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§0. Introduction

The purpose of this paper is to give sequent calculi for some 3-valued

(propositional) logics in a rather uniform way. Three-valued logic is an old

subject that has recently been taken a revived interest in, for its own sake as well

as for its potential applications in several areas of computer science.

After general preliminaries in the first section, we deal in §2 with the 3-valued

weakly-intuitionistic logic I1 introduced in Sette-Carnielli [15]. This logic has one

designated value, and its connectives have simple truth-value functions. Sequent

calculi for similar logics have been given by Miyama [9], in which Gill's 3-valued

predicate logic studied in [5] is concerned with, and by Avron [1], in which

Kleene's strong 3-valued logic (Kleene [7, §64]) is handled.

In §3, Sette's 3-valued paraconsistent logic Pl (Sette [14]) is dealt with, which

had been introduced in da Costa [3] for underivability proof. This logic has two

designated values. Avron [1] has given a sequent calculus for such a logic too,

precisely, the 3-valued logic of D'Ottaviano-da Costa [4].

Meanwhile, Wrofiski's 3-valued logic constitutes the subject of §4. This logic

has one designated value, but the truth-value function of its single connective

is rather complicated. Wronski showed in [17] that this logic forms a negative

answer to Bloom's problem posed in [2], which asks whether the consequence

operation determined by a finite matrix is always finitely based. We will give a

sequent calculus for this logic, but this does not conflict with the above result; for,

not all the beginning sequents of our calculus are the ones with single succedent

formula (cf. 4.2). Meanwhile, this logic has been proved to be finitely axio-

matizable in Wojtylak [16]. (According to Palasinska [12], the latter had been

proved by Rautenberg [13, p. 116], but unfortunately I could not consult
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Rautenberg's book.) We will give sequent calculi,as well, for the two logics

which have been proved not to be finitelyaxiomatizable in Palasinska [12].

Lastly, we construct a sequent calculus for the 3-valued conditional logic

introduced in Guzman [6], which had been studied in Nishimura-Ohya [10],[11]

under the name of McCarthy's 3-valued logic. Designated values are not specified

in thislogic, but the truth-values are linearly ordered. Similar calculi are given

in Nishimura-Ohya [10] for Kleene's strong 3-valued logic and Lukasiewicz'

3-valued logic (cf. Kleene [7,§64]), though both of these have one designated

value orieinallv.

§1. General framework

1.1. Three-valued logic. We use the set T ―{t,u,f} as the common truth-

values set of the 3-valued logics considered in thispaper. The truth values t,u and

/ usually denote "true", "undefined" and "false", respectively;but their proper

meanings depend on the logics.

To determine a 3-valued logic, it is necessary to fix the connectives together

with their truth-value functions, which are mappings on T having the same arity

as the corresponding connectives. Formulas are constructed from propositional

variables by the help of connectives, and are denoted by A, B, C, D with or without

subscripts. We mean by the degree of a formula the number of occurrences of

connectives in it. A sequent {with multiple succedent formulas) is an expression

having the form A＼,...,Am ― B＼,...,Bn, where m,n>R. If m > 0 and n = ＼

in particular, this expression forms a sequent with single succedent formula; if

m = n = 0 on the other hand, this sequent is empty. In relation to sequents, finite

(possible empty) sequences of formulas with separating commas included are

denoted by T, 0, A, A.

A valuation is a mapping of the set of propositional variables into the truth-

values set T. A valuation v is extended uniquely to the mapping of the set of

formulas into T in accordance with the truth-value functions of the connectives,

and thus-extended mapping is also designated by v. Validity of sequents will be

defined for each logic individually, according to the intended meaning of the

tf-nth-1/58111ac

1.2. Sequent calculus. A sequent calculus consists of beginning sequents

and rales of inference. Every sequent calculus with which we deal in this paper

has any sequent of the form A ―>A as a beginning one. Meanwhile, rales of

inference are composed of structural ones and logical ones; and each of our

calculus has the following structural rules in common:
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(Interchange)
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Thus, our sequent calculiare determined by the choice of the additional

beginning sequents and the logicalrulesof inference.

Definition 1.1. Let G be a sequent calculus. A sequent is provable [provable

without cut] in G, if it is obtained from beginning sequents by applying rules of

inference [rules of inference except (Cut)] of G.

Next, we introduce the notion of a complete consistentsystem from Maehara

[8] for our completeness proofs.

Definition 1.2. Let G be a sequent calculus. A set a of formulas of G forms

a complete consistent system on G, if for every finitesequence T of elements of a

and every finite sequence 0 of non-elements of a, the sequent F ―>0 is

unprovable in G.

A unique valuation will be correlatedwith a given complete consistent

system, for each sequent calculusindividually.

By enumerating allthe formulas and applying structuralrales,we have the

followinglemma.

Lemma 1.1 (Maehara [8, Theorem 2]). Let G be a sequent calculus.If the

sequent A＼,...,Am ―>Bi,... ,Bn is unprovable in G, then there is a complete

consistent system a on G such that A＼,...,Am e a but Bi,...,Bn$<x.

1.3. Calculi beyond our scope. Avion [1] summarized and introduced

varied notions of validityof sequents, and two of them break our regulation. The

firstis this; namely, the sequent F ―>0 is called to be valid iff for every

valuation, either one of the formulas in c gets t,or one of the formulas in T gets
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/, or else at least two (occurrences of) formulas in F or 0 get u. According to this

definition,the class of valid sequents is not closed under (Contraction).

By his second definition that violates our rale, the sequent r ―>0 is valid iff

for every valuation, either one of the formulas in 0 gets t,or one of the formulas

in F gets /, or else the sequent is not empty and all its formulas get u. Then

(Thinning) does not preserve validity of sequents.

Nishimura-Ohya [11] too investigated, among others, a sequent calculus lying

out of our scooe (cf. 5.1).

§2. The three-valued weakly-intuitionisticlogic J1

2.1. Validity. We are concerned in this section with the 3-valued weakly-

intuitionisticlogic J1 introduced in Sette-Camielli [15].This logic has ] (negation)

and => (implication) as the connectives. The truth-value functions of these are

aiven bv the following tables:

1

t

u

f

/

/

t

So for a valuation v,if v{A) ― t and v(B) ― u, then v(]A) =/, v(A => B) =/,

and v(B => A) = t, for example.

This logic has t as the only designated value. Correspondingly, we define

validitv of seauents as follows.

Definition 2.1. The sequent Ai,...,Am-* Bi,...,Bn is valid in I1, if

{v(Ai),..., v(Am)} cz{t} implies {v(B＼),...,v(Bn)} PI{t} # 0 for every valuation

v.

2.2. The system GI1. We let the Gentzen system GIl for P have the

additional beginning sequents (l)-(8) below and no logical rules of inference:

(1) }A, A-> .

(3) A => B, A -> B,

(5) B->AzdB.

(7) K^iJ), 5-

(2)

(4)

(6)

(8)

->A, A=>B.

~＼(A=>B)-+A.

A^B, ](Az>B)
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2.3. Completeness. We willprove the following completeness theorem in

thissubsection.

Theorem 2.1. A sequent is valid in I1, if and only if it is provable in GIl.

Since the if-partis clear, we confine ourselves to the proof of the only-if-part.

The following lemma is effectivein the proof of Lemma 2.3.

Lemma 2.2. Let a be a complete consistentsystem on GIl

(a) H,4 e a, iff)A$a.

(b) Aid Be a, iffeitherA$a or B e a.

(c) ](A=>B)eoLt iffA e a but B $ a.

Proof, (a) Since the sequent ]].4, ]/4―>isa beginning sequent of the form

(1) and so is provable, we have the only-if-part.The if-part holds by (2).

(b) Similar to (a), using (3), (4) and (5).

(c) Similar to (a), using (6), (7) and (8). ■

In view of the truth-value function of ] and the fact that t is the only

designated value, we give the following definition.

Definition 2.2. Let a be a complete consistent system on GIl. The val-

uation correlated with a is the valuation v such that for every propositional

variable p,

{t, if p e a;

/, if ]p e a;

u, otherwise.

Since the sequent ~＼p,p ―>is a beginning sequent of the form (1) and so

is provable, it is not the case that both ~＼pe a and pea hold. So, with each

complete consistent system, a unique valuation is correlated certainly.

The following forms the cruciallemma for our proof of the only-if-part of

Theorem 2.1.

Lemma 2.3. Let a be a complete consistentsystem on GI1, and v the valuation

correlated with a.

(a) v{C) = t iff C e a.

(b) v(C)=f iff lCea.
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Proof. We prove (a) and (b) simultaneously by induction on the degree of C.

Case 1: C is a propositional variable. Clear by the assumption.

Case 2: C is ]A. (a) v(＼A) = t,iff v(A) =f, iff ]A e a by the hypothesis of

induction, (b) v(]A) =f, iff v{A) #/, iff}A $ a by the hypothesis of induction, iff

11.4 ea bv Lemma 2.2 fa).

Case 3: C is A ^> B. Similar to Case 2, using Lemma 2.2 (b) and (c).■

Proof of the Only-if-part of Theorem 2.1. To prove the contraposition,

suppose that the sequent A＼,...,Am ―≫B＼,...,Bn is unprovable in GI1. By

Lemma 1.1,there is a complete consistent system a on GI1 such that A＼,...,Am e

a but Bi,...,Bn$<x. Let v be the valuation correlated with a. Then by Lemma 2.3

(a), {v(Al),...,v(*m)}<={t} but {v(Bl),...,v(Bn)}f){t} = R. So Au...,Am->

Bi,...,Bn is not valid in J1. ■

2.4. The cut-free system GI . We introduce another Gentzen system GI1

for I1 which enjoys the cut-elimination property. The system GI1 has the fol-

lowing logical rules of inference and no additional beginning sequents:

(1-0

HID

(=-)

(->=)

(!=>-≫)

(-1=0

t^R,a

L4,r->c

t^R,a j?,r^e

r

MA

A r

e .A

0 t^R,b

3jg' t^R,a^b

t-+R,b

r-0, l(Az>B)

It is easily seen that GIl has the same provable sequents as GIl. Moreover,

by mimicking the familiar proof, the rale (Cut) is eliminable from the proof-

figuresin GIl. Hence we have the following theorem.
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Theorem 2.4. A sequent is valid in I1, if and only if it is provable in GIl, if

and only if it is provable without cut in GIX.

§3. The three-valued paraeonslstent logic P1

3.1.Validity. In this section,the 3-valued paraconsistent logic Pl introduced

in Sette [14] is concerned with. The connectives of Pl are ] (negation) as well

as =5 (implication); and their truth-value functions are given by the following

tables:

1

~t 7

u t

f t

This logic has both t and u as the designated values, and so the definition of

validity runs as follows.

Definition 3.1. The sequent A＼,...,Am ―>B＼,...,Bn is valid in P1, if

{v(A＼),...,v{Am)} <={t,u} implies {v(B＼),...,v(Bn)} fl{?,≪} ^ 0 for everY val"

uation u.

Though they do not look so at first glance, two logics P1 and I1 are closely

similar as a matter of fact. Namely, both have the following properties for every

valuation u : u(~|]j4)is designated iff v(＼A) is not; v(A =3 B) is designated iff, either

v(A) is not or v(B) is; and v(＼(A => B)) is designated iff, v(A) is but v(B) is not.

This similarity makes the sequent calculi for them almost the same.

3.2. Tie system GP1. The Gentzen system GPl for Pl differs from the

system GIl (cf. 2.2) only on the point that the former has (1)' and (2)' below as

additional beginning sequents instead of (1) and (2):

(1)' ^A, -＼A. (2)' IK ],4-+.

33. Completeness. We have the following theorem.

Theorem 3.1. A sequent is valid in P1, if and only if it is provable in

GPl.
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The if-part of thistheorem is clear,too. On the other hand, the only-if-partis

proved similarly to that part of Theorem 2.1 by the help of the following lemmas

and definition.

Lemma 3.2. Let a be a complete consistent system on GP1.

(a) 11^ e a, iff]A$a.

(b) A is B a, iff either A$<x or Beol.

(c) 1(A ^ 5) a, iff A e a hut B 4 a.

Definition 3.2. Let a be a complete consistentsystem on GP1. The valua-

tion correlatedwith a is the valuation v such that for every propositional

variabled.

v(p)

Lemma 3.3. Let a be a

valuation correlated with a.

(a) v{C) = t iff "|C£a.

(b) v(C)=f iff C£a.

.

t, if ]p 4 a;

/, ifp$ a;

u, otherwise.

complete consistent system on GPl, and v the

3.4. The cut-freesystem GP . We have a system for Pl, say GPl, enjoying

the cut-elimination property, too. The systems GP1 and GIl (cf.2.4) differonly

on the point that the former has (―>■]) and (]] ―>)below as logical rales instead

of (1-0 and (-11):

HI)

(11-)

a,t->R

r->e,L4

lKr-e

Similarlyto the case of GIl, we have the following theorem.

Theorem 3.4. A sequent is valid in Pl, if and only if it is provable in GPl,

if and only if it is provable without cut in GPl.
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§4. WroesM's three-valued logic and Palaslnska's ones

4.1. Validity. The logic which we are to study in 4.1-4.3 is Wronski's

3-valued logic, say W, introduced in [17].It has * as the only (binary) connective.

The truth-value function of * is given by the following table:

This logic has t as the only designated value, and so has the following

definition similarly to the logic I1.

Definition 4.1. The sequent A＼,...,Am-> Bi,...,Bn is valid in W, if

{v(Ai),..., v(Am)} c {?} implies {v(B＼),..., v(Bn)} PI{t} # 0 for every valuation v.

4.2. The system GW. The system GW for W has the additionalbeginning

sequents (9)―(13)below and no logical ralesof inference:

(9) -> C * {A * B). (10) -> C*A, A*B.

(11) A^A*B. (12) B^A*B.

(13) C*^5 i4*5-≫>l,C*5.

43. Completeness. We obtain the following theorem.

Theorem 4.1. A sequent is valid in W, if and only if it is provable in GW.

The if-partis clear in this theorem too, and so we devote ourselves to the

proof of the converse.

The following lemma is complicated, but after Lemma 4.3,it merely claims

that for any valuation v : v(A * B) = t iff,either v(A) = t, or v(A) = u, or else

v{B) # u; and v(A * B) # u.

Lemma 4.2. Let at be a complete consistent system on GW.

(a) A * B e a, iff either A e a, or C * A $ a for some formula C, or else

C * B e a for every formula C.

(b) C *(A * B) £a for every formula C.
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Proof. The only-if-partof (a) follows from (13), the if-part from (11) and

(10); while (b) from (9). ■

Definition 4.2. Let a be a complete consistentsystem on GW. The valua-

tion correlatedwith a is the valuation v such that for every propositional

variablep.

v(p) =

t, if p e a;

u, if D *p $ a for some formula D;

/, otherwise.

For every formula D, since p ― D *p is a beginning sequent of the form (12)

and so is provable, pea implies D*p e a. So, a unique valuation is correlated

with each complete consistent system on GW.

Lemma 4.3. Let a be a complete consistentsystem on GW, and v the

valuationcorrelatedwith a.

(a) v(C) = t, iff Cea.

(b) v(C) = u, iff D * C 6 â for some formula D.

Proof. By simultaneous induction on the degree of C, utilizingLemma 4.2,

■

Now, the only-if-partof Theorem 4.1 can be proved quite similarlyto the

same part of Theorem 2.1.

The author could not constructa cut-freecalculusfor W.

4.4. Palasinska's 3-valued logics. In thisparagraph, we are concerned with

the two logics studied in Palasinska [12]. These differ from Wronski's logic W

only in that the truth-value functions of the connective * are given by the

following tables, respectively:
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First, consider the logic with the left table. By noting for any valuation v,

that v(A * B) = tiff either v(A) # / or v(B) # u, and that v(A * B) ^ u, thislogic

is axiomatized as the sequent calculus with the additional beginning sequents (9),

(12), and (14), (15) below and with no logical rales of inference:

(14) -+A,A*B. (15) A * B, A -> C * B.

Next, mention the logic with the right table in turn. In thislogic, v(A * B) = t

iff either v(A) # t and v(A) # u, or v(B) # u; and v(A * B) # w. So the sequent

calculus for thislogic has the beginning sequents (9), (12), (15) and (16), (17)

below and no logical rales of inference:

(16) A*B^ C*A, D*B. (17) A*A->A, A*B.

The proofs of these claims are similar to that for Theorem 4.1 and so are

omitted.

§5. The three-valued conditional logic

5.1. Validity. In this last section, we are concerned with the 3-valued

conditional logic, say C, introduced in Guzman [6].The connectives of C are ]

(negation), a (conjunction), and v (disjunction);and their truth-value functions

are given by the following tables:

Designated

linearlyordered as f <u <t instead.In correspondence with this,validityof

sequentsis definedas follows,where the minimum [the maximum] of the empty

set of truth-valuesdesignatesthe maximum truth-valuet [the minimum truth-

value /], as usual.

Definition 5.1. The sequent A＼,... ,Am ―> B＼,... ,Bn is valid in C, if

rtnn{v(Ai),...,v(Am)} < max{v(B＼),... ,v(Bn)＼ for every valuation v.

Guzman in [6] confined himself to handling only the sequents with single

succedent formula, and defined that, the sequent A＼....,Am ―>B is valid if
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min{v(Ai),... ,v(Am)} < v(B) for every valuation v. Thus, our definition forms a

natural extension of Guzman's to the sequents with multiple succedent formulas.

On the other hand, the sequent A＼,... ,Am ―> B＼,... ,Bn had been defined in

Nishimura-Ohya [11] to be valid, if v(A＼ a ･･ ･ a Am) < v{B＼ v ･ ･･ v Bn) for every

valuation v; note that the truth-value functions of a and v are associative,

though not commutative. Since mm{v(A＼),..., v(Am)} < v(A＼ a ･ ･･ a Am) and

v{B＼ v ･･ ･ v Bn) < max{v(Bi),... ,v(Bn)} for every valuation v, any sequent

which is valid in Nishimura-Ohya's sense is valid in our sense too. Meanwhile,

the converse does not hold in general; for, the sequent q,p ―>p is valid in our

sense, but is not valid in Nishimura-Ohya's sense, where p and q are mutually

distinct prepositional variables. Moreover, validity of sequents in their sense is

not preserved by neither (Thinning) nor (Interchange); for, the sequents p ―≫･p

and p,q ―>p are valid, but q,p ―>p is not.

5.2. The system GC. We let the Gentzen system GC for C have (18)―(36)

below as the additional beginning sequents and no logical rules of inference:

(18) ]A, A^B, ]B.

(19) llA^A. (20) A^-＼-]A.

(21) A a B^A. (22) A a B -> ]A, B.

(23) A, B^A a B. (24) A, ]A -> A a B.

(25) ](A a B) - ]A, ]B. (26) ](A a B) -+A, ]A.

(27) ]A^1(A aB). (28) A, ]B^1(A a B).

(29) AvB^A, B. (30) AvB-*A, ~＼A.

(31) A^AvB. (32) ]A, B^AvB.

(33) K^v5)->H (34) l(AvB)^A, ]B.

(35) 1^, ]B-*l(AvB). (36) ^, 1^->](^v5).

53. Completeness. We have the following completeness theorem as well.

Theorem 5.1. A sequent is valid in C, if and only if it is provable in GC.

Again, the if-part of this theorem is clear. For the proof of the converse, we

use the following lemmas and definition;we omit the proof of the lemmas.



Sequent calculi for three-valued 459

Lemma 5.2. Let a be a complete consistent system on GC.

(a) ~＼Ae a but ~＼}A$ a, iff~＼Ae a but A$a.

(b) ]]A e a but ]A $ a, iff A e a but ~＼A$ a.

(c) A a Bea but ](A a B) $ a, iff A, Be a but ]A, ~＼B$ a.

(d) ]{A a B) a but A a B $ a, iff either A, ]B e a but ]A, B $ a, or ]A e a

but A $ a.

(e) AvBea hut ](AvB) $ a, iff either ]A, B e a but A, ~＼B$ a, or A e a tor

-[A**.

(f) l(i4vjB)ea to? AvB$a, iff ]A,]B e a tor ^, 5^ a.

Definition 5.2. Let a be a complete consistent system on GC. The valuation

correlated with a is the valuation v such that for every prepositional variable p,

v(p)

I u,

if pea, but ]p $ a;

if ~＼p a but p$a.',

otherwise.

Lemma 5.3. Let a be a complete consistentsystem on GC, and v the valuation

correlated with a.

(a) v(C) = t,iff C g a but ]C $ a.

(b) v(C) =f, iff ]C e a but C $ a.

Now, we can prove the rest of Theorem 5.1.

Proof of the Only-if-part of Theorem 5.1. We suppose that the sequent

A＼,...,Am ― B＼,...,Bn Is unprovable in GC. By Lemma 1.1,A＼,...,Am e a but

B＼,...,Bn $ a for some complete consistent system a on GC. Then, there is not

a couple of formulas A and B such that ~＼A,Aeol but B, ~＼B$ a, since (18) is a

beginning sequent and so is provable.

Case 1: ]A, A e a for no formula A. For i ―l,...,m, since At e a, we have

~＼Ai$a,so v(Ai) = t by Lemma 5.3 (a). On the other hand, for j― !,...,≪,

since Bj $ a, we have v(Bj) # t by the same lemma. Hence, it holds

that mm{v(Ai),...,v(Am)} = t>u>m3Lx{v(Bi),...,v(Bn)}. So Ah...,Am^

B＼.....Bn is not valid in C.

Case 2: B, ]B $ a for no formula B. Similarly by

min{y(^i),...,v(Am)} >u>f = max{y(^i),...,v(Bn)}, and

Bi,...,Bn is not valid either.

Lemma 5.3 (b),

so Ai,...,Am―>

m
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5.4. The cut-free system GC. Another system GC for C is obtained from

GC by replacing the additional beginning sequents (19)―(36) with their natural

translationinto logical rules of inference; for example, the translation of (21) and

(22) are

A,r^R

A a B, T -> 0
and
■u,r->R j?,r^e

A a B. r -> 0

respectively. Clearly, GC and GC have the same provable sequents. Besides, by

noting that the restriction of the additional beginning sequent (18) to the case

where both A and B are propositional variables causes no reduction in the

provable sequents, and by following the familiar proof, we can see the cut-

elimination property of GC. Hence we have the following theorem.

Theorem 5.4. A sequent is validin C, if and only if it is provable in GC, if

and only if it is provable without cut in GC.
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