possibly empty), station say, of parallel line segments, called tracks, through D with endpoints on these opposite faces. Let $\left\{D_{i}: i=1,2, \ldots, s\right\}$ be a set of disjoint regular hexagons in E^{2}. A route is an arc whose interior lies in $E^{2} \backslash U_{i=1}^{s} D_{i}$ connecting endpoints of tracks. A $R R$-system is the union in E^{2} of a finite set of hexagons with stations and a finite set of disjoint routes in $S^{2} \backslash U_{i=1}^{s} D_{i}$ such that each endpoint of every track intersects exactly one route in one of its endpoints. A $R R$-system gives rise to a family of group presentations whose generators $x_{i}(i=1,2, \ldots, s)$ are in one-to-one correspondence with the hexagons D_{i}. In each hexagon we start from some vertex of the boundary and proceed clockwise (according to an orientation of S^{2}) along an edge which corresponds to a station m_{i} of D_{i}. Orient the tracks of this station so that the positive direction is toward this edge. Label the stations corresponding to the second and third edges encountered by $m_{i}+n_{i}$ and n_{i} respectively, and orient the tracks of these stations toward the respective edges. By walking along each closed arc (made by tracks and routes) we write a word on generators $x_{i}(i=1,2, \ldots, s)$ in the following way: as we enter in each hexagon D_{i} we give the name of the station as exponent of x_{i} with sign +1 resp. -1 if our direction of travel concords resp. opposes the orientation of the tracks (see [20] for more details). Osborne and Stevens proved in [20] that a finite group presentation with the same number of generators and relations corresponds to a spine of a closed connected orientable 3-manifold if and only if it arises from an $R R$-system. Since the group presentation of Theorem 4 resp. 5 is induced by the $R R$-system depicted in Figure 2 (as communicated us by Hog-Angeloni [12]) resp. 3, we get the following

Theorem 6. The finite group presentation

$$
\left\langle x_{1}, x_{2}, \ldots, x_{2 n}: x_{2 i}^{s_{i}} x_{2 i+1}^{p_{i+1}}=x_{2(i+1)}^{s_{i+1}}, x_{2 i-1}^{q_{i}} x_{2 i}^{-r_{i}}=x_{2 i+1}^{q_{i+1}}\right\rangle
$$

resp.

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}: x_{i}^{a_{i}+b_{i}} x_{i+1}^{b_{i+1}} x_{i}^{-b_{i}} x_{i-1}^{b_{i-1}}=1\right\rangle
$$

corresponds to a spine of the 3-manifold $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ resp. $M^{\prime}\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$.

We observe that if $p_{i}=q_{i}=s_{i}=1$ and $r_{i}=-1$, for any $i=1,2, \ldots, n$, then $\Pi_{1}(M(1, \ldots, 1 ;-1, \ldots,-1))=\left\langle x_{1}, x_{2}, \ldots, x_{2 n}: x_{i} x_{i+1}=x_{i+2}(\right.$ indices $\left.\bmod 2 n)\right\rangle$ is the Fibonacci group $F(2,2 n)$, first introduced by Conway in [8].

Figure 3.

If $p_{i}=k, r_{i}=-k$ and $q_{i}=s_{i}=l$, for any $i=1,2, \ldots, n$, then

$$
\Pi_{1}(M(k / l, \ldots, k / l ;-k / l, \ldots,-k / l))=\left\langle x_{1}, x_{2}, \ldots, x_{2 n}: x_{i}^{l} x_{i+1}^{k}=x_{i+2}^{l}\right.
$$

$($ indices $\bmod 2 n)\rangle$
is the Fractional Fibonacci group $F^{k / l}(2,2 n)$, studied by Kim and Vesnin in [14]. If $a_{i}=-1$ and $b_{i}=1$, for any $i=1,2, \ldots, n$, then

$$
\Pi_{1}\left(M^{\prime}(-1, \ldots,-1)\right)=\left\langle x_{1}, x_{2}, \ldots, x_{n}: x_{i} x_{i+2}=x_{i+1}(\text { indices } \bmod n)\right\rangle
$$

is the Sieradski group (see [22] and [5]).
Now we apply the Kirby-Rolfsen calculus on links with coefficients (see [15], [16] and [21]) to prove the following result.

Theorem 7. The manifold $M^{\prime}\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$ is homeomorphic to the Takahashi manifold $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ if $r_{i} / s_{i}=1$ and $p_{i} / q_{i}=$ $a_{i} / b_{i}+2$ for any $i=1,2, \ldots, n$.

Proof. Let us consider the link $L_{2 n}$ of Figure 1a with surgery coefficients $r_{i} / s_{i}=1$, for any $i=1,2, \ldots, n$ and twist about each component of $L_{2 n}$ with coefficient $r_{i} / s_{i}=1$ in the left-hand sense $(\tau=-1)$. We obtain the link L_{n}^{\prime} with n components of Figure 1 b and surgery coefficients $a_{i} / b_{i}=p_{i} / q_{i}-2$, for any $i=1,2, \ldots, n$. The sequence of surgery moves is illustrated in Figure 4.

3. Branched coverings

In this section we are going to prove Theorem 1. For this we use a wellknown result of Montesinos (Theorem 1 of [19]) which states that a closed orientable 3-manifold, obtained by Dehn surgery along a strongly-invertible link L of n components, is a 2 -fold cyclic covering of S^{3} branched over a link of at most $n+1$ components. Following [4] and [9], let $\sigma_{i}^{t / h}$ denote the rational t / h tangle, whose incoming arcs are i-th and $(i+1)$-th strings (Here t and h are coprime integers). If t / h is written as a continued fraction

$$
t / h=\frac{1}{c_{1}+\frac{1}{\ddots+\frac{1}{c_{z}}}}
$$

and $t, h, c_{1}, \ldots, c_{z}$ are positive integers with $c_{z} \geq 2$, then the rational t / h-tangle is defined as in Figure 5.

Figure 4.

Figure 5: the rational t / h-tangle with $t, h>0$.
Proof of Theorem 1. The link $L_{2 n}$ is strongly-invertible. In fact there exists an involution $p: S^{3} \rightarrow S^{3}$ whose axis r intersects each component of the link $L_{2 n}$ in two points (see Figure 6a).

The Montesinos theorem assures that $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ is a two-fold covering of the 3 -sphere branched along the link constructed as follows.

Figure 6a: the strongly-invertible link $L_{2 n}$.

Figure 6 b : the closure of the 3 -string braid $\sigma_{1}^{p_{1} / q_{1}} \sigma_{2}^{r_{1} / s_{1}} \cdots \sigma_{1}^{p_{n} / q_{n}} \sigma_{2}^{r_{n} / s_{n}}$.

Let N_{i} be a tubular neighbourhood of the i-th component of the link $L_{2 n}$, for each $i=1,2, \ldots, 2 n$. If $\pi: \boldsymbol{S}^{3} \rightarrow \boldsymbol{S}^{3} / p$ is the canonical projection, then $\pi\left(N_{i}\right)$ is the trivial tangle which consists of a 3-ball B_{i} where $\pi\left(r \cap N_{i}\right)$ are two arcs. Let us denote by $B_{2 j-1}^{\prime}$ resp. $B_{2 j}^{\prime}$ the $\left(p_{j} / q_{j}\right)$-tangle resp. $\left(r_{j} / s_{j}\right)$-tangle for $j=1,2, \ldots, n$ with the underlying 3-ball B_{i}. The manifold $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ is the 2 -fold branched covering of

$$
\left(\bigcup_{i=1}^{2 n} B_{i}^{\prime}\right) \cup_{\pi}\left(S^{3} \backslash \bigcup_{i=1}^{2 n} N_{i}\right)
$$

where the branch set is a link formed by arcs of tangles B_{i}^{\prime} and $\pi\left(r \cap\left(S^{3} \backslash U_{i=1}^{2 n} N_{i}\right)\right)$. Using Reidemeister moves, one can easily see that the branch set is

$$
\sigma_{1}^{p_{1} / q_{1}} \sigma_{2}^{r_{1} / s_{1}} \cdots \sigma_{1}^{p_{n} / q_{n}} \sigma_{2}^{r_{n} / s_{n}}
$$

as shown in Figure 6b.
Corollary 8. If $p_{i} / q_{i}=p / q$ and $r_{i} / s_{i}=r / s$, for every $i=1,2 \ldots, n$, then the Takahashi manifold $M(p / q, r / s)=M(p / q, \ldots, p / q ; r / s, \ldots, r / s)$ is the twofold covering of the 3 -sphere branched over the link $\left(\sigma_{1}^{p / q} \sigma_{2}^{r / s}\right)^{n}$, and then n-fold cyclic covering of the 3 -sphere branched over the link $\left(\sigma_{1}^{p / q} \sigma_{2}^{r / s}\right)^{2}$.

In particular we obtain as corollaries some results proved in [14], [11], [10], and [7].

Corollary 9. If $p_{i} / q_{i}=k / l$ and $r_{i} / s_{i}=-k / l$, for every $i=1,2, \ldots, n$, then the Takahashi manifold $M(k / l,-k / l)=M(k / l, \ldots, k / l ;-k / l, \ldots,-k / l)$ is the Fractional Fibonacci manifold defined in [14], and so it is the two-fold covering of the 3-sphere branched over the link $\left(\sigma_{1}^{k / l} \sigma_{2}^{-k / l}\right)^{n}$ and the n-fold cyclic covering of the 3-sphere \boldsymbol{S}^{3} branched over the link $\left(\sigma_{1}^{k / l} \sigma_{2}^{-k / l}\right)^{2}$.

Some particular case of Corollary 9 was also treated in [17] and [18].
Corollary 10. If $p_{i} / q_{i}=1$ and $r_{i} / s_{i}=-1$, for every $i=1,2, \ldots, n$, then the Takahashi manifold $M(1,-1)=M(1, \ldots, 1 ;-1, \ldots,-1)$ is the Fibonacci manifold considered in [10], [7], [11], and so it is the two-fold covering of the 3-sphere branched over the link $\left(\sigma_{1} \sigma_{2}^{-1}\right)^{n}$ and the n-fold cyclic covering of the 3-sphere branched over the figure-eight knot $\left(\sigma_{1} \sigma_{2}^{-1}\right)^{2}$.

Now Theorems 1 and 7 directly imply Theorem 2, and the following corollaries (compare also with [5]).

Corollary 11. If $a_{i} / b_{i}=k / l$, for any $i=1,2, \ldots, n$, then the Takahashi manifold $M^{\prime}(k / l, \ldots, k / l)$ is the 2-fold covering of \boldsymbol{S}^{3} branched over the closed 3string braid $\left(\sigma_{1}^{k / l+2} \sigma_{2}\right)^{n}$, and the n-fold cyclic covering of S^{3} branched over the link $\left(\sigma_{1}^{k / l+2} \sigma_{2}\right)^{2}$.

Corollary 12. If $a_{i} / b_{i}=-1$, for any $i=1,2, \ldots, n$, then we have the Sieradski manifold $M^{\prime}(-1, \ldots,-1)$ which is the 2 -fold covering of S^{3} branched over the torus link $\left(\sigma_{1} \sigma_{2}\right)^{n}=K(n, 3)$ and the n-fold cyclic covering of \boldsymbol{S}^{3} branched over the trefoil knot $\left(\sigma_{1} \sigma_{2}\right)^{2}$.

We note that the 3 -string braid $\sigma_{1}^{p_{1}} \sigma_{2}^{r_{1}} \cdots \sigma_{1}^{p_{n}} \sigma_{2}^{r_{n}}$ is a 6-plat (see [2]) so it may be represented as a 3-bridge link. By Theorem 5 of [3] we obtain the following

Corollary 13. The manifold $M\left(p_{1}, \ldots, p_{n} ; r_{1}, \ldots, r_{n}\right)$ has Heegaard genus ≤ 2. In particular, the Fibonacci manifolds and the Sieradski manifolds have Heegaard genus ≤ 2.

4. Orbifolds

Let $L(1 / q, 1 / s, n)(2)$ resp. $L(1 / q, 1 / s, 2)(n)$ be the orbifold whose underlying space is S^{3} and whose singular set is the link $L(1 / q, 1 / s, n):=\sigma_{1}^{1 / q} \sigma_{2}^{1 / s} \cdots \sigma_{1}^{1 / q} \sigma_{2}^{1 / s}$

Figure 7a: the link $\mathscr{L}(1 / q, 1 / s)$.

Figure 7 b : $\mathscr{L}(1 / l,-1 / l)=\mathscr{L}^{1 / l}$.
(n times) resp. $L(1 / q, 1 / s, 2):=\sigma_{1}^{1 / q} \sigma_{2}^{1 / s} \sigma_{1}^{1 / q} \sigma_{2}^{1 / s}$ with branch index 2 resp. n. Let $\mathscr{L}(1 / q, 1 / s)(2, n)$ be the orbifold whose underlying space is the 3 -sphere and whose singular set is the two-component link $\mathscr{L}(1 / q, 1 / s)$ shown in Figure 7a, with branch indices 2 and n on its components (which are equivalent).

The following extends Theorem 3.2 of [14].

Theorem 14. The following diagram of cyclic branched coverings holds:

Proof. The statement follows from the following easily verifiable facts:

1) The manifold $M(1 / q, 1 / s)$ admits a $\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{n}\right)$-action which is induced by the natural $\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{n}\right)$-symmetry of the link $L_{2 n}$;
2) The quotient orbifolds $M(1 / q, 1 / s) /\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{n}\right), M(1 / q, 1 / s) / \boldsymbol{Z}_{2}$, and $M(1 / q, 1 / s) / \boldsymbol{Z}_{n}$ are equivalent to $\mathscr{L}(1 / q, 1 / s)(2, n), \quad L(1 / q, 1 / s, n)(2)$ and $L(1 / q, 1 / s, 2)(n)$, respectively.
Hence we have the following sequences of maps

$$
M(1 / q, 1 / s) \xrightarrow{2} L(1 / q, 1 / s, n)(2) \xrightarrow{n} \mathscr{L}(1 / q, 1 / s)(2, n)
$$

and

$$
M(1 / q, 1 / s) \xrightarrow{n} L(1 / q, 1 / s, 2)(n) \xrightarrow{2} \mathscr{L}(1 / q, 1 / s)(2, n)
$$

which induce the subgroup embeddings

$$
\Pi_{1}(M(1 / q, 1 / s)) \triangleleft \Pi_{1}(L(1 / q, 1 / s, n)(2)) \triangleleft \Pi_{1}(\mathscr{L}(1 / q, 1 / s)(2, n))
$$

and

$$
\Pi_{1}(M(1 / q, 1 / s)) \triangleleft \Pi_{1}(L(1 / q, 1 / s, 2)(n)) \triangleleft \Pi_{1}(\mathscr{L}(1 / q, 1 / s)(2, n)),
$$

where

$$
\begin{aligned}
& {\left[\Pi_{1}(\mathscr{L}(1 / q, 1 / s)(2, n)): \Pi_{1}(L(1 / q, 1 / s, n)(2))\right]} \\
& \quad=\left[\Pi_{1}(L(1 / q, 1 / s, 2)(n)): \Pi_{1}(M(1 / q, 1 / s))\right]=n
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\Pi_{1}(L(1 / q, 1 / s, n)(2)): \Pi_{1}(M(1 / q, 1 / s))\right]} \\
& \quad=\left[\Pi_{1}(\mathscr{L}(1 / q, 1 / s)(2, n)): \Pi_{1}(L(1 / q, 1 / s, 2)(n))\right]=2
\end{aligned}
$$

This completes the proof.

For $q=l$ and $s=-l$ we re-obtain Theorem 3.2 of [14] since $\mathscr{L}(1 / l,-1 / l)$ coincides with the link $\mathscr{L}^{1 / l}$ defined in [14], and shown in Figure 7 b for convenience.

References

[1] R. Benedetti-C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[2] J. S. Birman, Braids, Links and Mapping Class Groups, Ann. of Math. Studies 82, Princeton Univ. Press, Princeton, N.J., 1975.
[3] J. S. Birman-H. M. Hilden, Heegaard splittings of branched coverings of \boldsymbol{S}^{3}, Trans. Amer. Math. Soc. 213 (1975), 315-352.
[4] G. Burde-H. Zieschang, Knots, Walter de Gruyter Inc., Berlin-New York, 1985.
[5] A. Cavicchioli-F. Hegenbarth-A. C. Kim, On cyclic branched coverings of torus knots, to appear in J. of Geometry.
[6] A. Cavicchioli-F. Hegenbarth-D. Repovš, On manifold spines and cyclic presentations of groups, Knots 1995 Proceed., Warsaw, Poland (1996), to appear in Banach Center Publ.
[7] A. Cavicchioli-F. Spaggiari, The classification of 3-manifolds with spines related to Fibonacci groups, in "Algebraic Topology-Homotopy and Group Cohomology", Lect. Notes in Math., Springer Verlag 1509 (1992), 50-78.
[8] J. H. Conway, Advanced problem 5327, Amer. Math. Monthly 72 (1965), 915.
[9] W. D. Dunbar, Geometric orbifolds, Revista Mat. Univ. Complutense de Madrid 1 (1988), 6799.
[10] H. Helling-A. C. Kim-J. Mennicke, A geometric study of Fibonacci groups, SFB-343 Bielefeld, Diskrete Strukturen in der Mathematik, Preprint (1990).
[11] H. M. Hilden-M. T. Lozano-J. M. Montesinos, The arithmeticity of the figure eight knot orbifolds, in "Topology '90", Walter de Gruyter Ed., Berlin-New York (1992), 169183.
[12] C. Hog-Angeloni, Personal communication, 1995.
[13] A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, Basel-Boston-Berlin, 1996.
[14] A. C. Kim-A. Vesnin, The Fractional Fibonacci groups and manifolds, to appear.
[15] R. C. Kirby, The Topology of 4-Manifolds, Lect. Notes in Math., Springer-Verlag, 1374, 1989.
[16] R. C. Kirby, A calculus for framed links in S^{3}, Invent. Math. 45 (1978), 35-56.
[17] C. Maclachlan, Generalizations of Fibonacci numbers, groups and manifolds, in "Combinatorial and geometric group theory (Edinburgh, 1993)", London Math. Soc. Lect. Note Ser. 204 (1995), Cambridge Univ. Press, Cambridge, U.K., 233-238.
[18] C. Maclachlan-A. W. Reid, Generalized Fibonacci manifolds, Transform. Groups 2 (1997), 165-182.
[19] J. M. Montesinos, Surgery on links and double branched covers of \boldsymbol{S}^{3}, in "Knots, Groups and 3-Manifolds", L. P. Neuwirth Ed., Princeton Univ. Press, Princeton, (1975), 227259.
[20] R. P. Osborne-R. S. Stevens, Group presentations corresponding to spines of 3-manifolds. II, Trans. Amer. Math. Soc. 234 (1977), 213-243.
[21] D. Rolfsen, Knots and Links, Math. Lect. Series 7, Publish or Perish Inc., Berkley, 1976.
[22] A. J. Sieradski, Combinatorial squashings, 3-manifolds and the third homotopy of groups, Invent. Math. 84 (1986), 121-139.
[23] M. Takahashi, On the presentations of the fundamental groups of 3-manifolds, Tsukuba J. Math. 13 (1989), 175-189.
[24] W. P. Thurston, The geometry and topology of 3-manifolds, Lect. Notes, Princeton University, N.J., 1980.

Dipartimento di Matematica, Università di Modena, Via Campi 213/B, 41100 Modena, Italy
E-mail of the correspondent author: ruini@unimo.it

[^0]: 1991 Mathematics Subject Classification. 57N10, 57R65, 57M12, 20 F36.
 Key words and phrases. 3-Manifolds, Dehn surgery, Group presentations, Branched coverings, Braids, Orbifolds, RR-systems.
 Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research Council) of Italy and partially supported by the Ministero per la Ricerca Scientifica e Tecnologica of Italy within the project "Classificazione e Proprietà geometriche delle Varietà Reali e Complesse". Received September 22, 1997
 Revised May 7, 1998

