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CM-SUBMANIFOLDS IN COMPLEX HYPERBOLIC SPACES

SATISFYING AN EQUALITY OF CHEN

By

Tooru Sasahara

1. Introduction

Recently, Bang-Yen Chen has introduced new type of Riemannian curvature

invariants and obtained sharp inequalitiesinvolving these invariants for arbitrary

submanifolds in Riemannian and Kaehlerian space forms. It is natural and

interesting to investigate and understand submanifolds which satisfythe equality

case of this type of inequalities,and such submanifolds have been investigated

by many geometers (cf. for instance, [2-6, 8-10, 12-16]). In this paper, we

investigate Ci?-submanifolds of complex hyperbolic spaces which satisfy the

equality case of one of Chen's inequalities.

Let M be an ^-dimensional Riemannian manifold. Denote by K(n) the

sectional curvature of M associated with a plane section n a TpM, p e M. For

any orthonormal basis e＼,...,en of the tangent space TPM, the scalar curvature r

at p is defined to be

(1.1) x{p) = Y,K{eiAej)

Let L be a subspace of TpM of dimension r>2 and {e＼,...,er} an

orthonormal basis of L. We define the scalar curvature r(L) of the r-plane section

L by

(1.2) t(I)=^%a^), l<a,£<r

a</?

For an integer k > 0, denote by Sf(n, k) the finite set consisting of unordered

fc-tuples (≪i,... ,n/c) of integers >2 satisfying n＼ < n and n＼+ Ynu <n.

Denote by £f{ri)the set of /r-tuples with /: > 0 for a fixed ≪.
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For each /c-tuple (n＼,...,≪&) e £f(n), Chen's curvature invariant <5(≪i,...,%)

introduced in [4,5,6] are given by

<$(m,. ･･ ,≪*)(/>) = <P) ~inf{r(L,) + ･ ･･ + t(Z*)},

where Li,..., Lk run over all k mutually orthogonal subspaces of TpM such that

dim Lj = fij,j = 1,..., k.

Let M be a submanifold in a Kaehler manifold M. A subspace K <= TpM is

called totally real if JV a T^M, where TpM and T^M denote the tangent space

and the normal space of M at p, respectively. A submanifold M of M is called a

Ci?-submanifold if there exists on M a differentiable holomorphic distribution Qi

such that its orthogonal complement 3)1- c TM is a totally real distribution [1].

For a {In + 1)-dimensional Ci?-submanifolds with 2≪-dimensional maximal

holomorphic tangent subspace (i.e, dim^1 = 1) in complex hyperbolic m-space

CHm{―A) of constant holomorphic sectional curvature ―4, we have the following

sharp inequality involving the intrinsic invariant Sk :=S(2,... ,2) (2 appears k

times) and the squared mean curvature ([5, 6]):

(1.3) sk < *££#*-≪*+-≫

where H2 denotes the squared mean curvature.

Let M be a real 2≪-dimensional Kaehler manifold. For a A>tuple

(2≪i,... ,2n/c) e £f(2n), Chen has also introduced the complex S-invariants

5c(2nu...,2nk) by

Sc(2nu ...,2nk) = x - inf{r(L[) + ■･■+ r(Lck)},

where L＼,...,Lck run over all k mutually orthogonal complex subspaces of TPM,

peM, with dimensions 2≪i,... ,2≪^, respectively.

For 8cn:=dc(2,... ,2) (2 appears n times) of a 2n-dimensional Kaehler sub-

manifold in the complex Euclidean space, we have the following result from [51.

(1.4) K ^ o.

It was proved in [5] that a real hypersurface of a complex hyperbolic (n+ 1)-

space CHn+l(―4) satisfiesthe equality case of (1.3) if and only if the real

hypersurface is an open portion of a tubular hypersurface of radius r e R+ over a

totally geodesic CHnl2{―4)(≪ + 1 is odd, k = n) or an open portion of a

horosphere in CHn+l(-4).

B. Y. Chen and L. Vrancken has completely classifiedin [12] 3-dimensional

CR-submanifolds of complex hyperbolic spaces which satisfy the equality case of

(1.3) for n= 1 and k=＼.
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A submanifold is said to be linearlyfullin CHm(―4) ifit does not lie in any

totally geodesic complex hypersurface of CHm(―4).

In this paper, in case m>n+l, we investigate linearly full (2≪+l)-

dimensional CJ?-submanifolds with dimi^1 = 1 in CHm(―4) which satisfy the

equality case of (1.3). Then we obtain k ―n. We are able to establish the explicit

representation of such submanifolds in an anti-de Sitter space-time via Hopf's

fibration,in terms of Kaehler submanifolds of the complex Euclidean (m ―1)-

space Cm~l which satisfythe equality case of (1.4). Our resultis a generalization

of Chen and Vrancken's result with n = 1 and k ― 1 ([12]).In case m = n + 2 we

completely classifysuch submanifolds.

In section 2, we provide some fundamental equations on pseudo-Riemannian

submanifolds. In section 3, we present our main theorem. In section 4, we present

the sharp, general inequalities which relate the Chen invariants to the squared

mean curvature for submanifolds in Riemannian and Kaehlerian space forms. In

section 5, we present the inequality for {In + 1)-dimensional Ci?-submanifolds

with dim^1 = 1 in CHm{―4), and give necessary conditions for the CR-

submanifolds to satisfythe equality case of the inequality. In the last section, we

provide the proof of our main theorem.

2. Preliminaries

Let M be a pseudo-Riemannian manifold equipped with a pseudo-

Riemannian metric g. Denote by V the metric connection of M and by <, > the

inner product induced from the metric g. A tangent vector X to M is called

space-like (respectively,light-like or time-like)if <X, X} > 0 or X ―0 (respec-

tively,if <X,X> = 0 and X ^ 0 or if <X,X> < 0).

Let M be an n-dimensional submanifold of M. If the metric tensor of M

induces a pseudo-Riemannian metric (respectively,Riemannian metric) on M,

then M is called a pseudo-Riemannian (respectively,Riemannian) submanifold of

M. Let V denote the metric connection on M with respect to the induced metric.

For vector fields X, Y tangent to the submanifold, we have the equation of

Gauss:

(2.1) VxY = VxY + h(X, Y),

where h is the second fundamental form of M in M. The mean curvature vector

H of the immersion is given by H = ＼/n trace h. A submanifold is said to be

minimal if its mean curvature vector vanishes identically.Denote by D the linear

connection induced on the normal bundle TLM of M in M. For each vector field
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£ normal to M, the Weingarten formula is given by

(2.2) V*f = -A^X + Dxt,

where A is the shape operator. It is well-known that the second fundamental form

and the shape operator are related by (h(X, Y),£)>= (A^X, F>.

Denote by R and R the Riemann curvature tensors of M of M, respectively,

and by RD the curvature tensor of the normal connection D. Then the equation

of Gauss and Ricci are given respectively by

(2.3) R(X, F; Z, W) = R(X, F;Z, W) + (h(X, W),h(F,Z)>

~(h(X,Z),h(Y,W)),

(2.4) RD(X, F;^rj) = R(X, F;£,rj)+ <＼A^ An]{X), F>

for vectors X, F, Z, W tangent to M and £,rj normal to M.

For the second fundamental form h, we define the covariant derivative Vh of

h with respect to the connection on TM RTLM by

(2.5) (Vxh)( F, Z) = Dx(h( F, Z)) - h(Vx Y, Z) - h(F, VXZ).

The equation of Codazzi is given by

(2.6) (R{X, Y)Z)L = (Vxh)(Y,Z) - (yYh)(X,Z).

The Riemann curvature tensor of a complex space form M(4e) of constant

holomorphic sectional curvature As takes the form:

(2.7) J?(JT,Y)Z = e{<F,Z>Z - <X,Z)Y + </F,Z>/X - </JT,Z>/F

+ 2<X,/F>/Z},

where / denotes the almost complex structure of M(4e).

3. Statement of Main Theorem

Consider the complex number (m + 1)-space C|"+1 endowed with the pseudo-

Euclidean metric qq given by (for the details,cf. [11, 171)

(3.1)

m
go = -dzodzo + ^ dzjdzj

where z& denotes the complex conjugate of ik-
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On CT+1 we define

(3.2) (z, w) = ZOWo +
m
£

k=＼

ZkWk-

569

Put

(3.3) Hfm+l(-l) = {z= (zo.z, zm) e C?+l :(z,z) = -1},

Then Hfm+l(―1) is a real hypersurface of Cm+l whose tangent space at z e

#2≪+i(_i) is given by TzHfm+l{-＼) = {w e Cm+1 :Re(z,w)=0}. It is known

that //,2w+1(―1) together with the induced metric g is a pseudo-Riemannian

manifold of constant sectional curvature ―1, which is known as an anti-de Sitter

space time.

We put

H＼ = {XeC:Xl= 1}.

Then we have an ///-action on Hfm+l(-l) given by z^Xz. At each point z

in //j2w+1(-l), the vector iz is tangent to the flow of the action. Since (,) is

Hermitian, we have (iz,iz)= ―1. Note that the orbit is given by x(t) = eltzand

dx(t)/dt = ix(t). Thus the orbit liesin the negative definiteplane spanned by z

and iz. The quotient space Hfm+1/^,, under the identificationinduced from the

action, is the complex hyperbolic space CHm(―4) with constant holomorphic

sectional curvature ―4. The almost complex structure / on CHm(―4) is induced

from the canonical almost complex structure / on CJ"+1, the multiplication by /,

via the totallygeodesic fibration:

(3.4) n : Hlm+＼-＼) -> CHm(-4).

The main result of this paper is the following.

Main Theorem. Let U he a domain of Cn and *＼: U -> Cm~l be a hol-

omorphic isometric immersion in Cm~l satisfying the equality case 0/(1.4). Define

z:R2 x £/-> CT+l by

(3.5) z(u,t,wi,...,wn)=1-1-
＼＼V＼2

+ iu
l-m2
+ iu,w＼eit

Then (z,z) ――1 and the image z(R2 x U) in Hfm+l is invariant under the group

action of H}. Moreover the quotient space z(R2 x U)l is a (2n+ l)-dimensional
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CR-submanifold with dim^1 = 1 of CHm(―4) which satisfiesthe equality case of

(1.3) for k = n.

Conversely, in case m> ≪+ 1, up to rigid motions of CHm(―4), every linearly

full(2n+ 1)-dimensional CR-submanifold with dim^1 = 1 of CHm{―4) satisfying

the equality of (1.3) is obtained in such way with k = n.

4. Some Inequalities

Let M be a submanifold of an m-dimensional Kaehlerian space form Mm(As)

with constant holomorphic sectional curvature 4s. For any vector X tangent to M

we put JX = PX + FX, where PX and FX are tangential and normal com-

ponents of JX, respectively. For a subspace L cz TPM of dimension r we put

＼<i<j<r

where {u＼,... ,ur} is an orthonormal basis of L. *F(L) is an well-defined number

which is independent of the choice of the orthonormal basis {u＼,. ..,ur}.

For each (n＼,..., nt) e Sf(ri), let c(n＼,..., fik) and b{n＼,..., rik) denote the

constants given by

(4.1)

(4.2)

c(ni,...,nk) =

b(nu...,nk) =-

n2{n + k-l -£>,･)

2{n + k-^nj)

k
n{n- l)-J2nAnJ

7=1

■･

)

We also need the following results from [4, 5]

Lemma 4.1 (General Inequalities). Given an n-dimensional submanifold M in

a Kaehlerian space form Mw(4fi), we have

(4.3) T~J2r(Li)<c(nu...,nk)H2 + b(nu...,nk)s +
h＼P＼＼2s-3eJ2^(Li)

1=1 ≪=i

for any k-tuple (n＼,...,%) e
<S^(n).
7%e equality case of inequality (4.3) /joW5 a? a

/?o/wfp e M if and only if, there exists an orthonormal basis e＼,...,eim at p, such

that

(a) Lj = Span{em+...+n._l+i,...,<?,,+...+,.},

(b) the shape operators of M in Mm(4e) at p take the following forms:
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0

0

A'k 0

0 fir

0 0

r = n + 1,...,2m

0

0

nr
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where Ar :― Aer and each Aj is a symmetric rijx rijsubmatrix such that

(4.5) trace(^[) = ･･･ = trace(^) = Mr-

Proposition 4.2. Let M be a {real) In-dimensional Kaehler submanifold of

a Kaehlerian space form Mm(4s). Then, for any k-tuple (2≪i,...,2≪/t)e £f(2n),the

complex 8-invariant Sc(2n＼,...,2nk) satisfies

(4.6) Sc(2nu...,2nk)<2
I
≪(≪ + 1) -]T ≪,-(≪,■+l)jfi

The equality case of inequality (4.6) holds at a point p e M if and only if,there

exists an orthonormal basis e＼,...,eim at P, such that e＼,...,ein are tangent to M

and e^i = Jen-＼ (1 < I < k) and the shape operators of M in Mm(4e) at p take the

following forms:

A＼

(4.7) Ar =

0

0

0

0

A{
0

0

0

0

0 0

r = 2n + 1,...,2m,

where each AJ is a symmetric (2tij)x (2≪y)submatrix with zero trace.

By the property of the second fundamental form of a Kaehler submanifold

of a Kaehler manifold (cf.[18])we have the following Proposition.
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Proposition 4.3. Every Kaehler hypersurface o/M"+1(4e) satisfies

8cn= 2(n2 + n- 2k)e.

Proof. Let M be a Kaehler hypersurface in Mn+l(4s). Since JA2n+i =

―A2n+＼J,at each point p of M, we can choose an orthonormal basis e＼,Je＼,...,

en,Jen of TP(M) with respect to which the shape operator A2n+i is of the

following form:

(4.8)
^2≪+l ―

h

0

-Ai

It is well known that the shape operators of M satisfy

(4.9)

From (4.8)and (4.9),we have

(4.10) A ■

^
■Je2n+＼―

J<
-2n+＼

0 kx

Xx 0

0

0

0"

0

It follows from (4.8),(4.10) and Proposition 4.2 that M satisfiesthe equality case

of (4.6) for a n-tuple (2,..., 2) e Sf{2n). □

5. Some Lemmas

First we recall the following result on Ci?-submanifolds from [7].

Lemma 5.1. Let M be a CR-submanifold of a Kaehler manifold M. Denote

by TLM ―JO)1- c v the orthogonal decomposition of the normal bundle, where '2)1-

is the totallyreal distributionand v a complex subbundle of TLM. We have

(5.1) <yuz,xy = <j(AJzu),x>,

(5.2) AjzW = AjwZ,

(5.3) AJtX = -AtJX,
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for vectorfieldsZ, W in &1, £,in v, U in TM and vectorfield X in the holomorphic

distribution Qi.

We also need the following resultusing Lemma 4.1

Lemma 5.2. Let x : M -> CHm(-4) be a (2n + 1)-dimensional CR-

submanifold with dim^-1 = 1. Then

,5.4)
4s^i^^_V + ,_a)

Equality sign of (5.4) Ao/^s1 /or ^ome k if and only if, there exists an

orthonormal basis e＼,...,e2m at P, such that e＼,...,e2n+＼are tangent to M and

ei = Jen-＼ (1 < / < k) and the shape operators of M in Mm(4s) at p take the

following forms:

(5.5)

0

A＼ 0

0 pir

0 0

0

0

Mr

r = 2n + 2,...,m,

where each AJ is a symmetric 2x2 submatrix such that

(5.6) trace(yl[) = ･■■= trace(,4£) = nr

Proof. For mutually orthonormal plane sections L＼

k

imi2-2 E *F(L;)>2n- 2k,

Lk, we have

with equalityholding if and only if L＼,...,Lk are complex planes.Combining

thisand (4.3)yields(5.4).

We also need the followinglemmas.

□

Lemma 5.3. Let x : M -> CHm(-A) be a {In + 1)-dimensional CR-

submanifold with dim^"1 = 1. If M satisfiesthe equality case of (5.4), then the

mean curvature vector H lies in J9)1-.
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Proof. If m = n + 1, there is nothing to prove. So, we assume m > n + 1.

Hence, there is a complex subbundle v of the normal bundle perpendicular to

JQ)L such that T±M = H31 c v. Let {e＼,...,eim＼ be an orthonormal frame field

on M mentioned in Lemma 5.2.Then from (5.3) for a nonzero vector fieldd;e v,

(A^e＼,ex> + (A^Jex, Jex> = {Aj^Je＼,e＼>- (Aj^e＼,Je＼}= 0.

Therefore the mean curvature vector H liesin J131. □

Lemma 5.4. Let x : M ―>･CHm(―4) be a linearly full (2n + I)-dimensional

CR-submanifold with dim ^^ = 1. If m> n+＼ and M satisfiesthe equality case

of (5.4), ?/ze≪k = n and, with respect to some suitable orthonormal frame field

{e＼,...,e2m}, the second fundamental form of M in CHm(―4) satisfies

h(e2r-ue2r-i) = Jein+i + 4r£n h(e2ne2r) = Je2n+i - <f>r£n

(5.7) h{e2r-＼,ep) = 0, h(e2r,eq) = 0, h{elr-＼,e2r) = $rJ£r,

h{ehe2n+i) = 0, h(e2n+he2n+i) = 2Je2n+＼,

where r = 1,... ,n, I = 1,..., In and p,q $ {2r ― 1,2r} and </)rare functions and £r

are in v.

Proof. Let {e＼,...,e2m} be an orthonormal frame field on M mentioned

in Lemma 5.2 such that e2≪+2is parallel to the mean curvature vector field and

{e＼,...,e2n+i} diagonalize the shape operator ^2≪+2- Under the hypothesis, we

have H e J3>^ according to Lemma 5.3. Without loss of generality we may

assume that Je2n+＼= ein+2, and moreover lemma 5.2 implies h(X,e2n+i) e J^1

for any X tangent to M. Hence, using

-A2n+2X + Dx(Je2n+i) = Vx{Je2n+＼) = J(^xe2n+i) + Jh(X,e2n+＼),

we obtain Dx(Je2n+i) e J&1 for any X e TM. Since J3)L is of rank one and

Jejn+x is of unit length, this yields D(Je2n+＼) = 0. Thus, Je2n+i is a parallel

normal vector field.The Coddazi equation yields

(5.8) (R(X, Y)Z,Je2n+l) = <(VxA2n+2)Y - (VYA2n+2)X,Z)

for X, Y, Z tangent to M.

On the other hand, since

R{X, Y)Z= -(Y,Z}X + (X,Z}Y - (JY,Z)JX + (JX,Z}JY

+ 2</X, Y}JZ,
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(5.8) becomes

(5.9) (VxA2n+2)Y - {VYA2n+2)X = -(X,e2n+OPY + (Y,e2n+l}PX

+ 2(PX,Y}e2n+l.

Next, by differentiating J(Je2n+＼) = -e2n+＼ covariantly and by comparing the

tangential and normal parts, we get

(5.10) Vxe2n+l=PA2n+2X.

Further, by differentiating A2n+2e2n+i ― ju2n+2e2n+i covariantly and using

(5.10) we obtain

(VxA2n+2)(e2n+i) + A2n+2PA2n+2X = (Xju2n+2)e2n+i + ju2n+2PA2n+2^

and hence,

<{yxA2n+2) F, e2n+l> + (A2n+2PA2n+2X, F>

= (^2≪+2)<^+i, F> +n2n+2(PA2n+2X, F>.

Thus

<(VxA2n+2)Y,e2n+i> ~({VYA2n+2)X,e2n+iy + 2(A2n+2PA2n+2X, Y}

= (^>2≪+2)<e2≪+i,Y) - (Y/u2n+2)(e2n+i,Xy

+ /u2n+2(PA2n+2X, Y) - ju2n+2(PA2n+2 7, X}.

This and (5.9) yield

(5.11) 2<PX, F> + 2<.A2n+2PA2n+2X, F>

= P0w2)<>2k+i, yy - (Y^2n+2)(e2n+u^y

+ fi2n+2(PA2n+2X, Yy-fi2n+2{PA2n+2Y,Xy.

We assume that k <n. Then we have

^2≪+2^2≪-l=^2≪+2e2≪-l, ^2≪+2^2n-l = ^2n+2^e2n-＼■

By choosing X = e2≪-i, Y = Je2n-＼,We have 2 + 2//fw+2 = 2[i2n+2. This is a

contradiction. Therefore, k ―n.

On the other hand by the equation (2.7), we have

(5.12) £(*, Y;Je2n+un = RD(X, Y;Je2n+i,a = 0
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by virtue of D(Je2n+i) ― 0. Hence, the equation of Ricci yields [Aje2n+1,A£＼― 0

for any £e v. We put ^2≪+2^2>t-i = a^u-i, A2n+2Je2k-i = h^e2k-i-

If a^ ^ fik, for any ^ (k = 1,...,≪), the shape operators take the following

forms:

(5.13) Ar

y＼

0

y＼

yr

in

yr

in

0

0

r = In + 3,...,2m.

Then, for any (ev, (5.3) yields Aj^eik-＼ =―A^Jejk-x- Combining this with

(5.13) we have ^2≪+3 = ･■･ = Aim = 0. Since Je2n+＼is a parallel normal vector

field,this implies that M is contained in a totally geodesic complex hyperbolic

space CHn+l(-4) of CHm(-4). This is a contradiction. Hence, there exist

orthonormal vectors {e2k-i,Je2k-i} such that o^ = fik. Then by choosing

X = e2k-＼, Y= Jeik-i, from (5.11) we have

2 + 2cl1= 2a.kH2n+2,

2cLk=Li2n+2-

Replace <?2≪+iby -<?2≪+iif necessary, we have a^ = 1, ^2≪+2= 2. If there exist

orthonormal vectors {ey-x.Jey-x} such that ay-7^ /?7,by choosing X = ey-x, Y =

Jey-x, we have

2 + 2a,-/fy.= 2(a,-+i8y),

a;+A- = 2.

Hence, we have

(k=l,...,n), ctk

ocj= fij= 1. This is a contradiction. Therefore, for any k

= Pk = l and /i2n+2 = 2. □

6. Proof of the Main Theorem

Let U be a domain of Cn and ＼:£/―>･Cm~x be a holomorphic isometric

immersion in Cm~l satisfying the equality case of (1.4). Define z : R2 x £/―>･

C7+1 by

(6.1) z(M,r,w1,...,w≪)=
^-1-I|^|2

+ ,-m,-I|T|2 + mi,^^.
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Then <z,z} = ―1. Thus, the image z{R2 x U) of R2 x t/ under z is contained in

the anti-de Sitter space time H2m+l(-l).

Let (w＼,...,ww) = (x＼+ iyl,...,xn + iyn) denote the standard coordinates of

i/cC"1"1. Then

(6.2)
_d_

dxr dwr

+
d

d_

w d

where r = 1,...,≪.

We obtain from (6.1)and (6.2)that

zu = (i,i,0)eu, zt= iz,

■-(-K
dwr dwr

8_

yr

= i

)-K

(6.3)

≫-{-i

Zuu = 0

＼dwr

Zut ― IZU

dwrj

Z

llXr

i

~2

^uyr

ztt ― zi ztxr ― lzxri ztyr ― lZyr

d

dwr

i

d

dwr

T + Tdwr cwrj

＼0Wr CWrJ

0

a J '
dw

r

y

dw

r

j

Let E[,...,E'ln be an orthonormal basis of U mentioned in Proposition 4.3

for an n-tuple (2,..., 2) e ^f{2n) such that E'lr―iE^-i (r
~
15･･■,≪)･Here we

put

Ek = E'keu + {E'k^)izu, k=l,...,2n

(6.4) E2n+i = zt + zM,

Then E＼,...,E2n are orthonormal tangent vector fields such that Eir = iEir-＼

(r = 1,...,≪) and iE2n+＼,iE2n+2 are normal vector fields.

If we put

(6.5)

then from (6.4) we have

(6.6) Ek

n
£

r=＼

fl

n

r=＼

f /

^f^
+
^V

＼＼cwr dwrj

9r

＼dwr

■

dw

dwr



578 Tooru Sasahara

where fr and gr are functions. By virtue of (6.6), the second fundamental form

of z(R2 x U) in Cf+1 satisfies

(6.7) ~h(Ek,El)= (VEkEl)± = -UvEkEl,(-l,l,O,...,O))izu + (VElE'l)±eit

h

where k,I = 1,..., 2n and {･ ･ -}1 denotes the normal component of {･ ･■}and V is

the standard covariant differentialin Cj"+1.

From (6.3),(6.4),(6.6), (6.7) and Proposition 4.3 for an n-tuple (2,...,2) e

£f{2ri)we have

h(E2r-＼,E2r-＼)+ h(E2nE2r) e Span{iE2n+2 - iE2n+]},

h(E2r-i,Ep) Span{iE2n+2 - iE2n+＼),

(6.8)

h(E2r,Eq) e Span{iE2n+2 - iE2n+＼},

h{Ei,E2n+＼) = 0, h(E2r+＼,E2n+＼)= 2iE2n+＼―iE2n+2

where r = 1,...,≪, / = 1,...,2≪ and /?,̂ ^ {2r - l,2r}.

On the other hand, from (6.3)-(6.7) we have

<^(E2r-1,^2r-1),iE2n+1 > = 1, <^{E2r-1,£2r-1),iE2n+2 > = 1,

<^(£"2r,E2r),iE2n+i > = 1, ^(^r, E2r),iE2n+2} = 1,

(6-9)

<h(E2r_uEp),iE2n+O = 0, (h(E2r^i,Ep),iE2n+2} = 0,

<^(^2r,£</),̂2≪+l> = 0, <A(^2r,Eq)1iE2n+2} = 0,

where r = !,...,≪ and /?,#^ {2r ―l,2r}.

Therefore, we have

h(E2r-l,Ep)=0,

h(E2r,Eq)=0,

(6.10)

h{E2r-uEir-i) = iEin+i - iE2n+2 + <f>r

~h(Elr,Elr)= iE2n+＼- iE2n+2 - </>&,

L

where r ― 1,...,≪,p,q$ {2r ― 1,2r} and ^r are functions and £rare unit normal

vector fieldsperpendicular to iE-m+XiiEin+i- Moreover, from (6.7) and (6.10), we

have

(6.10') h(E2r-l,E2r) = </>JZr.
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Since iz is always tangent to z(R2 x U), the image z(R2 x U) in H2m+l(―1) is

invariant under the group action of H＼. Hence, z(R2 x U) is projectable via the

Hopf's fibration n : H2m+l(-l) -> C7/w(-4). It is known that the Hopf fibration

n is a Riemannian submersion. The image n(z(R2 x £/))is a (2≪ + 1)-dimensional

Ci?-submanifold of CHm{―4) whose holomorphic distribution Q) is spanned by

n^{E＼),... ,n*(E2n) and whose totally real distribution Q)L is spanned by

It follows from (6.8), (6.10) and (6.10') that the second fundamental form h

of n(z{R2 xU)) in CHm(-4) satisfies

h(e2r-i,elr-＼) = /e2≪+i + ^r£r, h(e2n e2r) = /e2≪+i - 0r£r,

(6.11) /z(e2r-i,^) = 0, h(e2r,eq) = 0, /j(e2r_i,e2r) = ^r/£n

Keli e2n+l) = °5 Ke2n+l,e2n+l) = 2Je2n+＼,

where r = 1,...,≪, / = 1,..., 2n and /?,q $ {2r - 1, 2r} and ^r = 7i*(|r) are normal

vector field perpendicular to Je2n+＼, e＼= n*(E＼),... ,e2n = n*(E2n). Therefore, by

applying Lemma 5.2, we conclude that the {In + 1)-dimensional Ci?-submanifold

n{z(R2 x U)) in CHm(-4) satisfies the equality case of (5.4).

Conversely, we suppose that M is a (2≪ + 1)-dimensional Ci?-submanifold

of CHm(―4) with dim^"1 = 1 which satisfies the equality case of (5.4). Then,

with respect to some suitable orthonormal frame field {e＼,... ,e2m}, the second

fundamental form satisfy (5.7).

Let M = n~l(M) denote the inverse image of M via the Hopf fibration

n : H2m+1 ― CHm(―4). Then M is a principal circle bundle over M with time-

like totally geodesic fibers. Let z : M -> Hfm+l(-l) a C +1 denote the immer-

sion of M in C^+1. Let V and V denote the metric connections of Cf*+1 and

H2m+l(―1), respectively. We denote by X* the horizontal lift of a tangent vector

X of CHm{-4). Then we have (cf. [11, 17])

(6.12) Vx> Y* = (VXY)* + (h(X, Y))* + <JX, Y}V + <Z, Y}z,

(6.13) yxtV = VvX* = (JXy,

(6.14) yvv=-z7

for vector fields X, Y tangent to M, where z is the position vector of M in C2m+l

and V=izeTzHfn+＼-＼).

Let £1,..., £2≪+i,Cr be the horizontal lifts of e＼,..., e2n+i,£n respectively and

let £"2≪+2= ^, and let {co/} be connection forms of M. Then, in same say as [12],
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from (5.1), (6.12) (6.13) and (6.14), we obtain

(6.15)

(6.16)

(6.17)

(6.18)

In

V£2r_,£2r-i= ^(o^iEfr-^Ej + iE2n+＼ + <t>£

7=1

* ― lE2n+2

In

VE2r-iE2r=
XI
0>2r(E2r-l)Ej~E2n+＼+ ty£r + E2n+2

In

^EirElr-l Y^ W2r-l(E2r)Ej + E2n+l + ty£

7=1

In
^E2rE2r = ^2coJ2r(E2r)Ej + iE2n+＼

* ― E2n+2,

<f>rC - iE2n+2,

(6.19) VE2r^E2n+1=E2n

(6.20) VE2rE2n+i=-E2r-u

(6.21) VE2n+1E2n+＼ = 2iE2n+＼ - iE2n+2,

(6.22) VEi^E2n+2 = VE2n+2E2r.x = E2n

(6.23) V^^+2 = ^E2n+2E2r = -E2r_i,

(6.24) V£2n+1£12≪+2=
^E2n+2E2n+i = iE2n+u

(6.25) V£2lI+2£211+2= iEin+2,

(6.26) V£2r_,£p, V^^-i, V^^, V^^e^awj^i,...,^},

where r = 1,...,≪ and p, q £＼lr ― 1, 2r}.

It follows from (6.16), (6.17) and (6.19)-(6.25) that the distribution 9X

spanned by E＼,... ,E2n,E2n+＼ ―E2n+2 is integrable. The distribution Q)2 spanned

by E2n+＼ is clearly integrable, since it is of rank one. Hence, there exist

coordinates {s, t,x＼,yl,..., xn, yn} such that d/ds, d/dx＼,..., d/dyn are tangent to

integral submanifolds of @＼,d/ds = E2n+＼ ― E2n+2 and d/dt = E2n+＼.

Applying (6.19)―(6.25), we get

Vj?,(£2/1+1~ E2n+2) = ･ ･･ = VEln(E2n+＼ - E2n+2)

= V'E2n+x-Eln+2{E2n+x - E2n+2) = 0.

Hence, along each integral submanifold of <&＼,Z =: E2n+＼ ― E2n+2 is a constant
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light-like vector in C 4"1. Moreover, from (6.21) and (6.24), we have V£2n+1Z =

iZ. Since Ejn+x = d/dt, we get dZ/dt ― iZ. Solving this differential equation

yields

Z = eilZo on M,

where Zo is a light-like constant vector. Without loss of generality, we may

assume Zo = (/, /,0,..., 0) e Cm+l.

Let M＼ be an integral submanifold of Q)＼.Without loss of generality, we may

assume that Mi is denned by t ― 0. Then in the same way as [12], we can write

z(s, 0, wx,..., wn) = f(s, w＼,..., wn)(i, i,0,..., 0) + c(l, -1,0,..., 0)

+ (0,0,Ti(wi,...,^)...,Tw_1(wi,...ww)),

where c is a constant determined by the initial conditions and wr = xr + iyr, and

/, Tj,..., Tw_i are functions.

Let M＼ be an integral submanifold of Si＼ and Let xj/denote the map which

is the projection of z : M＼ ―> C|"+1 onto the complex Euclidean (m - l)-subspace

Cm~x spanned by the last m - 1 standard coordinate vectors £3,...,em+＼ of Cj"+1.

In the same way as [12], we have

(6.27)

z(s,t,w＼,...,wn) (c+^d + m 2) + i(s + t+ k{wu...,wn)

-c + -(l + |≪jf) + i(s+t + k(wi,..., wn)),W(wi,..., wn))eH

where k(w＼,..., wn) is a real valued function. Moreover *F(wi,..., wn) : ＼jt{M＼)―>

Cm~l is a holomorphic isometric immersion. Since orthonormal tangent vector

fields E＼,..., E-m lie in Span{zx ,zy.,..., zx ,zy ,zs＼, we have

(6.28) VEkE, = -＼{VEkEh (-1,1,0,... ,0))fe,+ VUEk)ifrM),

where k,I = 1,...,In.

From (6.15), (6.18), (6.26) and (6.28) we have

^^AEir-^AEir-x) + %t(E2r)^*{E2r) g Span{^^Ex),..., jA*(£2≪)},

(6.29) %tiE^l)^{Ep)eSpan{^(E1),...iilfj,(E2K)h

V^(£2r)<A,(^) e Span{ij/,{Ei),...,^(£2≪)},

where r = !,...,≪ and ^, ^ ^ {2r ―1,2r}.
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It follows from (6.29) that the second fundamental form h' of i//{M＼)in Cm l

satisfies

hlW,(E2k-i)ME2k-i))+h'(il,,{E2k),iltil,{E2k))=0,

(6.30) h'W,(E2k-i),iltt(Ep)=0,

h'W.(E2k),il,.(Eq))=0,

where r = !,...,≪ and p,q$ {2r - 1,2r}. Proposition 4.3 and (6.30) implies that

＼I/(M＼)satisfiesthe equality case of (1.4). If we regard s + t+ k(w) as a new

variable and denote it by u, then (6.27) yields

(6.31) z(s,t,wu...,wn) = (･
1(1
+ I＼I2)+ M*

4c

),

By choosing the initial conditions z(0,0,0,..., 0) = (-1,0,..., 0), we obtain from

(6.31) that c= -1/2. Consequently, we obtain (3.5) from (6.31). This completes

the proof of theorem.

Finally, for m = n + 2, we have the following corollary to the main theorem

using Proposition 4.4.

Corollary 6.1. Let U be a domain of Cn and ＼: U -> C"+l be a holo-

morphic isometricimmersion in Cn+l. Define z : R2 x U ―>Cf+2 by

(6.32) z(u,t,wi,...,wn)= (^-l-i|T|2 + m,-i|T|2 + /M,^^

Then (z, z> = ―1 and the image z(R2 x U) in H2n+3 is invariant under the group

action of H＼. Moreover the quotient space z(R2 x £/)/~^ ≪(2≪+ I)-dimensional

CR-submanifold with dim^1 = 1 of CH"+2(―4) which satisfiesthe equality case

of (1.3) for k = n.

Conversely, up to rigid motions of CH"+l(―4), every linearlyfull (2n + l)-

dimensional CR-submanifold with dim^1 = 1 of CHn+2(-4) satisfying the

equality case of (1.3) w obtained in such way with k = n.
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