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A CONFORMAL GAUGE INVARIANT FUNCTIONAL FOR

WEYL STRUCTURES AND THE FIRST VARIATION

FORMULA

By

Toshiyuki Ichiyama, Hitoshi Furuhata and Hajime Urakawa

Abstract. We consider a new conformal gauge invariant functional

which is a natural curvature functional on the space of Weyl

structures.We derive the firstvariation formula of its functional and

characterize its criticalpoints.

1. Introduction

The problem of finding metrics and connections which are minima of some

functional plays a central role in Riemannian geometry and conformal geometry.

The Einstein equations are obtained as the Euler-Lagrange equations of the

variational problem associated with the Hilbert-Einstein functional (cf. [2]). The

Einstein-Weyl equations are a conformally invariant generalization of the Einstein

equations (cf. [6], [7], [8], [9], [10], [12], [13], [14], [15], [16] and the references

therein). Our first aim is to find a functional which has the Einstein-Weyl

equations as the Euler-Lagrange equations of its functional. Motivated by this,

we consider the variational problem on the space of Weyl structures. One of the

most natural such problems is to find critical points of some functional and

determine the Euler-Lagrange equations for its functional.

A C00 manifold M is said to carry a Weyl structure if it has a torsion-free

affine connection and a metric whose confonnal class is preserved by this

covariant derivative. Let SO? be the space of all Riemannian metrics on M, (£the

space of all affine connections on M and 2B the space of all Weyl structures. In

dimension four, Pedersen et al. [14] introduced the curvature functional C : 2B ―>･
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C(g,D)
JM

＼RD＼l≫i

In their paper, they proved that if (g,D) is closed and satisfiesthe Einstein-Weyl

equations, (g, D) is an absolute minimum of C using topological invariants and

vice versa. However, they did not point out the Euler-Lagrange equations of the

functional C. In this paper, we conformally generalize their functional to that of

an arbitrary dimension and state clearly the Euler-Lagrange equations for its

functional. We give the functional Cn : 991x (£― R by

Cn(g,D):=
＼ ＼RD＼ng/2vg

JM

We denote by CV, the restrictionof Cn to the space 2B of Weyl structures,and

find criticalpoints of Cw- Then, the firstvariation formula is given by Theorem

3.6 and the Euler-Lagrange equations as criticalpoints of Cw is obtained in

Theorem 3.7.

Next, we introduce the notion of conformal Yang-Mills fields which is a

natural generalization of the Yang-Mills fields.

In dimension four, we have very simple interesting forms which are the

mixtures of the Yang-Mills equation of D with respect to g and the Euler-

Lagrange equation between RD and g which are described in Corollary 3.11.

In Appendix, we prove some properties of the curvature tensor RD in order

to calculate criticalpoints of our functional.
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2. Preliminaries

In this paper, we always assume that M is an ^-dimensional compact

connected orientable C00 manifold. In this section, we introduce the conformal

functional Cn and give all materials needed later. Let De£ be a torsion free

affineconnection and g eW a Riemannian metric on M. A couple (g, D) e Ti x £

is a Weyl structure on M if there exists a 1-form coeAl(M) such that Dg ―

coRg, that is, for X,Y,Ze %{M),

(2.1) (Dxg)(Y,Z)=a>(X)g(Y,Z).
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Then, (M,g,D) is called a Weyl manifold and the equation (2.1) is called the

Weyl equation. Let V be the Levi-Civita connection of g. We define a := D ―V e

^41(End(TM))
and review the following Lemma (cf. [15, p. 382, Lemma 2.1]).

Lemma 2.1. A couple (g,D = V + a) e 9JI x (£ satisfiesthe Weyl equation

Dg = co(x)g if and only if

ocxY =
Ug(X,

Y)col-co(X)Y-co{Y)X} for any X, YeX(M),

where c$ e X(M) is defined by g(co^Z) = co(Z) for Z e %(M).

Let Z)(e£ be a deformation of D. Then, we denote

B ･= ― D,eTDd^Al(End(TM)).

t=0

Here, the tangent space TD<£of the totality(£of allaffineconnections on M at D,

is identified with the space Al(End(TM)) of all End(TM)-valued 1-forms.

Similarly, let gt e 9W be a deformation of g. Then, we denote

h:=
d

Jt t=0

gteTgm^S＼M).

Here, the tangent space Tgyjl of the totality9K of all Riemannian metrics on M

at g, is identified with the space S2(M) of all symmetric 2-tensor fields.

Definition 2.2. We define a functional Cn : W x £ -^ R by

Cn(g,D):=
)

＼1?D＼n/2 _

f

/J?D nD＼n/4..
＼K ＼g V9 - ＼ ＼R

iK

>g V9

M JM

where

RD{X, Y)Z := DXDYZ - DYDXZ - D[x, Y]Z,

| ■＼gis the norm induced by g and vg is the volume form with respect to g.

Proposition 2.3. The functional Cn : W. x (E ―>/? w conformal invariant, that

is,for any f e (^(M),

CB(e2^,Z)) = CII(^/)).

We then call Cn the conformal functional.

Now, we show a one to one correspondence between 2B and XH x AX{M).
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Lemma 2.4. There is a naturalisomorphism from IB to W x Al(M)

Proof. For any (g,D)e2B, we can find uniquely coeAl(M) such that

Dg = coR g. Then, we define a map F : 2B ―>9K x Jl(M) by

F(g(,D) :=(<?,co).

For any (g,co) e 9J? x ^(M), we define D by

(2.2) DxF = V/F +
i{6f(X,

r)co≫-≪(X)7-ft>(F)X}.

By Lemma 2.1, D is a torsion-freeaffineconnection such that Dg = coR g, which

implies that F is bijective. □

Proposition 2.5. For any /eCcc(M), we consider a conformal transfor-

mation Gf :9JI x (£―'JJlx (£^we≪ frj (^,i)) >->(e2fg,D). Then, we have

1. G/(fflB)= 2BJ

2.foG/o F"1 (gf,co) = (e2^, co + 2df),

where F : 2B ―>9W x Al (M) is the isomorphim as in Lemma 2.4.

We denote also by Df5, the exterior derivative dDfi e Ak+l (End(TM)) induced

by a connection D, for /?e Ak(End(TM)), that is,

k+＼

(dDfl)(Xh.. .,Xk+l) := £(-l)/+1(Ar,/?)(*i.
■･.,*,...,

^+i),

;=1

for X, e £(M) (/ = 1,...,k + 1). Here Xt means to delete X{. We also recall the

symmetric 2-tensor RD which is defined in [2, p. 51, 1.131].

Definition 2.6. For (g,D) e TO x (£,we define the symmetric 2-tensor RD as

n

RD(X, Y) E RD{X,euej,ek)RD(Y,ehej,ek),

where RD is the curvature tensor of D, {e＼,...,en} are orthonormal local frame

fields with respect to g and RD(X, Y,Z, W) := g(RD(X, Y)Z, W).

3. The First Variation Formula

In this section, we calculate the firstvariation of the functional Cw '■2B ― R

defined by the restriction of Cn to the space 9B of Weyl structures and char-

acterize its criticalpoints.
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Fix (g,co)e W x Al(M) ^ 2B and consider a smooth deformation of Rie-

mannian metrics gte 9JIand 1-forms cote Al(M) such that go = g and a>o= co

(-£< f < e).Then, we have

(3.1)
d_

Jt
Cn(g,,cot) = ―

/=o dt

where Dg<, Dt are the

spectively.

We firstcalculate ―
dt

affine

t=0 JM

＼RD"＼;!＼

connections

t=Q JM

Proposition 3.1

d

Jt

i^i;

+
d

Jt
/=0

J.

RD'＼n/2v

corresponding to (gt,co),(g,cot),re-

' Vg as follows.

We have the followingformula:

f
l^'l^^lf <^ Rg -ldRr, -riRld,D*(＼RD＼^2RD)ygvg

where rj= (d/dt)＼t=0cote Al(M), Id is the identity map ofT(TM) and D* is the

formal adjoint of D with respect to g.

Proof. We have

(3.2)
d_

Jt
r=0 JM

＼K ＼g ^ ―
2

J ＼RD＼(n-A)ll[d_
' lg ＼dt

When we set At := Dt - D, RD< is expressed as

(3.3)

RD',RD

RD' = RD + DAt + At a At,

)

V9

where (A, a At)(X, Y) := ＼At(X),At(Y)]e End(TM) for X, Y e £(M).

Differentiating the both hand sides of (3.3)

(3.4)

From (2.2),we have

t=0

d_

It
Rd'=d(

*=＼

d_
It

at

t=0
J

t

0. we have

(/7tt<g)0-Id<g)/7-J7<8>Id).

From (3.2), (3.4) and (3.5), we obtain Proposition 3.1

Next, we calculate ―
dt /=oJm

I**" I
"' v9l as follows.
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Lemma 3.2. We have the following formula:

(3.6)
d

Jt
f I**" I

r=0 JM

where y := ―

"l＼ -'f / <]RD＼^/＼＼RD＼]9-nR%hyg

+ n(y+＼

V9' eAl(End(TM))

?=0

Proof. We have

(3.7) d_
It ?=o

y
i^^=u

{^Rh),D＼＼RD＼^)l2RD)

and h:――-
dt

/=0

if I*"

gt£$2{M).

/=0

＼K ＼g, V9 + 1^ I3

J M

(n-4)/2^_

9 dt

+

/2d_

dt

≫･

t=0

(R ,R }gVg

/=0

＼＼
＼RD＼nJ＼gMgvg

*-JM

From Lemma A.4 in Appendix, we have the

(3.8)
d

Jt

/nD≪t nD<≫＼

following equations:

-2(h,RD}g+2 (-

When we set Bt := Dg< - D9, R°g' is expressed as

(3.9) RD<" =RD + DB, + B, a B

RDyi,RD

Differentiating the both hand sides of (3.9) at t = 0, we have

(3.10) d_

Jt
RD"

From D9' = V9' + (＼/2)(cJ <g)gt

(3.11)
d_

It

Id (x)co ―co (x)Id), we have

D9' = y + -co* Rh.

From (3.8), (3.10) and (3.11), we have

(3.12)
d_

It
<RD",RD"ygi = -2<h,RD>g + 2

r=0

(5(y + ^(atRh)＼RD^

From (3.7) and (3.12),we have the equation (3 6) □
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In order to formulate the right hand side of (3.6) in the form JM (R,h}vg, we

want to express y = (d/dt)＼t=0V9tin terms of h. To do it, we need the Codazzi

operator bv with respect to the Levi-Civita connection V (cf. [4, p. 20], [16,

p. 103]).

Definition 3.3. For heS2(M), we define the Codazzi operator bv as

(hwh)(X, Y,Z) := (yXh){Y,Z) - (V^)(Z,Z).

Then, we obtain

Lemma 3.4. For any h e S2(M) = TgW, we have

(3.13) g(yx Y,Z) =
l-
((V - bv)/i)(Z,X, Y).

Proof. For V9', we have

(3.14) 2gt(V≪Y,Z) = X(gt{Y,Z)) + Y(gt(Z,X)) - Z(gt(X, Y))

+ 0,(Z, [X, F]) + flf,(r,[Z,X]) - gt(X, {Y,Z})

Differentiating the both hand sides of (3.14) at t = 0, we have

(3.15) 2{h(VxY,Z)+g(yxY,Z)}

= (Vxh)(Y,Z) + (VYh)(Z,X) - <yzh){X, Y) + 2h(Vx

Note that

(3.16)

{ (Vr/i)(Z,Z) = (V^)(Z,X),

(hvh) (X, F, Z) + (bv/i)(Y, Z, X) + (bwh) (Z, X, 7) = 0

From (3.15) and (3.16),we have (3.13),which completes the proof.

From Lemma 3.4,we obtain

JM ＼

UafRh),D*(＼RD＼{?-*)/2RD)

2 y

2Jm

)

V9

I 9

<*,((V - bv)* + (D)(D*{＼RD＼^2RD))＼vg

Y,Z)

□

where (V ―bv)* is the formal adjoint of a differentialoperator V ―bv with

respect to a.
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From thisequation, we immediately obtain

Proposition 3.5. We have the following formula:

d

It

f ＼RDg'

t=0 JM

n/2 _I
g,

va>
~ 2

{

( /i*ciir4)/2(iJ?Di929-≪ij°)

n

+
2
{((v-bv)* + G>)(D*(|^|^-4)/2^))},/.

Combining (3.1) and Propositions3.1 and 3.5,we have the

formula for Cw-

Theorem 3.6. We have thefollowingformula:

d_

It

n

Cn(gt,oot)

t=0
4

)

.

}

･･

first variation

irf R g - Id R rj- n R ld,D*(＼RD＼{;-4)/2RD)}gvg

*u.{<

+={((

＼RDtA)l＼＼RD＼]v-nkD)

V -tfy +co)(D*(＼RD＼ln~4)/2RD))},h)

'9
＼9

From Theorem 3.6,one can determine the Euler-Lagrange equationsof Cw-

Theorem 3.7. A couple (g,co) in W x Al(M) is a criticalpoint of CV if and

only if it satisfies

{ j＼ nD＼{n-4)/2 (rd Jm'O
(rf <g>g - Id <g)≫ - w R Id, D

- ((v - bv)* + (d)(d*(＼rd＼{;-4)/2rd))= o,

*(＼RD＼{J-4)/2RD))g= Q for any rjeAl(M),

where <R,R)3 denotes the pointwise inner product with respect to g.

Here, we recall the following property of Einstein metrics (cf. [2, p. 134,

4.721).

Proposition 3.8. Let V be the Levi-Civita connection and SR＼mi a quadratic

functional defined by SR(g) := L- |i?v|o^ restricted to 9fti:= {g e 9ft;JM vg = 1}.
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An Einstein metric g (or more generally, a Riemannian metric with parallel

Ricci tensor) is criticalfor a quadratic functional SR＼<^ if and only if the curvature

i?v of V satisfies

(3.17) i?v = y&
From Theorem 3.7 and Proposition 3.8,we introduce the notion of con-

formal Yang-Mills connections.Let [g]be a conformal classrepresentedby g e

Definition 3.9. A torsion-free affine connection D is a conformal Yang-

Mills connection with respect to [g] if it satisfies

(3.18) D*{＼RD＼^-4)/2RD) = 0 for some (and then for any) g e [g＼.

We then call RD a conformal Yang-Mills field and the equation (3.18) a

conformal Yang-Mills equation. Then, we have

Corollary 3.10. Let D be a conformal Yang-Mills connection with respect

to [g].A couple (D, [g])is criticalfor the conformal gauge factional Cw if and only

if

(3.19) ＼RD^-A)/2UD _
11^|^=0

We consider that the equation (3.19)is a conformal generalizationof the

Einsteinfieldequation characterizedby the equation (3.17).

Especially,in dimenstion four,we have the interestingequations.

Corollary 3.11. Let (M,g,D) be a A-dimensionalcompact Weyl manifold

and (g,D) e SB. Then, a couple (g,D) is a criticalpoint of the functional

C4 : 2B x G ―>R if and only if it satisfies

(3.20)

{
D*RD = 0

f>D _ 1 ＼DD＼2nR -4＼K ＼g9

The above Proposition 3.8, Corollaries3.10 and 3.11 suggeststhat a con-

formal Yang-Mills fieldis a natural generalizationof the Einstein-Yang-Mills

fields.

Finally,we note the Euler-Lagrange equations for the conformal functional
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Remark 3.12. Let (M,g,D) be an ^-dimensional compact Weyl manifold

and (g, D) g 2B. Then, a couple (g, Z>) is a criticalpoint of Cn if and only if it

satisfies

＼RD＼(n-4)/2
(

RD-

D*{＼RD＼{"-4)/2RD)

;in2*

0

4. Examples

In this section, we give some examples as criticalpoints of our functional

Cw-

Example 4.1. Let (M,g) be a ^-dimensional Einstein manifold and V the

Levi-Civita connection of g. Then, (g, V) 2B is a criticalpoint of Cw-

Let i?v be the curvature of (g, V) e 2B. We recall that any Einstein metric g

has harmonic curvature (cf. [4, p. 20, 3.(i)]),accordingly,

(4.1)

From Proposition 3.8, we have

(4.2)

W*RV = 0

*v=Vi.2≫

From Corollary 3.11, (4.1) and (4.2), (g, V) e 2B is a criticalpoint of Cw-

Example 4.2. Let (M,g) be an n-dimensional isotropy irreducible homo-

geneous space with its canonical metric and the the Levi-Civita connection V. Then,

(g, V) is a criticalpoint of Cw-

Since the norm ＼RD＼gis constant, we have

(4.3) D*(＼RD＼{;-4)/2RD)= ＼RD＼gn~A)l2D*RD= 0.

Thus, RD is a conformal Yang-Mills field.We recall that isotropy irreducible

homogeneous metrics are criticalfor the functional SR in Proposition 3.8 (cf.

[2, p. 134, 4.73]) and the irreducibilityof the isotropy representation and the

homogeneity imply that g is an Einstein metric (cf.[2, p. 119, 4.13]).From this

and Proposition 3.8, we have
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dV _
1

e>V|2R --＼R ＼gg

From (4.3), (4.4) and Corollary 3.10, (a, V) e 2B is a criticalpoint of Cw

561

Remark 4.3. Every Weyl manifold (M,g,D) realized as an affine hyper-

surface of the Euclidean space is trivial,that is, there exists a metric g on M

conformal to g such that Dg ―0 (see Matsuzoe [11]).

It would be an important problem to construct non-trivial Weyl structures

which are criticalfor Cw.

Appendix A. Properties of the Curvature Tensor RD

We prove some properties of the curvature tensor RD in order to calculate

criticalpoints of our functional. We recall the Kulkarni-Nomizu product (a) to

Definition A.I. For any 2-tensors h and k, the (0,4)-tensor h (a)k is

defined by

(h R k)(X, Y, Z, T) := h{X, Z)k{ Y, T) + h{ 7, T)k(X, Z)

- h{X, T)k{ F, Z) - h{ Y, Z)k(X, T)

for X, F,Z,Je3£(M).

The curvature tensor RD of (g,D) has somewhat different features from the

cuvature tensor i?v of the Levi-CIvita connection V. And we recall the relation

between RD and Rv which is well known (cf.[81,[151).

Proposition A.2. For D = V + a in Lemma 2.1, we have

RD(X, Y)Z = RV(X, Y)Z + (dva)(X, Y)Z + ax{aYZ) - aY(ocxZ),

where dv is the exterior derivative associated with the Levi-Civitd connection V

We can also express the relationof RD and R? by g and co (cf.[13

p. 104]).

Proposition A.3. The curvatureRD has the followingrelationwith Rv.
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RD(X, Y)Z = RW{X, Y)Z
U((Vxco)Z

+
l-co(X)co(Z)＼

Y

((VYw)Z
+

l-w{
Y)co(Z)＼ X + ((V*ft>)Y)Z - uyYco)x)z

g(Y,z)

＼H

(vxcJ
+
l-aj{X)oA

+g(X,Z)(vYafi +

(g{Y,Z)X-g(X,Z)Y)

l
-co{Y)cJ

)

for X,Y,ZeX(M).

Then, we have

Lemma A.4. Let (M, g,D) be an n-dimensionalWeyl manifold with the Weyl

equation Dg = co(g)g and RD the curvaturetensor of (g,D). Then, RD has the

followingproperties:

(1) RD{Y,X,Z, W) = -RD(X, Y,Z, W),

(2) RD(X, Y, W,Z) = -RD(X, Y,Z, W) - (dcoRg)(X, Y,Z, W),

(2) RD(Z,X, Y, W) = RD(Y, W,Z,X)+^{(dcoRg)(X, Y,Z, W)

+ (da)Rg)(X,Y,Z,W)+2{da>Rg)(Y,Z,X,W)

+ (dcoRg)(Z,W,X,Y)}.

Proof. The property (1) is given by a direct calculation.

From the Weyl equation Dg = coR g, we have

(A.I) Y(g(W,Z))=co(Y)g(W,Z)+g(DYW,Z)+g(W,DYZ).

Differentiating the both hand sides of (A.I) about X, we have

(A.2) X( Y(g( W, Z))) = X(co( Y))g{ W, Z) + a>(Y){co(X)g( W, Z) + g(Dx W, Z)

+ g( W, DXZ)} + co(X)g(DY W, Z) + g(DxDYW, Z)

+ g{DY W, DXZ) + co(X)g( W, DYZ) + g(Dx W, DYZ)

+ g(W,DxDYZ),
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Y(X(g( W, Z))) = Y(co(X))g( W, Z) + co(X){co( Y)g( W, Z) + g(DY W% Z)

+ g(W,DYZ)} + co{Y)g{DxW,Z) + g(DYDxW,Z)

+ g(Dx W,DYZ) + c( y)flf(FT,Z)^Z) + g(DY W, DXZ)

+ g(W,DYDxZ).

From (A.2), (A.3) and

(A.4) [X, Y](g(W,Z)) = to{[X,Y])g(W,Z) + g(D[XtY]W,Z) + g{W,D[XtY]Z),

we have

doo(X, Y)g( W, Z) + RD(X, F, W, Z) + RD{X, Y,Z, W) = 0.

Thus, we obtain (2).

From the firstBianchi identity(of torsion-freetype),we have

(A.5)

and

RD(X, Y)Z + RD( Y, Z)X + RD(Z, X) Y = 0

(A.6) SD(X,Y,Z,IV) RD{X, Y,Z, W) + RD{Y,Z,X, W) + RD(Z,X, Y, W)

g(RD(X, Y)Z + RD(Y,Z)X + RD(Z,X)F, W) = 0.

From the properties(1),(2) and the cyclicsum of SD(X, Y,Z, W), we have

(A.7) - da>(X, Y)g( W, Z) - dco(Y, Z)g(X, W) - dco(Z, W)g(X, Y)

- dco(W, X)g{ 7, Z) + dco(Z,X)g( W, Y) + dw{ W, Y)g(X, Z)

+ 2{RD{Z,X, Y, W) + RD{W, Y,Z,X)} = 0.

Using the Kulkarni-Nomizu product (a),from (A.7) we have

RD{Z,X, Y, W) = RD{Y, W,Z,X)+^{(dcoRg)(X, Y,Z, W)

+ (dajRg)(X,Y,Z,W)+2{dcoRg){Y,Z,X,W)

+ (dcoRg)(Z,W,X,Y)}.

Thus, theproperty(3)is proved. □
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