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THE FIRST VARIATION FORMULA FOR

WEYL STRUCTURES

By

Toshiyuki Ichiyama

Abstract. The purpose of this paper is to determine explicitly the

Euler Lagrange equations of our conformal gauge invariant func-

tional on the space of all Weyl structures.

1. Introduction

The geometry of Weyl structures has its classical roots in the work of H.

Weyl and is now a very active research area, having close connections to

conformal geometry (especially Einstein-Weyl geometry), contact geometry, gauge

theory and gravitational theory. In recent years, Alexandrov and Ivanov [1]

generalized the vanishing theorem of Bochner type on compact manifolds ad-

mitting a Weyl structure whose Ricci tensor satisfies certain positively condition.

Katagiri [16] showed that for a conformal connection, the symmetric part of the

Ricci curvature determines the full Ricci curvature. Calderbank [7] studied the

Jones-Tod correspondence between self-dual four-manifolds with symmetry and

Einstein-Weyl three-manifolds with an abelian monopole using Weyl derivatives,

Weyl-Lie derivatives and conformal submersions. And Kamada [15] showed that

a compact almost Hermitian-Einstein-Weyl four-manifold with non-negative

conformal scalar curvature must be Hermitian-Einstein-Weyl. Torres del Castillo

and Pérez-Pérez [23] studied that the coupled gravitational and neutrino field

perturbations of the exact solution of the Einstein-Weyl equations are determined

by a set of four first-order ordinary di¤erential equations determines the con-

servation factors between a gravitational and neutrino waves. Since Weyl ge-

ometry and related fields are so rich, we consider some variational problem on

the space W of all Weyl structures as follows.
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In [10] we introduced a conformal gauge invariant functional for Weyl

structures and studied some properties about it. The purpose of this paper is

to determine explicitly the Euler-Lagrange equations of our conformal gauge

invariant functional on W (cf. Theorem 2.2). Especially, in dimension four, our

Euler-Lagrange equations have very simple forms which are the mixtures of a

Yang-Mills equation for a Weyl connection and a gravitational field equation

characterized by two symmetric 2-tensor fields �RRD and g (Corollary 2.3). This

study leads naturally to the notion of Yang-Mills theory in a‰ne geometry,

which is studied in [8] related to the Einstein-Weyl structures.

2. Statement of Main Results

In this paper, we always assume that M is an n-dimensional compact

connected orientable Cy manifold and nb 4. The Weyl structure ðg;DÞ on M

is described by a pair ðg;oÞ A M� A1ðMÞ such that Dg ¼ on g. A manifold

equipped with a Weyl structure is called a Weyl manifold. Let M be the space of

all Riemannian metrics on M, C, the space of all torsion-free a‰ne connections

on M and W, the space of all Weyl structures on M. We consider the following

conformal gauge invariant functional

Cn : M� C ! R; ðg;DÞ 7!
ð
M

jRDjn=2
g vg ¼

ð
M

hRD;RDin=4
g vg;

where RD is the curvature tensor of a Weyl connection D, defined by

RDðX ;Y ÞZ :¼ DXDYZ �DYDXZ �D½X ;Y �Z, j � jg is the norm induced by g and

vg is the volume form with respect to g.

Here, we recall that there exists a natural isomorphism from M� A1ðMÞ to

W (cf. [10, Lemma 2.4]). Namely, for any ðg;oÞ A M� A1ðMÞ, using the Levi-

Civita connection ‘, we can define the corresponding Weyl connection D by

DXY ¼ ‘XY þ 1

2
fgðX ;YÞo] � oðY ÞX � oðXÞYg;

where o] denotes the dual vector field of a 1-form o A A1ðMÞ with respect to g.

From this identification, we can study the restricted functional on the space of all

Weyl structures W, denoted by

CW
n :¼ CnjW : WGM� A1ðMÞ ! R:

Then, we considered the following variational problem for Weyl structures

(cf. [10]). Fix ðg;oÞ A M� A1ðMÞGW and consider a smooth deformation of

Toshiyuki Ichiyama172



Riemannian metrics gt A M and 1-forms ot A A1ðMÞ such that g0 ¼ g and

o0 ¼ o.

In this situation, we proved the following theorem.

Theorem 2.1 (Theorem 3.7 in [10]). Let ðM; g;DÞ be an n-dimensional

compact Weyl manifold. Then, a couple ðg;DÞ in W is a critical point of the

functional CW
n : W ! R if and only if it satisfies

8>>>>>>>>><
>>>>>>>>>:

2jRDjðn�4Þ=2
g

�RRD � 1

n
jRDj2gg

� �
� ðð‘� d‘Þ� þ oÞðdDðjRDjðn�4Þ=2

g RDÞÞ

¼ 0; ð2:1Þ

hh] n g� Idn h� hn Id; dDðjRDjðn�4Þ=2
g RDÞig

¼ 0 for any h A A1ðMÞ; ð2:2Þ

where �RRDðX ;YÞ :¼
Pn

i; j;k¼1 gðRDðX ; eiÞej; ekÞgðRDðY ; eiÞej; ekÞ; feign
i¼1 is ortho-

normal local frame field with respect to g; d‘ denotes the Codazzi operator (cf.

Definition 3.3), h :¼ ðd=dtÞjt¼0ot A A1ðMÞ, h] is the dual vector field of a 1-form h

with respect to g and Id is the identity transformation on GðTMÞ.

Here, we use a standard notation of the codi¤erential dD :¼ ðdDÞ� instead

of our notation ~DD� ¼ ðdDÞ� in [10], where ~DD :¼ dD : A1ðEndðTMÞÞ !
A2ðEndðTMÞÞ is the exterior derivative induced by a connection D and the

codi¤erential dD is defined as follows.

dD : A2ðEndðTMÞÞ ! A1ðEndðTMÞÞ; P 7! dDP;

ðdDPÞðXÞY :¼ �
Xn
i¼1

ðDeiPÞðei;X ÞY ;

where D is the conjugate connection uniquely determined by D as follows (cf. [8]):

XgðY ;ZÞ ¼ gðDXY ;ZÞ þ gðY ;DXZÞ;

for any Cy vector fields X ;Y ;Z on M.

Our main theorem is the following. Notation used here will be explained in

the next section.

Theorem 2.2 (cf. Theorem 4.4). Let ðM; g;DÞ be an n-dimensional compact

Weyl manifold. Then, a couple ðg;DÞ in W is a critical point of the functional
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CW
n : W ! R if and only if it satisfies

2jRDjðn�4Þ=2
g

�RRD � 1

n
jRDj2gg

� �
� C1

3 ðdivg d
DQDÞ þ C1

2 ð‘dDQDÞ

þ C 1
3 ð‘d

DQDÞ � oðdDQDÞ ¼ 0;

C1
2 ðdDQDÞ � C1

2 ððdDQDÞTÞ � ðC2
3 ðdDQDð�ÞÞÞ] ¼ 0;

8>>>>>><
>>>>>>:

where QD :¼ jRDjðn�4Þ=2
g RD A A2ðEndðTMÞÞ, Ci

j denotes the contraction of the i-th

index and the j-th index for a (1, 2)-typed tensor field and aT is the transposed map

of a A A1ðEndðTMÞÞ with respect to g (cf. Definition 3.2).

Especially, in dimension four, we have the following simple form.

Corollary 2.3 (cf. Corollary 4.5). Let ðM; g;DÞ be a four-dimensional

compact Weyl manifold. Then, a couple ðg;DÞ in W is a critical point of the

functional CW
4 : W ! R if and only if it satisfies

2 �RRD � 1

4
jRDj2gg

� �
� C1

3 ðdivg d
DRDÞ þ C1

2 ð‘dDRDÞ

þ C1
3 ð‘d

DRDÞ � oðdDRDÞ ¼ 0;

C 1
2 ðdDRDÞ � C1

2 ððdDRDÞTÞ � ðC2
3 ðdDRDð�ÞÞÞ] ¼ 0:

8>>>>>><
>>>>>>:

In dimension four, our conformal gauge invariant functional CW
4 : W ! R

coincides with the functional introduced by Pedersen et al. [19]. In their paper,

they treated about the relation between Einstein-Weyl structures and topological

invariants. But, they did not point out the Euler-Lagrange equations explicitly.

Our result in dimension four reveals them completely. The obtained Euler-

Lagrange equations are the mixtures of a Yang-Mills equation of a Weyl

connection D with respect to g and a gravitational field equation characterized by

symmetric 2-tensor fields �RRD (field strength) and g (gravity). In arbitrary di-

mension, the corresponding Euler-Lagrange equations are regarded as the con-

formal generalization of a four dimensional case.

3. Preliminaries

In this section, we give all materials needed later. Let ðM; gÞ be a smooth,

connected, orientable, compact Riemannian manifold without boundary

ðdim Mb 4Þ, M, the space of all Riemannian metrics on M, C, the space of all
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torsion-free a‰ne connections on M and W, the space of all Weyl structures on

M. A couple ðg;DÞ A M� C is a Weyl structure if there exists a 1-form

o A A1ðMÞ such that Dg ¼ on g, that is, for X ;Y ;Z A XðMÞ,

ðDXgÞðY ;ZÞ ¼ oðXÞgðY ;ZÞ:

In some Lemmas, we use a global inner product on M denoted by ð� ; �Þ, that

is, ð� ; �Þ :¼
Ð
M
h� ; �igvg.

For an endomorphism f A GðEndðTMÞÞ, we can uniquely determine the

ð0; 2Þ-tensor field f
�
A GðT �MnT �MÞ using a Riemannian metric g as follows

(cf. [3, p. 22]).

f
�
ðX ;Y Þ :¼ hX ; f ðY Þig; X ;Y A XðMÞ:

Here and in the sequel, we will identify an endomorphism f with the corre-

sponding ð0; 2Þ-tensor field f
�

and use the same notation f for both of them.

For a A A1ðEndðTMÞÞ and X A XðMÞ, ðaðXÞÞT A GðEndðTMÞÞ means the

transposed map of aðXÞ A GðEndðTMÞÞ with respect to g, namely, for

Y ;Z A XðMÞ,

gððaðX ÞÞTY ;ZÞ ¼ gðY ; aðX ÞZÞ:

Then, we can write the equation (2.2) of Theorem 2.1 in the following form.

Proposition 3.1. For a ¼ dDðjRDjðn�4Þ=2
g RDÞ A A1ðEndðTMÞÞ, the equation

(2.2) is equivalent to the following equation:

Xn
i¼1

aðeiÞei �
Xn
i¼1

ðaðeiÞÞTðeiÞ �
Xn
i; j¼1

hej ; aðeiÞejigei ¼ 0: ð3:1Þ

Proof. Since h] ¼
Pn

i¼1 hðeiÞei A XðMÞ, we have

hh] n g� Idn h� hn Id; aig

¼
X
i; j¼1

hgðei; ejÞh] � hðejÞei � hðeiÞej; aðeiÞejig

¼
Xn
i¼1

hh]; aðeiÞeiig �
Xn
i¼1

hei; aðeiÞh]ig �
Xn
i¼1

hei; aðh]Þeiig

¼
Xn
i¼1

hh]; aðeiÞeiig �
Xn
i¼1

hh]; ðaðeiÞÞTeiig �
Xn
i¼1

hei; aðh]Þeiig:
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Here, we note that

Xn
i¼1

hei; aðh]Þeiig ¼
Xn
i; j¼1

hei; aðhðejÞejÞeiig ¼
Xn
i; j¼1

hðejÞhei; aðejÞeiig: ð3:2Þ

On the other hand, we also have the following equation.

h];
Xn
i; j¼1

hej; aðeiÞejigei

* +
g

¼
Xn
i; j¼1

hei; aðeiÞejighh]; eiig ¼
Xn
i; j¼1

hðeiÞhej; aðeiÞejig :

ð3:3Þ
By (3.2) and (3.3), we have

Xn
i¼1

hei; aðh]Þeiig ¼ h];
Xn
i; j¼1

hej; aðeiÞejigei

* +
g

;

which completes the proof. r

In order to make the equation (2.1) of Theorem 2.1 in the final form, we

recall the covariant derivative of an EndðTMÞ-valued 1-form. Let a be an

EndðTMÞ-valued 1-form and ‘ the Levi-Civita connection of g. ð‘XaÞðYÞ A
GðEndðTMÞÞ is defined by

ð‘XaÞðYÞZ :¼ ‘X ðaðY ÞZÞ � að‘XY ÞZ � aðYÞ‘XZ: ð3:4Þ

Then, we have tensorial properties of ‘a as follows.

For a A A1ðEndðTMÞÞ, a map ‘a : ðX ;Y ;ZÞ 7! ð‘XaÞðYÞZ is a tensor field.

Namely, for X ;Y ;Z A XðMÞ and f A CyðMÞ, we have

ð‘fXaÞðY ÞZ ¼ ð‘XaÞð fY ÞZ ¼ ð‘XaÞðY Þ fZ ¼ f ð‘XaÞðYÞZ:

To state our main results, we define the following contractions for ð1; 2Þ-
typed tensors a;‘Xa A A1ðEndðTMÞÞ.

Definition 3.2. We define the contraction Ci
j by, for a A A1ðEndðTMÞÞ,

1. C 1
2 ðaÞ :¼

Pn
i¼1

aðeiÞei A XðMÞ,

2. C 1
2 ðaTÞ :¼

Pn
i¼1

ðaðeiÞÞTei A XðMÞ,

3. C 1
2 ð‘aÞZ :¼

Pn
i¼1

ð‘eiaÞðeiÞZ ¼
Pn
i¼1

f‘eiðaðeiÞZÞ � að‘ei eiÞZ � aðeiÞ‘eiZg AXðMÞ,

4. C 1
3 ð‘aÞY :¼

Pn
i¼1

ð‘eiaÞðY Þei ¼
Pn
i¼1

f‘eiðaðY ÞeiÞ � að‘eiY Þei � aðYÞ‘ei eig A XðMÞ.
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These definitions are independent of the choice of basis feign
i¼1. Here,

aT A A1ðEndðTMÞÞ is defined by

aT : XðMÞ ! EndðTMÞ; X 7! aT ðXÞ :¼ ðaðXÞÞT :

Then, for f A CyðMÞ, we have aTð fXÞ ¼ f aT ðX Þ. So, the contraction

C 1
2 ðaTÞ A XðMÞ is well-defined.

To prove Proposition 4.1, using the contraction of a A A1ðEndðTMÞÞ we

prepare the following 1-form C2
3 ðað�ÞÞ A A1ðMÞ defined by

X 7! C2
3 ðaðX ÞÞ :¼

Xn
j¼1

haðXÞej; ejig; ð3:5Þ

which is independent of the choice of basis feign
i¼1.

Next, we express the formal adjoint of ‘� d‘ with respect to g using the

Codazzi operator and its representation by the Levi-Civita connection of g. Here,

we use the same notation in our paper [10]. This operator is significant for our

studies and its special properties lead to our main theorem. Now, we recall the

Codazzi operator d‘ with respect to the Levi-Civita connection ‘ (cf. [5, p. 20],

[21, p. 103], [10, p. 557, Definition 3.3]).

Definition 3.3. For any symmetric 2-tensor field h A S2ðMÞ, we define the

Codazzi operator d‘ as

ðd‘hÞðX ;Y ;ZÞ :¼ ð‘XhÞðY ;ZÞ � ð‘YhÞðX ;ZÞ:

For simplicity, we set A :¼ ‘� d‘. Then, for any h A S2ðMÞ, we have

ðAhÞðX ;Y ;ZÞ ¼ �ð‘XhÞðY ;ZÞ þ ð‘YhÞðX ;ZÞ þ ð‘ZhÞðX ;YÞ:

Here, for a ð0; 3Þ-tensor Ah, we introduce three di¤erential operators as follows.

ðA1hÞðX ;Y ;ZÞ :¼ �ð‘XhÞðY ;ZÞ;
ðA2hÞðX ;Y ;ZÞ :¼ ð‘YhÞðX ;ZÞ;
ðA3hÞðX ;Y ;ZÞ :¼ ð‘ZhÞðX ;YÞ:

8><
>:

We notice the decomposition A ¼ A1 þ A2 þ A3 and have the following

formula.

Lemma 3.4. For any 3-tensor field b A GðT �MnT �MnT �MÞ, we have
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(1) ðA�
1bÞðX ;YÞ ¼

Pn
i¼1

ð‘eibÞðei;X ;Y Þ,

(2) ðA�
2bÞðX ;YÞ ¼ �

Pn
i¼1

ð‘eibÞðX ; ei;Y Þ,

(3) ðA�
3bÞðX ;YÞ ¼ �

Pn
i¼1

ð‘eibÞðX ;Y ; eiÞ,

where A�
1 , A�

2 and A�
3 are the formal adjoints of A1, A2 and A3 with respect to g,

respectively.

Proof. Since the proofs of the properties (2) and (3) are similar to (1), we

prove only the property (1). For any 3-tensor field b A GðT �MnT �MnT �MÞ,
we set

ðA�
1bÞðX ;Y Þ :¼

Xn
i¼1

ð‘eibÞðei;X ;YÞ: ð3:6Þ

Then, we will show the following equation.

ðA1h; bÞ ¼ ðh;A�
1bÞ;

where ð� ; �Þ denotes a global inner product on M.

For this purpose, we calculate

hA1h; big � hh;A�
1big

¼ �
Xn

i; j;k¼1

ð‘ei hÞðej; ekÞbðei; ej ; ekÞ �
Xn
i; j¼1

hðei; ejÞ
Xn
k¼1

ð‘ekbÞðek; ei; ejÞ
 !

¼ �
Xn

i; j;k¼1

fðeiðhðej; ekÞÞ � hð‘ei ej; ekÞ � hðej ;‘ei ekÞÞbðei; ej; ekÞ

þ hðei; ejÞðekðbðek; ei; ejÞÞ � bð‘ek ek; ei; ejÞ

� bðek;‘ek ei; ejÞ � bðek; ei;‘ek ejÞÞg: ð3:7Þ

By ‘ei ej ¼
Pn

l¼1 gð‘ei ej ; elÞel , we have

hð‘ei ej; ekÞ ¼
Xn
l¼1

gð‘ei ej; elÞhðel ; ekÞ ¼ �
Xn
l¼1

gðej;‘ei elÞhðel ; ekÞ: ð3:8Þ

By (3.8), we have
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Xn
i; j;k¼1

hð‘ei ej; ekÞbðei; ej ; ekÞ ¼ �
Xn

i;k; l¼1

hðel ; ekÞb ei;
Xn
j¼1

gðej;‘ei elÞej; ek

 !

¼ �
Xn

i; j;k¼1

hðei; ejÞbðek;‘ek ei; ejÞ: ð3:9Þ

Similarly, we have

Xn
i; j;k¼1

hðej;‘ei ekÞbðei; ej; ekÞ ¼ �
Xn

i; j;k¼1

hðei; ejÞbðek; ei;‘ek ejÞ: ð3:10Þ

Here, we define a 1-form k A A1ðMÞ by the contraction of a symmetric 2-tensor

field h A S2ðMÞ and a 3-tensor field b A GðT �MnT �MnT �MÞ, namely,

kðXÞ :¼
Xn
i; j¼1

hðei; ejÞbðX ; ei; ejÞ:

Then, we have

divg k
] ¼

Xn
k¼1

gðek;‘ekk
]Þ

¼
Xn
k¼1

ek
Xn
i; j¼1

hðei; ejÞbðek; ei; ejÞ
 !

�
Xn
i; j¼1

hðei; ejÞbð‘ek ek; ei; ejÞ
( )

¼
Xn

i; j;k¼1

eiðhðej; ekÞÞbðei; ej; ekÞ þ
Xn

i; j;k¼1

hðei; ejÞekðbðek; ei; ejÞÞ

�
Xn

i; j;k¼1

hðei; ejÞbð‘ek ek; ei; ejÞ: ð3:11Þ

By (3.6), (3.7) and (3.11), we have

hA1h; big � hh;A�
1big ¼ �divg k

]: ð3:12Þ

Integrating on M the both hand sides of (3.12) and applying Green’s theorem, we

have

ðA1h; bÞ ¼ ðh;A�
1bÞ;

which completes the proof. r

From Lemma 3.4 and the decomposition of A, we have the following

formula.
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Proposition 3.5. For any 3-tensor field b A GðT �MnT �MnT �MÞ, we

have

ðA�bÞðX ;YÞ ¼
Xn
i¼1

fð‘eibÞðei;X ;Y Þ � ð‘eibÞðX ; ei;YÞ � ð‘eibÞðX ;Y ; eiÞg;

where A� is the formal adjoint of the di¤erential operator A :¼ ‘� d‘ with respect

to g.

In order to apply Proposition 3.5 to a ¼ dDðjRDjðn�4Þ=2
g RDÞ A A1ðEndðTMÞÞ,

we need [10, Lemma 3.4]. Then, Ah is given by

ðAhÞðX ;Y ;ZÞ ¼ ðð‘� d‘ÞhÞðX ;Y ;ZÞ ¼ 2gðX ; gYZÞ;

where g :¼ ðd=dtÞjt¼0‘
gt A A1ðEndðTMÞÞ and ‘gt is the Levi-Civita connection

corresponding to a smooth deformation of Riemannian metric gt A M.

For a A A1ðEndðTMÞÞ, we can set

bðX ;Y ;ZÞ ¼ gðX ; aðYÞZÞ: ð3:13Þ

Here, we introduce the divergence of an EndðTMÞ-valued 1-form to express

the formal adjoint of the Codazzi operator.

Definition 3.6. For a A A1ðEndðTMÞÞ, divg a A A1ðEndðTMÞÞ, the diver-

gence of a with respect to g is defined by

ðdivg aÞðXÞY :¼
Xn
i¼1

gðei; ð‘eiaÞðXÞYÞ: ð3:14Þ

Proposition 3.7. Let b A GðT �MnT �MnT �MÞ be a 3-tensor field and

a A A1ðEndðTMÞÞ an EndðTMÞ-valued 1-form. Then, we have

ðð‘� d‘Þ�bÞðX ;YÞ ¼ ðdivg aÞðX ÞY �
Xn
i¼1

gðX ;‘eiðaðeiÞY þ aðYÞeiÞÞ; ð3:15Þ

where a ¼ dDðjRDjðn�4Þ=2
g RDÞ and bðX ;Y ;ZÞ ¼ gðX ; aðY ÞZÞ.

Proof. We set A :¼ ‘� d‘. From Proposition 3.5, we have

ðAh; bÞ ¼ ðh;A�bÞ

¼
Xn

i; j;k¼1

ð
M

hhðej; ekÞ; ð‘eibÞðei; ej; ekÞ � ð‘eibÞðej; ei; ekÞ

� ð‘eibÞðej; ek; eiÞigvg: ð3:16Þ
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From the definition of a covariant derivative, we have the following 3 equations.

ð‘eibÞðei;X ;Y Þ ¼ eiðgðei; aðXÞYÞÞ � gðei; að‘eiXÞYÞ � gðei; aðXÞ‘eiY Þ

¼ gðei;‘eiðaðX ÞYÞÞ � gðei; að‘eiXÞYÞ � gðei; aðX Þ‘eiY Þ

¼ gðei;‘eiðaðX ÞYÞ � að‘eiX ÞY � aðXÞ‘eiY Þ

¼ gðei; ð‘eiaÞðX ÞYÞ;

ð‘eibÞðX ; ei;Y Þ ¼ eiðgðX ; aðeiÞYÞÞ � gð‘eiX ; aðeiÞYÞ � gðX ; aðeiÞ‘eiY Þ

¼ gðX ;‘eiðaðeiÞYÞÞ � gðX ; aðeiÞ‘eiYÞ;

ð‘eibÞðX ;Y ; eiÞ ¼ eiðgðX ; aðY ÞeiÞÞ � gð‘eiX ; aðYÞeiÞ � gðX ; að‘eiYÞeiÞ

¼ gðX ;‘eiðaðY ÞeiÞÞ � gðX ; að‘eiY ÞeiÞ:

ð3:17Þ

From (3.14), (3.16) and (3.17), we have

ðAh; bÞ ¼ ðh;A�bÞ

¼
Xn
j;k¼1

ð
M

hhðej; ekÞ; ðdivg aÞðejÞekigvg

�
Xn
j;k¼1

ð
M

hðej; ekÞ; g ej;
Xn
i¼1

‘eiðaðeiÞekÞ
 !

þ g ej ;
Xn
i¼1

‘eiðaðekÞeiÞ
 !* +

g

vg:

Thus, we have

A�bðX ;Y Þ ¼ ðdivg aÞðXÞY � g X ;
Xn
i¼1

‘eiðaðeiÞY þ aðYÞeiÞ
 !

;

which completes the proof. r

Here, we remark that the symmetric 2-tensor oðdDðjRDjðn�4Þ=2
g RDÞÞ is ex-

pressed as follows.

oðaÞðX ;YÞ ¼
Xn
i¼1

oðeiÞgðei; aðX ÞYÞ ¼ gðo]; aðXÞY Þ ð3:18Þ

where a ¼ dDðjRDjðn�4Þ=2
g RDÞ A A1ðEndðTMÞÞ and o A A1ðMÞ denotes the 1-form

corresponding to a Weyl connection D. Thus, (3.18) means the following sym-

metric 2-tensor:

oðdDðjRDjðn�4Þ=2
g RDÞÞðX ;YÞ ¼ gðo]; dDðjRDjðn�4Þ=2

g RDÞðX ÞYÞ: ð3:19Þ

The first variation formula for Weyl structures 181



4. Proofs

We first give the final form of the equation (2.2) in Theorem 2.1 as follows.

Proposition 4.1. For QD :¼ jRDjðn�4Þ=2
g RD A A2ðEndðTMÞÞ, the equation

(3.1) is equivalent to the following equation:

C 1
2 ðd

DQDÞ � C1
2 ððd

DQDÞT Þ � ðC2
3 ðd

DQDð�ÞÞÞ] ¼ 0:

Proof. For a ¼ dDQD and (3.5), the dual vector field of a 1-form

C 2
3 ðað�ÞÞ A A1ðMÞ is given by

ðC2
3 ðað�ÞÞÞ

] ¼
Xn
i¼1

C 2
3 ðaðeiÞÞei ¼

Xn
i; j¼1

haðeiÞej; ejigei: ð4:1Þ

From Proposition 3.1, Definition 3.2 and the equation (4.1), we obtain the final

form of the equation (2.2) of Theorem 2.1. r

We can make Proposition 3.7 in the following form.

Lemma 4.2. For any a‰ne connection D, we have

ð‘� d‘Þ�bðX ;YÞ ¼ g X ;
Xn
j¼1

ðdivg aÞðejÞYÞej �
Xn
i¼1

‘eiðaðeiÞY þ aðYÞeiÞ
 !

;

where a ¼ dDðjRDjðn�4Þ=2
g RDÞ A A1ðEndðTMÞÞ and bðX ;Y ;ZÞ ¼ gðX ; aðY ÞZÞ.

Proof. We set m :¼ ð‘� d‘Þ�b A GðT �MnT �MÞ and define y A

GðEndðTMÞÞ by

mðX ;YÞ ¼ gðX ; yðYÞÞ: ð4:2Þ

Then, we have

yðY Þ ¼
Xn
j¼1

gðej; yðYÞÞej ¼
Xn
j¼1

mðej;YÞej: ð4:3Þ

From Proposition 3.7, we have

mðej;YÞ ¼ ðð‘� d‘Þ�bÞðej;Y Þ

¼ ðdivg aÞðejÞY �
Xn
i¼1

gðej;‘eiðaðeiÞY þ aðYÞeiÞÞ: ð4:4Þ
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By (4.3) and (4.4), we have

yðYÞ ¼
Xn
j¼1

ðdivg aÞðejÞY �
Xn
i¼1

gðej ;‘eiðaðeiÞY þ aðY ÞeiÞÞ
( )

ej

¼
Xn
j¼1

ððdivg aÞðejÞYÞej �
Xn
i¼1

‘eiðaðeiÞY þ aðYÞeiÞ: ð4:5Þ

By (4.2) and (4.5), we have

ðð‘� d‘Þ�bÞðX ;YÞ ¼ gðX ; yðYÞÞ

¼ g X ;
Xn
j¼1

ððdivg aÞðejÞY Þej �
Xn
i¼1

‘eiðaðeiÞY þ aðY ÞeiÞ
 !

; ð4:6Þ

which completes the proof. r

From Lemma 4.2, we have

Proposition 4.3.

ð‘� d‘Þ�bðX ;Y Þ ¼ hX ;C 1
3 ðdivg aÞYig � hX ;C1

2 ð‘aÞYig � hX ;C 1
3 ð‘aÞYi;

ð4:7Þ

where a ¼ dDðjRDjðn�4Þ=2
g RDÞ A A1ðEndðTMÞÞ and bðX ;Y ;ZÞ ¼ gðX ; aðY ÞZÞ.

Proof. Both sides of (4.7) are a ð0; 2Þ-tensor field, so taking any point

x0 A M and the following orthonormal local frame field feign
i¼1 on its neigh-

borhood U, it su‰ces to show the equation (4.7) holds at x0 A M. For given any

tangent vectors X ;Y A Tx0
M, we use the same notations X ;Y for vector fields on

a neighborhood U of x0. Take X ;Y A XðUÞ such that ‘WX ¼ ‘WY ¼ 0 for any

vector field W A XðUÞ at x0. Moreover, we take an orthonormal local frame field

feign
i¼1 satisfying ‘ei ej ¼ 0 at x0 A M.

Then, from Lemma 4.2 we have the following equation at x0 A M.

ð‘� d‘Þ�bðX ;Y Þ ¼ gðX ;C1
3 ðdivg aÞYÞ

� g X ;
Xn
i¼1

‘eiðaðeiÞY Þ
 !

� g X ;
Xn
i¼1

‘eiðaðYÞeiÞ
 !

: ð4:8Þ
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By (3.4), it follows that, at x0 A M,

‘eiðaðeiÞY Þ ¼ ð‘eiaÞðeiÞY þ að‘ei eiÞY þ aðeiÞ‘eiY ¼ ð‘eiaÞðeiÞY ;

‘eiðaðYÞeiÞ ¼ ð‘eiaÞðY Þei þ að‘eiY Þei þ aðYÞ‘ei ei ¼ ð‘eiaÞðYÞei;
ð4:9Þ

since ‘ei ei ¼ ‘eiY ¼ 0 at x0.

By (4.8) and (4.9), we obtain at x0,

ð‘� d‘Þ�bðX ;Y Þ

¼ gðX ;C 1
3 ðdivg aÞY Þ � g X ;

Xn
i¼1

ð‘eiaÞðeiÞY
 !

� g X ;
Xn
i¼1

ð‘eiaÞðYÞei

 !

¼ hX ;C1
3 ðdivg aÞYig � hX ;C 1

2 ð‘aÞYig � hX ;C1
3 ð‘aÞYig; ð4:10Þ

which completes the proof. r

Thus, we obtain the following results. Here, QD :¼ jRDjðn�4Þ=2
g RD A

A2ðEndðTMÞÞ.

Theorem 4.4. Let ðM; g;DÞ be an n-dimensional compact Weyl manifold.

Then, a couple ðg;DÞ in W is a critical point of the functional CW
n : W ! R if and

only if it satisfies

2jRDjðn�4Þ=2
g

�RRD � 1

n
jRDj2gg

� �
� C1

3 ðdivg d
DQDÞ þ C1

2 ð‘d
DQDÞ

þ C 1
3 ð‘dDQDÞ � oðdDQDÞ ¼ 0;

C1
2 ðd

DQDÞ � C1
2 ððd

DQDÞTÞ � ðC2
3 ðd

DQDð�ÞÞÞ] ¼ 0:

8>>>>>><
>>>>>>:

Proof. Take a ¼ dDðjRDjðn�4Þ=2
g RDÞ A A1ðEndðTMÞÞ and bðX ;Y ;ZÞ ¼

gðX ; aðYÞZÞ. Applying Propositions 3.1 and 4.1 to the equation (2.2) of Theorem

2.1, we have the second equation of Theorem 4.4.

Applying Proposition 4.3 to the equation (2.1) of Theorem 2.1 and iden-

tifying an endomorphism with the corresponding ð0; 2Þ-tensor field, we obtain the

first equation of Theorem 4.4.

Hence, we prove our main theorem. r

Especially, in dimension four, we have the following simple form.
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Corollary 4.5. Let ðM; g;DÞ be a four-dimensional compact Weyl manifold.

Then, a couple ðg;DÞ in W is a critical point of the functional CW
4 : W ! R if and

only if it satisfies

2 �RRD � 1

4
jRDj2gg

� �
� C1

3 ðdivg d
DRDÞ þ C1

2 ð‘d
DRDÞ

þ C1
3 ð‘dDRDÞ � oðdDRDÞ ¼ 0;

C 1
2 ðd

DRDÞ � C1
2 ððd

DRDÞTÞ � ðC2
3 ðd

DRDð�ÞÞÞ] ¼ 0:

8>>>>>><
>>>>>>:

To explain the meaning of our results, we recall the following property of

Einstein metrics (cf. [4, p. 134, 4.72]).

Proposition 4.6. Let ‘ be the Levi-Civita connection and SRjM1
, a quadratic

functional defined by SRðgÞ :¼
Ð
M
jR‘j2gvg restricted to M1 :¼ fg A M;

Ð
M
vg ¼ 1g.

An Einstein metric g (or more generally, a Riemannian metric with parallel

Ricci tensor) is critical for the quadratic functional SRjM1
if and only if the cur-

vature R‘ of ‘ satisfies

�RR‘ � 1

n
jR‘j2gg ¼ 0: ð4:11Þ

In dimension four, if RD is a Yang-Mills field, namely, dDRD ¼ 0 in our

sense (see [8]), then we have

Corollary 4.7. Let ðM; g;DÞ be a four-dimensional compact Weyl manifold

and RD a Yang-Mills field determined by a torsion-free a‰ne connection D. Then,

a couple ðg;DÞ A W is critical for our conformal gauge invariant functional

CW
4 : W ! R if and only if it satisfies

�RRD � 1

4
jRDj2gg ¼ 0: ð4:12Þ

Due to this result, in dimension four, the equation (4.12) can be regarded

as a conformal generalization of a gravitational field equation characterized by

the equation (4.11). Moreover, we would like to study the following system of

equations on a four dimensional compact Weyl manifold;

dDRD ¼ 0;

�RRD � 1

4
jRDj2gg ¼ 0:

8><
>: ð4:13Þ
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According to [10, p. 560, Example 4.1], we have

Example 4.8. Let ðM; gÞ be a four-dimensional Einstein manifold and ‘ the

Levi-Civita connection of g. Then, ðg;‘Þ A W is a critical point of the functional

CW
4 : W ! R and a solution of the system of equations (4.13).

In the case of dimension nb 4, we have the following [10, p. 560, Example

4.2].

Example 4.9. Let ðM; gÞ be an n-dimensional isotropy irreducible homoge-

neous space with its canonical metric and ‘ the Levi-Civita connection. Then, ðg;‘Þ
is a critical point of the functional CW

n : W ! R and a solution of the following

system of equations;

dDRD ¼ 0;

�RRD � 1

n
jRDj2gg ¼ 0:

8><
>:

It would be an interesting problem for us to construct a Yang-Mills-Einstein

theory in a category of Weyl geometry (cf. [11]).
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