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RECOGNIZING SPECIAL METRICS BY

TOPOLOGICAL PROPERTIES OF THE

‘‘METRIC’’-PROXIMAL HYPERSPACE

By

Camillo Costantini and Valentin Gutev

Abstract. In this paper, we first characterize those compatible

metrics d on a metrizable space X which give rise to a connected d-

proximal hyperspace. We show that the space of irrational numbers,

in particular, admits a complete metric with this property and, as a

consequence, we get a negative answer to a question of [11] about

selections for hyperspace topologies. Next, we characterize the com-

patible metrics on X which are uniformly equivalent to ultrametrics

showing that this is equivalent to the zero-dimensionality of the

corresponding proximal hyperspaces. Applications and related results

about other disconnectedness-like properties of proximal hyperspaces

are obtained.

1. Introduction

Let X be a T1-space, and let FðXÞ be the family of all non-empty closed

subsets of X. Identifying the points of X with the corresponding singletons, we

may consider FðXÞ as a set-theoretical extension of the set X. From this point of

view, a topology t on FðX Þ is admissible [14] if ðFðXÞ; tÞ is also a topological

extension of the topological space X. Here, in e¤ect, ‘‘admissible’’ means ad-

missible with respect to the topological structure on X which is the terminology

we will adopt for this particular paper. It should be said that ‘‘admissible’’ may

regard also some additional structures on X (see [14]).
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The two best known examples of admissible topologies on FðX Þ are the

Vietoris and Hausdor¤ topologies. The Vietoris topology tV depends only on the

topology of X, and a base for this topology is given by all collections of the form

hVi ¼ S A FðXÞ : SH6V and S VV 0q; whenever V A V
� �

;

where V runs over the finite families of open subsets of X.

Let ðX ; d Þ be a metric space. The Hausdor¤ topology tHðd Þ on FðXÞ is gen-

erated by the Hausdor¤ distance Hðd Þ associated to d, hence it depends essen-

tially on the metric d. Let us recall that Hðd Þ defines as

Hðd ÞðS;TÞ ¼ supfdðS; xÞ þ dðx;TÞ : x A S UTg; S;T A FðX Þ:

It is well-known that tV coincides with tHðd Þ if and only if X is compact [14],

while, in general, these two topologies are not comparable.

There are many interesting investigations about properties of the Vietoris ex-

tension ðFðXÞ; tV Þ of a topological space X, most of them related to the follow-

ing general question: Do there exist properties P and FV ðPÞ such that X A P

if and only if ðFðXÞ; tV Þ A FV ðPÞ?
Here are two particular results in this direction which will be important for

the proper understanding of this paper. The first one is related to disconnectedness-

like properties of tV and states that a space X is strongly zero-dimensional if and

only if ðFðXÞ; tV Þ is zero-dimensional, see [14]. Here, a space Z is strongly zero-

dimensional if dimðZÞ ¼ 0, and Z is zero-dimensional if it has a base of clopen

sets (i.e., if indðZÞ ¼ 0).

The second result gives that a strongly zero-dimensional metrizable space X

is Čech complete if and only if FðX Þ has a tV -continuous selection [8, 10, 15].

Here, a map f : FðXÞ ! X is a selection for FðXÞ if f ðSÞ A S for every

S A FðXÞ. In case t is a topology on FðX Þ, a selection f for FðXÞ is t-

continuous if it is continuous with respect to t.

In the present paper we deal with similar problems, but this time about

relations between topological properties of hyperspaces and compatible metrics

on the base space. Briefly, let DðX Þ be the set of all compatible metrics on a

metrizable space X, and let, for every d A DðX Þ, a topology tRðd Þ on FðXÞ be

defined (i.e., ‘‘tR’’ stands for a generic class of metric-generated hyperspace top-

ologies on FðXÞ). Do there exist MHDðXÞ and a topological property FRðMÞ
such that d A M if and only if ðFðXÞ; tRðd ÞÞ A FRðMÞ?

The collection of all Hausdor¤ topologies tHðd Þ, d A DðXÞ, provides an

example of a generic class ‘‘tH ’’ of metric-generated hyperspace topologies on

FðX Þ. Note that ðFðXÞ; tHðd ÞÞ is metrizable for every d A DðX Þ.
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A central place in the present paper is occupied by another collection of

admissible metric-generated hyperspace topologies tdðd Þ, d A DðXÞ, on FðXÞ which

is, in fact, intermediate between the Vietoris hyperspace and the corresponding

Hausdor¤ hyperspaces (actually, it is obtained by ‘‘mixing’’ these hypertopologies

in a suitable way). For a given metric d A DðXÞ, the topology tdðd Þ is known as

the d-proximal topology on FðXÞ [5], and is generated by all d-modifications of

the basic tV -neighbourhoods, i.e. by all collections of the form

dVed ¼ fS A hVi : DdðS;Xn6VÞ > 0g;

where V is a finite family of open subsets of X and

DdðS;TÞ ¼ inffdðx; yÞ : x A S; y A Tg; whenever S;T HX :

In what follows, for technical reasons only, let us agree that DdðS;qÞ ¼ þy for

every non-empty SHX .

Let us mention that a d-proximal topology tdðd Þ is metrizable if and only

if ðX ; d Þ is totally bounded [5], which is in turn equivalent to the normality of

ðFðX Þ; tdðd ÞÞ [12]. Also, for metrics d; r A DðXÞ, we have that tdðd Þ ¼ tdðrÞ if and

only if d and r are uniformly equivalent [5]. Finally, we always have the following

(usually strong) inclusion:

tdðd Þ H tV V tHðd Þ:

We are now ready to state more precisely the main purpose of this paper. In

the first place, we characterize those compatible metrics d A DðXÞ on a metrizable

space X which give rise to a connected d-proximal hyperspace topology (Theorem

2.1). Further, we demonstrate that the space of the irrational numbers P has

a complete compatible metric p A DðPÞ such that ðFðPÞ; tdðpÞÞ is connected

(Example 2.6). In particular, this implies that FðPÞ does not admit any tdðpÞ-

continuous selection, which provides a negative answer to a question of [11].

In the second place, we show that a d-proximal hyperspace is zero-

dimensional if and only if d is uniformly equivalent to an ultrametric (Theorem

3.3). We apply this fact to show that a zero-dimensional metrizable space X is

compact if and only if any d A DðX Þ is uniformly equivalent to an ultrametric

(Theorem 4.3). Other results in classifying metrizable spaces are provided (see

Theorems 4.1, 4.5 and 5.9).

Finally, the paper contains also results about the selection problem on

‘‘metric’’-proximal hyperspaces (see Section 5). Related to the result of [8, 10, 15]

mentioned before, we extend [11, Theorem 1.2] showing that, for a completely

metrizable space X and a d A DðXÞ, if ðX ; d Þ has a base of d-clopen sets, then
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FðX Þ has a tdðd Þ-continuous selection (Theorem 5.1). We also show that the

assumption above can be weakened to requiring the subspace Xnfzg, obtained by

removing some single point z, to have a base of d-clopen sets (Corollary 5.7).

2. Which Metrics Do Give Rise to a Connected Proximal Topology?

Let ðX ; d Þ be a metric space. We shall say that a subset A of a metric space

ðX ; d Þ is d-clopen if DdðA;XnAÞ > 0. Note that every d-clopen set is clopen but

the converse is not true (see, for instance, Examples 2.5 and 2.6). On the other

hand, by the definition of Dd , the subsets X and q are always d-clopen. Now,

we shall say that a metric space ðX ; d Þ is d-connected if X and q are the only

d-clopen subsets of ðX ; d Þ.
The following theorem will be proven in this section.

Theorem 2.1. A metric space ðX ; d Þ is d-connected if and only if ðFðX Þ; tdðd ÞÞ
is connected.

To prepare for the proof of Theorem 2.1, we provide some relations between

clopen subsets of ðFðX Þ; tdðd ÞÞ and d-clopen subsets of ðX ; d Þ. To this end, we

need the following property of the Vietoris hyperspace; such a property was also

stated, in a slightly weaker form, in [6].

Lemma 2.2. Let X be a topological space, CHFðX Þ be a tV -closed set, and

let M be a non-empty subset of C which is a chain with respect to the usual set-

theoretical inclusion. Then, there exists M A C such that 6MHM.

Proof. Let M ¼ 6M, and let us show that M A C. Take a basic tV -

neighbourhood hUi of M. For every U A U there exists MU A M such that

MU VU 0q because U is open and 6MVU 0q. Hence, MU ¼
6fMU : U A Ug A hUi because MU HM. On the other hand, MU A MHC

because M is a chain in C. Therefore, hUiVC0q. This finally implies that

M A C because C is tV -closed in FðXÞ. r

The following consequence of Lemma 2.2 regards the d-clopen subsets of

ðX ; d Þ as an indication about the possible clopen subsets of ðFðXÞ; tdðd ÞÞ.

Corollary 2.3. Let ðX ; d Þ be a metric space, UHFðXÞ be a tdðd Þ-clopen

set, with U0q, and let AHU be a maximal chain with respect to the usual set-
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theoretical inclusion. Then, A has a maximal element which is a d-clopen subset of

ðX ; d Þ.

Proof. It follows from Lemma 2.2 that A has a maximal element A because

AHU is a maximal chain and U is, in particular, a tV -closed set. Since U is

also tdðd Þ-open, there now exists a basic tdðd Þ-open set dVed such that A A

dVed HU. The only possibility is A ¼ 6V. Indeed, x A 6V implies AU fxg A

dVed HU because dðx;Xn6VÞ > 0. Since A is maximal, we finally get that

AU fxg A A. That is, A ¼ 6V holds and, by definition, DdðA;XnAÞ ¼
DdðA;Xn6VÞ > 0. r

We conclude the preparation for the proof of Theorem 2.1 with the following

proposition which may read as a partial converse of Corollary 2.3. Below, and

in the sequel, for a subset AHX we set dAed ¼ dfAged and, respectively,

hAi ¼ hfAgi.

Proposition 2.4. For a clopen subset A of a metric space ðX ; d Þ, the fol-

lowing conditions are equivalent:

(a) A is d-clopen.

(b) dAed is tdðd Þ-clopen.

(c) hAi is tdðd Þ-open.

Proof. In case A ¼ q, this is trivial. Suppose A0q. Then, (a) ! (b)

follows from the definition of a d-clopen set. For (b) ! (c), take a maximal chain

A in dAed . Then, by Corollary 2.3, A has a maximal element which is a d-

clopen subset of ðX ; d Þ, and it is clear that such an element must be A itself; thus,

hAi ¼ dAed . Finally, (c) ! (a) is a consequence of A A hAi. r

Proof of Theorem 2.1. In case ðFðX Þ; tdðd ÞÞ is connected, by Proposition

2.4, the space ðX ; d Þ must be d-connected.

As for the inverse implication, suppose that ðX ; d Þ is d-connected but there

exists a tdðd Þ-clopen AHFðXÞ, with q0A0FðXÞ. Then FðXÞnA has the

same properties, and either A or FðXÞnA does not contain X. So, Corollary 2.3

gives a d-clopen set A with q0A0X which is impossible. r

Note that every connected metric space ðX ; d Þ is certainly d-connected which,

together with Theorem 2.1, gives a list of examples of connected d-proximal
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topologies. However, the converse is not true and this is what we will establish

in the rest of the section. To this end, let us observe that ðX ; d Þ is d-connected

if and only if DdðA;XnAÞ ¼ 0 for every non-empty proper (closed) subset A of

X. In particular, this implies the following immediate example of strongly zero-

dimensional d-connected metric spaces ðX ; d Þ.

Example 2.5. Let X be a dense subset of the real line R, and let d be the

standard Euclidean metric on X. Then, ðX ; d Þ is d-connected.

The rational numbers Q and the irrational numbers P are among the most

important zero-dimensional dense subsets of the real line. Unfortunately, both the

metric spaces ðQ; d Þ and ðP; d Þ are not complete. From a topological point of

view, however, the space of the irrational numbers P is Čech complete. As we

will see, this is only a part of our motivation for the next key example.

Example 2.6. There exists a complete metric p A DðPÞ on the irrational line

P such that ðP; pÞ is p-connected.

Proof. Let d be the standard Euclidean metric on P. We will describe the

metric p in an explicit way. In fact, p is the metric on P obtained by modifying d

to a complete metric on P by the help of the countable complement Q of P in R.

Namely, let fqi : i A Ng be a one-to-one indexing of the rational numbers Q.

Then, the formula

pðx; yÞ ¼ dðx; yÞ þ
Xy
i¼1

1

2 i
min 1;

1

dðx; qiÞ
� 1

dðy; qiÞ

����
����

� �
; x; y A P;

certainly defines a complete compatible metric p on P. Turning to the verification

that ðP; pÞ is p-connected, let B be a proper non-empty closed subset of P, and

let e > 0. What we have to show is that DpðB;PnBÞ < e. For the purpose, let

k A N be such that 1=2k�1 < e=3. It will be now su‰cient to find a point b A B

and a point c A PnB such that

(i) dðb; cÞ < e=3, and

(ii) j1=dðb; qiÞ � 1=dðc; qiÞj < e=3 for every i A N , with 1a ia k � 1.

Indeed, let b A B and c A PnB be as in (i) and (ii). Then,
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pðb; cÞ ¼ dðb; cÞ þ
Xy
i¼1

1

2 i
min 1;

1

dðb; qiÞ
� 1

dðc; qiÞ

����
����

� �

<
e

3
þ
Xk�1

i¼1

1

2 i
min 1;

1

dðb; qiÞ
� 1

dðc; qiÞ

����
����

� �

þ
Xy
i¼k

1

2 i
min 1;

1

dðb; qiÞ
� 1

dðc; qiÞ

����
����

� �

a
e

3
þ e

3

Xk�1

i¼1

1

2 i
þ
Xy
i¼k

1

2 i
<

e

3
þ e

3
þ 1

2k�1
< e;

and therefore DpðB;PnBÞa pðb; cÞ < e.

Thus, to finish the proof, it only remains to define such points b A B and

c A PnB. Since there exists x A PnB, we may suppose that there exists y A B with

y > x (the case y < x is symmetric). Let a ¼ supfz A ½x; yÞ : ½x; z�VB ¼ qg. We

distinguish the following two situations.

In case a A P, we have that a A B because B is closed in P. Then, set

b ¼ a. As for c, take any point c A ½x; bÞVP such that dðb; cÞ < e=3 and

j1=dðb; qiÞ � 1=dðc; qiÞj < e=3 for every i A N , with 1a ia k � 1. Clearly, b and c

are as required in (i) and (ii).

In case a A Q, it follows that a ¼ qj for some j A N . Hence, there exists

a strictly decreasing sequence fyn : n A NgHB such that limn!y yn ¼ a and

ð2a� y1Þ A ½x; a�. For every n A N , let xn ¼ 2a� yn be the element symmetric to

yn with respect to a. Then, fxn : n A NgHPnB is a strictly increasing sequence

which is convergent to a. Note that limn!yj1=dðxn; qiÞ � 1=dðyn; qiÞj ¼ 0

for every i A N . Indeed, if i0 j, then this follows from the fact that

limn!y dðxn; ynÞ ¼ 0. Otherwise, merely note that j1=dðxn; qjÞ � 1=dðyn; qjÞj ¼ 0

for every n A N . In this way, there is now an m A N such that dðxm; ymÞ < e=3

and j1=dðxm; qiÞ � 1=dðym; qiÞj < e=3 for every i A N with 1a ia k � 1. Then, in

this case, b ¼ ym and c ¼ xm are as required in (i) and (ii). r

By Example 2.6, we have the following interesting consequence which

provides, in particular, a negative answer to a question of [11].

Corollary 2.7. Let X be a completely metrizable space which contains a

closed copy of the irrational line P. Then, there exists a complete compatible metric

d on X such that FðX Þ does not admit any tdðd Þ-continuous selection.
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Proof. Let p A DðPÞ be as in Example 2.6. By a result of [3], p extends to a

complete compatible metric d on X. Suppose, by contradiction, that f : FðXÞ !
X is a tdðd Þ-continuous selection, and let S A FðX Þ be a proper clopen subset of

P. By [5, Lemma 4.1], ðFðP; tdðpÞÞ coincides with FðPÞ equipped with the relative

topology of ðFðXÞ; tdðd ÞÞ. Hence, by Theorem 2.1 and Example 2.6, FðPÞ is a

connected subset of ðFðXÞ; tdðd ÞÞ. On the other hand, the set f �1ðSÞVFðPÞ is

clopen in ðFðPÞ; tdðpÞÞ, so FðPÞH f �1ðSÞ. However this is impossible because f

is a selection and therefore f �1ðSÞ will contain all the singletons of points of S

but will not contain any singleton of points of PnS. r

3. Ultrametrics and Disconnectedness-Like Properties of

Proximal Hyperspaces

In this section, we first establish an equivalence between a suitable remet-

rization property on a metrizable space X and the topological property of zero-

dimensionality of the corresponding proximal hyperspaces. Let d A DðX Þ,
x; y A X and let d > 0. We shall say that the points x and y are d-chainable

in ðX ; d Þ, and shall write that chdðx; yÞ < d, if there exists an n A N and points

z0; . . . ; zn A X such that z0 ¼ x, zn ¼ y and dðzi�1; ziÞ < d for i ¼ 1; . . . ; n (cf. [2]).

For a non-empty subset A of X and e > 0, we define an e-chain neigh-

bourhood of A in ðX ; d Þ by

CNd
e ðAÞ ¼ fy A X : chdðx; yÞ < e for some x A Ag:

Also, we will use Nd
e ðAÞ to denote the open e-neighbourhood of A in ðX ; d Þ, i.e.

Nd
e ðAÞ ¼ fy A X : dðy;AÞ < eg. In the special case of a singleton A ¼ fxg, we set

CNd
e ðxÞ ¼ CNd

e ðfxgÞ and, respectively, Nd
e ðxÞ ¼ Nd

e ðfxgÞ.
Note that Nd

d ðAÞHCNd
d ðAÞ is always valid but the converse is related

to special properties of the metric d. Let us recall that a metric d A DðXÞ
on X is said to be an ultrametric, or a non-Archimedean one, if dðx; yÞa
maxfdðx; zÞ; dðz; yÞg for every x; y; z A X .

Proposition 3.1. Let X be a metrizable space. For a metric d A DðX Þ, the

following two conditions are equivalent:

(a) d is an ultrametric.

(b) CNd
e ðxÞ ¼ Nd

e ðxÞ for every x A X and e > 0.

Proof. In case d is an ultrametric, we have that Nd
e ðxÞ ¼
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6fNd
e ðyÞ : y A Nd

e ðxÞg for every x A X and e > 0. This easily entails, by an

inductive argument, the implication (a) ! (b). Suppose now that d is as in (b).

Also, take points x; y; z A X , and let d ¼ maxfdðx; zÞ; dðz; yÞg. Then, for every

e > d, we get that y A CNd
e ðxÞ ¼ Nd

e ðxÞ which finally implies that dðx; yÞa d.

r

In what follows, to every subset A of a metric space ðX ; d Þ we associate

a real number DdðAÞ, or the infinite number DdðAÞ ¼ þy, defined as DdðAÞ ¼
DdðA;XnAÞ. By definition, A is a d-clopen subset of ðX ; d Þ if and only if

DdðAÞ > 0. On the other hand, DdðAÞ ¼ þy if and only if either A ¼ X or

A ¼ q. The following simple observation, whose verification is left to the reader,

presents some important relations between d-clopen sets and d-chain neigh-

bourhoods.

Proposition 3.2. For a non-empty subset A of a metric space ðX ; d Þ and

d > 0, the following holds:

(1) CNd
d ðAÞ ¼ A if and only if DdðAÞb d.

(2) CNd
d ðCNd

d ðAÞÞ ¼ CNd
d ðAÞ.

We are now ready to prove the following theorem.

Theorem 3.3. For a metric space ðX ; d Þ, the following conditions are

equivalent:

(a) There exists an ultrametric on X which is uniformly equivalent to d.

(b) ðFðXÞ; tdðd ÞÞ is zero-dimensional.

(c) For every A A FðX Þ and e > 0 there exists a d-clopen subset B of ðX ; d Þ
with AHBHNd

e ðAÞ.
(d) For every e > 0 there exists a d > 0 such that CNd

d ðxÞHNd
e ðxÞ for all

x A X .

Proof. (a) ! (b). Let r be an ultrametric on X which is uniformly equiv-

alent to d. By a result of [5], we have that tdðrÞ ¼ tdðd Þ. Hence, it su‰ces to

show that ðFðX Þ; tdðrÞÞ is zero-dimensional. Towards this end, let A A FðXÞ and

let dUer be a basic tdðrÞ-neighbourhood of A. Then, there exists d > 0 such

that N
r

d ðAÞH6U. Next, for every U A U pick a fixed point xðUÞ A AVU

and dðUÞ > 0 with N
r

dðUÞðxðUÞÞHU VN
r

d ðAÞ. Finally, set V ¼ fNr
d ðAÞgU

fNr
dðUÞðxðUÞÞ : U A Ug. In this way, by Propositions 3.1 and 3.2, we get a family
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V of r-clopen subsets of ðX ; rÞ. Then, by Proposition 2.4, dVer defines a

tdðrÞ-clopen neighbourhood of A because

dVer ¼ 7fdfNr
d ðAÞ;Nr

dðUÞðxðUÞÞger : U A Ug

¼ dNr
d ðAÞern6fdXnNr

dðUÞðxðUÞÞer : U A Ug:

Since dVer HdUer, (b) holds.

(b) ! (c). Let A A FðXÞ, and let e > 0. Note that V ¼ dNd
e ðAÞed defines a

tdðd Þ-neighbourhood of A. Then, by (b), there exists a tdðd Þ-clopen neighbourhood

U of A with UHV. Let B be a maximal chain in U such that A A B. Then, by

Corollary 2.3, there exists B ¼ max B, and it is a d-clopen subset of ðX ; d Þ. In

particular, AHBHNd
e ðAÞ which is the statement of (c).

(c) ! (d). Suppose that (d) fails. Hence, there exists a g > 0 such that for

every n A N one can find points xn; yn A X with chdðxn; ynÞ < 1=n and dðxn; ynÞb
4g. According to the Efremovic Lemma (see [4]), there now exists a strictly

increasing sequence fni : i A NgHN such that dðxni ; ynj Þb g for every i; j A N .

Setting then A ¼ fxni : i A Ng, we get that CNd
d ðAÞnNd

g ðAÞ0q for every d > 0

because yni A CNd
1=ni

ðAÞnNd
g ðAÞ for every i A N . On the other hand, by condition,

there is BHX such that DdðBÞ > 0 and AHBHNd
g ðAÞ. Hence, by Proposition

3.2,

CNd
Dd ðBÞðAÞHCNd

Dd ðBÞðBÞ ¼ BHNd
g ðAÞ:

A contradiction.

(d) ! (a). Let fdn : n A Ng be a decreasing sequence of positive real num-

bers such that, for every n A N and x; y A X , we have dðx; yÞ < 1=n provided

chdðx; yÞ < dn. Set U0 ¼ fXg and Un ¼ fCNd
dn
ðxÞ : x A Xg. By Proposition 3.2,

each Un, n > 0, is a disjoint open cover of X which refines both fNd
1=nðxÞ : x A Xg

and Un�1. Also, 6fUn : n A Ng is a base for the topology X. Therefore,

fUn : n A Ng is a discrete development in the sense of [9]. Then, according to [9,

Proposition 1.5], we may consider the compatible ultrametric r on X defined by

rðx; yÞ ¼
0 if x ¼ y

1

rðx; yÞ if x0 y;

8><
>:

where rðx; yÞ ¼ minfn A N : y B CNd
dn
ðxÞg. If rðx; yÞ < 1=n for some x; y A X and

n A N , then chdðx; yÞ < dn and, therefore, dðx; yÞ < 1=n. Thus, to prove that r

and d are uniformly equivalent, it only remains to show that for every e > 0 there
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exists a d > 0 such that rðx; yÞ < e provided dðx; yÞ < d. For a given e > 0,

let m A N be such that 1=ma e. Then, dðx; yÞ < dm for some x; y A X certainly

implies that y A CNd
dm
ðxÞ and, hence, rðx; yÞ < 1=ma e. r

The rest of the section is devoted to a more precise reading of the remet-

rization condition stated in (a) of Theorem 3.3. Suppose that X is a metrizable

space. We consider a relation � of partial order on DðX Þ by letting, for r; d A

DðX Þ, that r � d if and only if the uniformity generated by r is coarser than the

one generated by d or, equivalently, if for every e > 0 there exists hðeÞ > 0 such

that, whenever x; y A X , dðx; yÞ < hðeÞ implies rðx; yÞ < e. Note that two metrics

r; d A DðX Þ are uniformly equivalent if and only if r � d and d � r. On the other

hand, it could be easy observed that r � d implies tdðrÞ H tdðd Þ.

The following observation shows that the existence of an ultrametric r with

d � r is a topological property and, hence, it cannot be applied to recognize

special d-proximal hyperspaces.

Proposition 3.4. For a metrizable space X, the following two conditions are

equivalent:

(a) For every d A DðX Þ there exists an ultrametric r A DðX Þ with d � r.

(b) X is strongly zero-dimensional.

Proof. The implication (a) ! (b) is obvious. Suppose that X is strongly

zero-dimensional. We follow the construction in the last part of the previous

proof. Namely, we set U0 ¼ fXg. Since X is strongly zero-dimensional, for every

n > 0 there exists a disjoint open cover Un of X which refines both fNd
1=nðxÞ :

x A Xg and Un�1. In this way, we get a discrete development fUn : n A Ng of X.

Also, for every point x A X and every n A N there exists exactly one UnðxÞ A Un

with x A UnðxÞ. Then, as before, we may consider the compatible ultrametric r on

X defined by

rðx; yÞ ¼
0 if x ¼ y

1

rðx; yÞ if x0 y

8><
>:

where rðx; yÞ ¼ minfn A N : y B UnðxÞg. If rðx; yÞ < 1=n for some x; y A X and

n A N , then x; y A U for some U A Un. Therefore, dðx; yÞ < 2=n which finally

implies that d � r. r
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The reverse inequality certainly implies a special metric property which is

the statement of our next result. To state this, for a metrizable space X and

d; r A DðX Þ, let us agree to write that ra d if and only if rðx; yÞa dðx; yÞ for

every x; y A X . Note that ra d implies r � d.

Theorem 3.5. For a metric space ðX ; d Þ, the following conditions are

equivalent:

(a) There exists an ultrametric r A DðX Þ with ra d.

(b) There exists an ultrametric r A DðX Þ with r � d.

(c) For every x A X there exists a neighbourhood L of x and an ultrametric

r A DðLÞ with r � d jL� L.

(d) ðX ; d Þ has a base of d-clopen sets.

(e) For every x A X and e > 0 there is d ¼ dðx; eÞ > 0 with CNd
d ðxÞHNd

e ðxÞ.

To prepare for the proof of Theorem 3.5, we need the following statements

about d-clopen sets and d-chain neighbourhoods.

Proposition 3.6. Let ðX ; d Þ be a metric space, x A X , L be a neighbourhood

of x, and let r A DðLÞ be an ultrametric on L such that r � d jL� L. Then, L

contains a d-clopen neighbourhood G of x.

Proof. Let g > 0 and e > 0 be such that Nr
e ðxÞHNd

g ðxÞHNd
2g ðxÞHL.

Then, G ¼ Nr
e ðxÞ is a d-clopen subset of ðX ; d Þ. Indeed, let hðeÞ > 0 be as in the

definition of the relation r � d jL� L, and let d ¼ minfhðeÞ; gg. Take a point

y A G and a point z A X such that dðy; zÞ < d. Note that Nd
d ðyÞHNd

g ðyÞH
Nd

2g ðxÞHL because y A GHNd
g ðxÞ. Therefore, da hðeÞ implies

z A Nd
d ðyÞHNd

hðeÞðyÞVLHNr
e ðyÞ ¼ Nr

e ðxÞ ¼ G

because r is an ultrametric. That is, DdðGÞb d > 0. r

Proposition 3.7. Let ðX ; d Þ be a metric space, x A X and let d > 0. Then,

CNd
d ðyÞ ¼ CNd

d ðxÞ for every y A CNd
d ðxÞ.

Proof. Follows from the definition of d-chainable points. r

Proposition 3.8. Let ðX ; d Þ be a metric space, x A X , and let d > 0. Also, let

B be a d-clopen subset of ðX ; d Þ, and let g ¼ minfd;DdðBÞg. Then, CNd
g ðyÞH

CNd
d ðxÞnB for every point y A CNd

d ðxÞnB.
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Proof. Easy. r

Now, to every family V of subsets of a metric space ðX ; d Þ we associate the

number DdðVÞ ¼ inffDdðVÞ : V A Vg. The following trivial property of DdðVÞ
will be found useful in our next considerations.

Proposition 3.9. Let ðX ; d Þ be a metric space, and let V be a family of

subsets of X. Then, DdðVÞaminfDdð6VÞ;Ddð7VÞg.

For a metric space ðX ; d Þ and g > 0, we consider the following families of

subsets of X:

CN½X ; d � ¼ fCNd
d ðxÞ : x A X and d > 0g;

and

CNg½X ; d � ¼ fCNd
d ðxÞ : x A X and db gg:

Note that CN½X ; d � ¼ 6fCNg½X ; d � : g > 0g.

Proposition 3.10. Let ðX ; d Þ be a metric space, g > 0, and let VH
CNg½X ; d �. Then, there is a disjoint refinement U of V such that 6U ¼ 6V and

UHCNg½X ; d �.

Proof. By Proposition 3.7, U ¼ fCNd
g ðxÞ : x A 6Vg is as required because

for every V A V and x A V there exists db g with CNd
g ðxÞHCNd

d ðxÞ ¼ V .

r

Lemma 3.11. Let ðX ; d Þ be a metric space, and let VHCN½X ; d �. Then,

there exists a disjoint family UHCN½X ; d � such that U refines V and 6U ¼ 6V.

Proof. Whenever nb 1, set Vn ¼ fV A V : V A CN1=n½X ; d �g. By Prop-

osition 3.10, the family V1 is refined by a disjoint family U1 HCN1½X ; d � such

that 6U1 ¼ 6V1. By Propositions 3.2 and 3.9, 6U1 is a d-clopen set with

Ddð6U1Þb 1. Hence, by Proposition 3.8, there exists a family W2 HCN1=2½X ; d �
which refines V2 and 6W2 ¼ ð6V2Þnð6U1Þ. Then, by Proposition 3.10, we

find a disjoint family U2 HCN1=2½X ; d � which refines W2 (and, hence, V2) and

6U2 ¼ 6W2. In this way, by induction, for every n > 1 there exists a dis-

joint family Un HCN1=n½X ; d � which refines Vn and 6Un ¼ ð6VnÞnð6Vn�1Þ.
The family U ¼ 6fUn : nb 1g satisfies all our requirements because V ¼
6fVn : nb 1g. r
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We accomplish the preparation for the proof of Theorem 3.5 by the following

consequence of Lemma 3.11.

Proposition 3.12. Let ðX ; d Þ be a metric space for which CN½X ; d � con-

stitutes a base for the topology of X. Then, every open cover V of X admits a

disjoint refinement UHCN½X ; d �.

Proof of Theorem 3.5. The implications (a) ! (b) ! (c) are obvious, while

the implication (c) ! (d) follows by Proposition 3.6.

(d) ! (e). Suppose that X is not a singleton. Also, let x A X and let e > 0. By

(d), there exists a proper d-clopen subset W of ðX ; d Þ such that x A W HNd
e ðxÞ.

We now merely set d ¼ DdðWÞ > 0. Then, by Proposition 3.2, CNd
d ðxÞH

CNd
d ðWÞ ¼ W HNd

e ðxÞ.
(e) ! (a). Again, we suppose that X is not a singleton. Note that, by (e), the

family CN½X ; d � constitutes a base for the topology of X. Hence, by Proposition

3.2, X contains a non-empty proper d-clopen subset A. Then, by Proposition 3.12,

there exists a disjoint cover U0 HCN½X ; d � of X which refines fA;XnAg. Relying

once again on Proposition 3.12, for every n > 0 we also construct a disjoint cover

Un HCN½X ; d � of X which refines both fNd
1=nðxÞ : x A Xg and Un�1. Thus, we

get a family 6fUn : n A NgHCN½X ; d � which is a base for the topology of

X. Hence, for every point x A X there exists exactly one decreasing sequence

fUnðxÞ A Un : n A Ng such that fxg ¼ 7fUnðxÞ : n A Ng. Take a point x A X . For

every n A N we now have that DdðUnðxÞÞ A ð0;þyÞ because, by construction,

UnðxÞ is a non-empty proper d-clopen subset of ðX ; d Þ. Let us also note that

CNd
Dd ðUnðxÞÞðxÞ ¼ UnðxÞ for every n A N :ð1Þ

Indeed, by Proposition 3.7, UnðxÞ A CN½X ; d � implies the existence of a d > 0

with UnðxÞ ¼ CNd
d ðxÞ. Hence, by Proposition 3.2, we get that DdðUnðxÞÞ

b d. Finally, by the same proposition, we have that CNd
Dd ðUnðxÞÞðxÞH

CNd
Dd ðUnðxÞÞðUnðxÞÞ ¼ UnðxÞ.
According to (1), we get that

fDdðUnðxÞÞ : n A Ng is a decreasing sequence;ð2Þ

and, more precisely, that

DdðUnþ1ðxÞÞbDdðUnðxÞÞ implies Unþ1ðxÞ ¼ UnðxÞ:ð3Þ

Merely, if DdðUnþ1ðxÞÞbDdðUnðxÞÞ for some n A N , then

UnðxÞ ¼ CNd
Dd ðUnðxÞÞðxÞHCNd

Dd ðUnþ1ðxÞÞðxÞ ¼ Unþ1ðxÞ:
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Whenever x; y A X are di¤erent, we now set nðx; yÞ ¼ minfn A N : y B UnðxÞg.

Next, we define a function r : X � X ! R by letting for every x; y A X that

rðx; yÞ ¼ maxfDdðUnðx;yÞðxÞÞ;DdðUnðx;yÞðyÞÞg if x0 y and rðx; yÞ ¼ 0 otherwise.

Clearly, rðx; yÞ ¼ rðy; xÞb 0 is always valid, and rðx; yÞ ¼ 0 if and only if x ¼ y.

Let us check the following important property of r. Take points x; y A X and an

n A N . Then,

y B UnðxÞ implies rðx; yÞbmaxfDdðUnðxÞÞ;DdðUnðyÞÞg:ð4Þ

Indeed, y B UnðxÞ implies nðx; yÞa n. Therefore, by (2), DdðUnðx;yÞðxÞÞb
DdðUnðxÞÞ. According to the definition of r, this implies that rðx; yÞbDdðUnðxÞÞ.
Hence, rðx; yÞbDdðUnðyÞÞ holds too because y B UnðxÞ is equivalent to

x B UnðyÞ.
We now complete the proof showing that r is as required in (a). First, we

show that r is an ultrametric on X. Take two di¤erent points x; y A X . Then, for

a point z A X , we distinguish the following two cases. If z B Unðx;yÞðxÞUUnðx;yÞðyÞ,
then (4) implies that

rðx; yÞ ¼ maxfDdðUnðx;yÞðxÞÞ;DdðUnðx;yÞðyÞÞgamaxfrðx; zÞ; rðz; yÞg:

If z A Unðx;yÞðxÞUUnðx;yÞðyÞ, then either z B Unðx;yÞðxÞ or z B Unðx;yÞðyÞ. Hence,

there exists a point t A fx; yg such that z B Unðx;yÞðtÞ and fUnðx;yÞðzÞ;Unðx;yÞðtÞg ¼
fUnðx;yÞðxÞ;Unðx;yÞðyÞg. Therefore, by (4), we get that

maxfrðx; zÞ; rðz; yÞgb rðz; tÞbmaxfDdðUnðx;yÞðzÞÞ;DdðUnðx;yÞðtÞÞg

¼ maxfDdðUnðx;yÞðxÞÞ;DdðUnðx;yÞðyÞÞg

¼ rðx; yÞ:

Next, we show that ra d. Take two di¤erent points x; y A X . Then, merely note

that dðx; yÞbmaxfDdðUnðx;yÞðxÞÞ;DdðUnðx;yÞðyÞÞg ¼ rðx; yÞ.
We finally show that r is a compatible metric on X. Towards this end, let

x A X and let k A N . Since 6fUn : n A Ng is a base for the topology of X, it

su‰ces to show that N
r

Dd ðUkðxÞÞðxÞ ¼ UkðxÞ. By (4), we get that N
r

Dd ðUkðxÞÞðxÞH
UkðxÞ. Take a point y A UkðxÞnfxg. Then, nðx; yÞ > nðx; yÞ � 1b k and

Unðx;yÞ�1ðxÞ ¼ Unðx;yÞ�1ðyÞ. Therefore, by (2) and (3), this implies that

DdðUkðxÞÞbDdðUnðx;yÞ�1ðxÞÞ > maxfDdðUnðx;yÞðxÞÞ;DdðUnðx;yÞðyÞÞg ¼ rðx; yÞ:

So, y A N
r

Dd ðUkðxÞÞðxÞ. r
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4. Characterizing Certain Zero-Dimensional Metrizable Spaces

The present section contains some possible applications of our previous

results. By a Polish space we mean a completely metrizable separable space. As

Example 2.6 demonstrates, there exists a zero-dimensional Polish space and a

complete compatible metric on it such that the corresponding ‘‘metric’’-proximal

hyperspace is connected. In e¤ect, this is the only non-trivial example, as our first

result here states.

Theorem 4.1. For a non-singleton zero-dimensional Polish space X, the fol-

lowing two conditions are equivalent:

(i) X is homeomorphic to the space of irrational numbers P.

(ii) ðFðXÞ; tdðd ÞÞ is connected for some d A DðXÞ.

Proof. The implication (i) ! (ii) follows from Example 2.6 and Theorem

2.1. Suppose that d is as in (ii). Then, ðX ; d Þ has only two d-clopen subsets. This

implies that X has no points of local compactness. Hence, by a result of [1], X is

homeomorphic to P. r

To prepare for our next application, we need the following example.

Example 4.2. There exists a complete metric d A DðNÞ on the set of natural

numbers N which is not uniformly equivalent to any ultrametric.

Proof. For every natural nb 1, let Yn ¼ f0; 1=n; . . . ; ðn� 1Þ=n; 1g and Xn ¼
Yn � fng. Also, let dn be the metric on Xn defined by dnððy 0; nÞ; ðy 00; nÞÞ ¼
jy 0 � y 00j. Finally, let X ¼ 6fXn : nb 1g, and let d be the metric on X defined

by dðx; yÞ ¼ dnðx; yÞ if x; y A Xn for some nb 1, and dðx; yÞ ¼ 1 otherwise.

Obviously, ðX ; d Þ is a countable discrete metric space. Therefore, it is homeo-

morphic to N . Also, d is clearly complete. We will show that d is as required.

Suppose that r is an ultrametric on X which is uniformly equivalent to d. Then,

in particular, there exists d > 0 such that dðx; yÞa 1=2 provided x; y A X and

rðx; yÞ < d. On the other hand, there also exists a natural m > 0 such that

rðx; yÞ < d provided x; y A X and dðx; yÞa 1=m. Since dðði=m;mÞ; ðði þ 1Þ=m;mÞÞ
¼ ji=m� ði þ 1Þ=mj ¼ 1=m for every i A f0; 1; . . . ;m� 1g, we have that

rðði=m;mÞ; ðði þ 1Þ=m;mÞÞ < d. Hence,

rðð0;mÞ; ð1;mÞÞamaxfrðð0;mÞ; ð1=m;mÞÞ; . . . ; rððm� 1Þ=m;mÞ; ð1;mÞÞg < d
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and therefore dðð0;mÞ; ð1;mÞÞa 1=2. However, by definition, dðð0;mÞ; ð1;mÞÞ ¼
j0 � 1j ¼ 1. A contradiction. r

Theorem 4.3. For a zero-dimensional metrizable space X, the following con-

ditions are equivalent:

(i) X is compact.

(ii) Any d A DðXÞ is uniformly equivalent to an ultrametric.

(iii) ðFðX Þ; tdðd ÞÞ is zero-dimensional for any d A DðX Þ.

Proof. If X is compact, then every two compatible metrics on X are

uniformly equivalent which is the implication (i) ! (ii). The implication (ii) ! (iii)

follows by Theorem 3.3. Suppose finally that (iii) holds but X is not compact.

Then, X must contain a closed copy of the natural numbers N . Let p A DðNÞ
be as in Example 4.2. By the Hausdor¤ extension theorem (see, for example, [7,

Theorem 3.2, ch. II]), p extends to a compatible metric d on X. Then, by

Example 4.2, the metric d is not uniformly equivalent to any ultrametric on X, so,

by Theorem 3.3, ðFðXÞ; tdðd ÞÞ is not zero-dimensional. A contradiction. r

To prepare for our next result, we need an example of a special metric on

another ‘‘standard’’ space. Namely, we consider the hedgehog JðoÞ of weight

o. We recall here its definition: as a set, JðoÞ ¼ Y=@, where Y ¼ o� ½0; 1� and

‘‘@’’ is the equivalence relation on Y defined by ða; xÞ@ ðb; yÞ i¤ (x ¼ y ¼ 0 or

ða; xÞ ¼ ðb; yÞ). The topology of JðoÞ is that induced by the metric d, defined as

dðha; xi; hb; yiÞ ¼ jx� yj if a ¼ b;

xþ y if a0 b;

�

where ha; xi and hb; yi are the equivalence classes associated to ða; xÞ, and

respectively, ðb; yÞ. Also, we consider the subset J0ðoÞ of JðoÞ defined by

ha; xi A J0ðoÞ if and only if either x ¼ 0 or x ¼ 1=n for some natural n > 0, and

we put

d 0 ¼ d j J0ðoÞ � J0ðoÞ:

Example 4.4. There exists a metric r A DðJ0ðoÞÞ such that ðJ0ðoÞ; rÞ has no

base of r-clopen sets.

Proof. For every a A o, pick a fixed sequence fxa
n : n A NgH ½0; 1� such that

xa
1 ¼ 1; jxa

n � xa
nþ1j < 1=a; nb 1; and lim

n!y
xa
n ¼ 0 ¼ xa

0 :

Recognizing special metrics by topological properties 161



Next, define X ¼ fha; xa
ni : a A o and n A Ng, and then set d 00 ¼ d jX � X .

Topologically, X is a copy of J0ðoÞ: actually, a homeomorphism may be

constructed using, for example, the fact that for every n A o, the two sets

Nd 0

1=nðh0; 0iÞnNd 0

1=ðnþ1Þðh0; 0iÞ and Nd 00

1=n ðh0; 0iÞnNd 00

1=ðnþ1Þðh0; 0iÞ are infinite.

Let us show that d 00 has the properties of the metric r in the statement.

Suppose V is any neighbourhood of h0; 0i such that V HNd 00

1 ðh0; 0iÞ. Note

that ha; xa
1i B V for every a A o. Then, whenever a A o, set aðVÞ ¼

minfnb 2 : ha; xa
ni A Vg. Hence,

Dd 00 ðV ;XnVÞa jxa
aðVÞ � xa

aðVÞ�1j < 1=a:

So, Dd 00 ðV ;XnVÞa infa Ao 1=a ¼ 0 which completes the proof. r

Theorem 4.5. For a zero-dimensional metrizable space X, the following

conditions are equivalent:

(i) For every d A DðXÞ there exists an ultrametric r A DðXÞ with r � d.

(ii) ðX ; d Þ has a base of d-clopen sets for any d A DðXÞ.
(iii) X is locally compact.

Proof. The implication (i) ! (ii) follows by Theorem 3.5. If X is not locally

compact, then it contains a closed copy of J0ðoÞ. Let p be a metric on J0ðoÞ as

that in Example 4.4. By the Hausdor¤ extension theorem, p extends to a com-

patible metric d on X. Then, by virtue of Example 4.4, the space X doesn’t admit

a base of d-clopen sets. That is, (ii) ! (iii) holds. Since every two metrics on a

compact space are uniformly equivalent, Theorem 3.5 completes the proof. r

5. On the Selection Problem for the Proximal Hyperspaces

This last section of the paper is devoted to some further results concerning

the selection problem for the proximal hyperspaces. The first one states the fol-

lowing generalization of [11, Theorem 1.2].

Theorem 5.1. Let X be a completely metrizable space, and let d A DðX Þ be

such that ðX ; d Þ has a base of d-clopen sets. Then FðXÞ has a tdðd Þ-continuous

selection.

To prepare for the proof of Theorem 5.1, we need a result about special

approximate selections on subsets of proximal hyperspaces. For a topological

space X and a subset AHX , we let FX ðAÞ ¼ fS A FðX Þ : S VA0qg. Suppose
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now that X is metrizable, d; r A DðX Þ, and e > 0. We shall say that a map

f : FX ðAÞ ! X is a tdðd Þ-continuous ðe; rÞ-selection for FX ðAÞ provided

(1) f is continuous with respect to the topology on FX ðAÞ induced by tdðd Þ,

(2) rð f ðF Þ;FÞ < e for every F A FX ðAÞ.

Lemma 5.2. Let ðX ; d Þ be a metric space which has a base of d-clopen sets,

and let A be an open subset of X. Then, for every r A DðX Þ and e > 0 there exists

a tdðd Þ-continuous ðe; rÞ-selection f : FX ðAÞ ! A for FX ðAÞ.

Proof. Let r A DðX Þ, and let e > 0. Since A is open, there is a cover V of

A which consists of d-clopen subsets of ðX ; d Þ and diamrðVÞ < e, V A V. To

every V A V we associate a number nðVÞ A N by letting nðVÞ ¼ minfk A N :

DdðVÞb 1=kg. Take now a well-ordering f on the set V. Next, define another

well-ordering � on V by W � V provided either nðWÞ < nðVÞ or nðWÞ ¼ nðVÞ
and W fV . Finally, for every V A V we set

TV ¼ fF A FðXÞ : F VV 0q and F VW ¼ q for every W � Vg.

Obviously, this defines a disjoint cover fTV : V A Vg of FX ðAÞ. Let us show that

each TV is tdðd Þ-open. Suppose that C A TV . Then, C1 ¼ fF A FðXÞ : F VV 0qg
is a tdðd Þ-neighbourhood of C. On the other hand, DdðfW A V : W � VgÞb
1=ðnðVÞÞ because W � V implies nðWÞa nðVÞ. Therefore, by virtue of

Proposition 3.9, C2 ¼ fF A FðXÞ : Ddð6fW : W � Vg;F Þ > 0g is also a tdðd Þ-

neighbourhood of C. This completes the verification because C A C1 VC2 HTV .

Define now a tdðd Þ-continuous map f : FX ðAÞ ! A by setting f jTV : TV ! V to

be a constant map whenever TV is nonempty. This f is as required. Indeed, for

every F A FX ðAÞ there exists exactly one VðFÞ A V with F A TVðFÞ. Then,

f ðF Þ A VðFÞ implies that rð f ðFÞ;F Þa diamrðVðFÞÞ < e. r

Proof of Theorem 5.1. Let ðX ; d Þ be as in the statement. Note that,

by Theorem 3.5, X is strongly zero-dimensional. Then, take a complete ultra-

metric r A DðXÞ. It will be now su‰cient to construct a sequence f fng of tdðd Þ-

continuous ð2�n; rÞ-selections fn for FðXÞ such that rð fnðFÞ; fnþ1ðFÞÞ < 2�n for

every F A FðXÞ and n A N . This is what we shall do. Since the existence of f0

follows from Lemma 5.2, we may suppose that fn has already been constructed

and we have to define fnþ1. Since r is an ultrametric, U ¼ fNr
2�nðxÞ : x A Xg

defines a disjoint open cover of X. Then, f �1
n ðUÞ defines a disjoint tdðd Þ-open

cover of FðX Þ. On the other hand, f �1
n ðUÞHFX ðUÞ for every U A U, and to
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every F A FðXÞ it corresponds exactly one UðFÞ A U such that N
r

2�nð fnðFÞÞ ¼
UðF Þ and F VUðFÞ0q (because r is an ultrametric). Now, by Lemma 5.2, for

every U A U there exists a tdðdÞ-continuous ð2�ðnþ1Þ; rÞ-selection fU : FX ðUÞ ! U

for FX ðUÞ. Then, we may define a tdðd Þ-continuous ð2�ðnþ1Þ; rÞ-selection fnþ1 for

FðX Þ by letting fnþ1j f �1
n ðUÞ ¼ fU j f �1

n ðUÞ for every U A Un. This fnþ1 is as

required. Indeed, F A FðXÞ implies fnþ1ðF Þ ¼ fUðFÞðF Þ A UðFÞ ¼ N
r

2�nð fnðF ÞÞ.
r

By Theorems 5.1 and 4.5, we get the following consequence.

Corollary 5.3. Let X be a zero-dimensional locally compact metrizable

space. Then, for every compatible metric d on X there exists a tdðd Þ-continuous

selection for FðX Þ.

Concerning the right place of Theorem 5.1, a word should be said. As the

proof of this theorem shows, our approach is based on the metric generation

of proximal hyperspaces, for a natural generalization of Theorem 5.1 in terms of

‘‘hit-and-miss’’ topologies on FðXÞ we refer the interested reader to [13]. Let

StdðX Þ be the set of those metrics d A DðXÞ for which FðX Þ has a tdðd Þ-

continuous selection. Then, by Theorem 3.5, we get the following equivalent

reading of Theorem 5.1 in terms of special relations with the compatible ultra-

metrics on a metrizable space.

Corollary 5.4. Let X be a completely metrizable space. Then, for every

ultrametric r A DðXÞ we have that fd A DðXÞ : r � dgHStdðXÞ.

Relying once again on Theorem 3.5 and the fact that, for r; d A DðX Þ, the

relation r � d implies tdðrÞ H tdðd Þ, we might read Corollary 5.4 (hence, Theorem

5.1 as well) as the fact that StdðXÞ contains all compatible ultrametrics on a

completely metrizable space X. Concerning the selection problem for the proximal

hyperspaces on strongly zero-dimensional metrizable spaces, this presents a bit

more information, but related especially to the role of the metric property of

completeness. From this point of view, our next result presents an improvement in

the direction of an ultrametric condition.

Theorem 5.5. Let X be a completely metrizable space, and let d A DðX Þ be

such that, for some point z A X , the subspace Xnfzg has a base of d-clopen sets.

Then FðXÞ has a tdðd Þ-continuous selection.
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To prepare for the proof of Theorem 5.5, we need the following proposition.

Proposition 5.6. Let ðX ; d Þ be a metric space, and let Z be a non-empty d-

clopen subset of ðX ; d Þ. Define a map j : FX ðZÞ ! FðZÞ by letting jðSÞ ¼ S VZ

for every S A FX ðZÞ. Then, j is continuous with respect to the topologies induced

by tdðd Þ on FX ðZÞ and tdðd jZ�ZÞ on FðZÞ, respectively.

Proof. Let p ¼ d jZ � Z. Note that, by [5, Lemma 4.1], the space

ðFðZÞ; tdðpÞÞ coincides with FðZÞ equipped with the relative topology of

ðFðX Þ; tdðd ÞÞ. Then, take an S A FX ðZÞ, and let dUep be a basic tdðpÞ-

neighbourhood of jðSÞ in FðZÞ. Since Z is a d-clopen subset of ðX ; d Þ, we

now have that dUed ¼ dUep. Then, let V ¼ fXnZgUU if S0 jðSÞ and

V ¼ U otherwise. In this way, we get a tdðd Þ-neighbourhood dVed of S with

jðdVedÞHdUep. r

Proof of Theorem 5.5. Let X and d A DðXÞ be as in the statement of this

theorem. By condition, there exists a point z A X such that every x A Z ¼ Xnfzg
has a local base of d-clopen subset of ðX ; d Þ. Suppose that Z0q. Next, for

every x A Z pick a fixed d-clopen subset Zx of ðX ; d Þ such that x A Zx and z B Zx,

and then set l ¼ minf1; supfDdðZxÞ : x A Zgg. For every n A N we now define a

non-empty set Zn ¼ 6fZx : x A Z and DdðZxÞb l=2ng which, by Proposition

3.9, is a d-clopen subset of ðX ; d Þ with DdðZnÞb l=2n. It is clear that Z ¼
6fZn : n A Ng. Then, define a map g : FX ðZÞ ! N by gðSÞ ¼ minfn A N :

S VZn 0qg, S A FX ðZÞ. For every n A N , we also define a map jn : FX ðZnÞ !
FðZnÞ by letting jnðSÞ ¼ S VZn for S A FX ðZnÞ. Finally, for every n A N we set

dn ¼ d jZn � Zn. By virtue of Proposition 5.6, each jn is continuous with respect

to the topologies induced by tdðd Þ on FX ðZnÞ and tdðdnÞ on FðZnÞ, respectively.

By Theorem 5.1, for every n A N there exists a tdðdnÞ-continuous selection fn for

FðZnÞ because each Zn has a base of dn-clopen subsets. We now define a map

f : FðXÞ ! X by f ðSÞ ¼ fgðSÞðjgðSÞðSÞÞ if S A FX ðZÞ and f ðSÞ ¼ z otherwise. In

this way, we get a selection f for FðXÞ which is tdðd Þ-continuous at fzg (let W

be any neighbourhood of z: then S A dWed implies f ðSÞ A SHW ). So, to finish

the proof, it only remains to show that f is tdðd Þ-continuous at the points of

FX ðZÞ. Take any S A FX ðZÞ and, for reasons of convenience, set Z�1 ¼ q. Since

ZgðSÞ and ZgðSÞ�1 are d-clopen subsets of ðX ; d Þ, the set

TS ¼ fF A FðXÞ : F VZgðSÞ 0q and DdðF ;ZgðSÞ�1Þ > 0g

defines a tdðd Þ-neighbourhood of S in FX ðZÞ. On the other hand, F A TS implies
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gðF Þ ¼ gðSÞ. Hence, TS HFX ðZgðSÞÞ and, therefore, f jTS is tdðd Þ-continuous

because f jTS ¼ fgðSÞ � jgðSÞ jTS. r

By Theorem 5.5 (see, also, Theorem 4.5 and Example 4.4), we get the fol-

lowing interesting consequence. Here, a space X is locally compact modulo one

point if Xnfxg is locally compact for some x A X ; observe that every metrizable

space, which is locally compact modulo one point, is completely metrizable.

Corollary 5.7. Let X be a zero-dimensional space which is locally compact

modulo one point. Then, for every compatible metric d on X there exists a tdðd Þ-

continuous selection for FðXÞ, i.e. StdðX Þ ¼ DðXÞ. In particular, StdðJ0ðoÞÞ ¼
DðJ0ðoÞÞ.

We conclude the paper by suggesting some possible lines of development for

the subjects we have dealt with, and pointing out related open questions. The

hypothesis on the metric d in Theorem 5.5 defines the following natural class of

‘‘metric’’-disconnected spaces. Namely, one can say that a metric space ðX ; d Þ is

totally disconnected with respect to d, or totally d-disconnected, if every singleton

of X is an intersection of d-clopen subsets of ðX ; d Þ. Here is an example of the

most natural (strongly) 0-dimensional metrizable space for which this property

fails.

Example 5.8. There exists a compatible metric s on the disjoint sum

J0ðoÞl J0ðoÞ such that ðJ0ðoÞl J0ðoÞ; sÞ is not totally s-disconnected.

Proof. Let Z be the set o� ½0; 1� � f1; 2g, and introduce on Z the equiv-

alence relation ‘‘A’’ defined by:

ða; x; iÞAðb; y; jÞ , ððx ¼ y ¼ 0 and i ¼ jÞ or ða ¼ b and x ¼ y ¼ 1Þ

or ða; x; iÞ ¼ ðb; y; jÞÞ:

Consider the metric p on Z=A, defined by

pðha; x; ii; hb; y; jiÞ ¼ ð1 � ji � jjÞ � dðha; xi; hb; yiÞ þ ji � jj

� minfdðha; xi; ha; 1iÞ þ dðha; 1i; hb; yiÞ; dðha; xi; hb; 1iÞ

þ dðhb; 1i; hb; yiÞg;

where d is the standard metric on JðoÞ.
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For i ¼ 1; 2, put Zi ¼ fha; x; ii : ha; xi A Xg, where X is the subset of JðoÞ
defined in Example 4.4. Since, for i ¼ 1; 2, the function j : X ! Zi defined by

jðha; xiÞ ¼ ha; x; ii is an isometry with respect to d 00 ¼ d jX � X and pi ¼
p jZi � Zi, the space Zi is a copy of J0ðoÞ, and it is easy to check that Z1 UZ2 is

homeomorphic to J0ðoÞl J0ðoÞ (we may consider the points of kind ha; 1; ii as

belonging, as well, to the first or second J0ðoÞ). On the other side, by virtue of

Example 4.4, Z1 UZ2 is not totally disconnected with respect to the metric in-

duced by p. r

The characterization below makes more transparent the interest to the class

of totally d-disconnected metric spaces.

Theorem 5.9. For a zero-dimensional metrizable space X, the following two

conditions are equivalent:

(i) ðX ; d Þ is totally d-disconnected for any d A DðX Þ.
(ii) X is locally compact modulo one point.

Proof. If X is not locally compact modulo one point, then it has a non-

empty proper clopen subset Z such that both Z and XnZ are not locally

compact. Then, each of the spaces Z and XnZ contains a closed copy of J0ðoÞ.
Therefore, in this case, X contains a closed copy of J0ðoÞl J0ðoÞ. Let s be a

metric on J0ðoÞl J0ðoÞ as that in Example 5.8. By the Hausdor¤ extension

theorem, s extends to a compatible metric d on X. Then, by Example 5.8, the

metric space ðX ; d Þ fails to be totally d-disconnected. This shows (i) ! (ii). Since

the inverse implication is obvious, the proof completes. r

According to Theorem 5.9 and Corollary 5.7, the following question is of

certain interest.

Question 1. Let X be a (strongly zero-dimensional) completely metrizable

space, and let d A DðXÞ be such that ðX ; d Þ is totally d-disconnected. Does there

exist a tdðd Þ-continuous selection for FðX Þ?

In view Example 5.8, the following more particular question is also open.

Question 2. Let X be a metrizable scattered space, and let d A DðX Þ be

such that ðX ; d Þ is totally d-disconnected. Does there exist a tdðd Þ-continuous

selection for FðX Þ?
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Example 5.8 also suggests a problem in another direction, i.e., weighing how

important is this metric property of disconnectedness.

Question 3. Let X be a metrizable scattered space. Does StdðXÞ coincide

with DðX Þ?

The above question is open even in the special case of X ¼ J0ðoÞl J0ðoÞ.
Finally, a last question which naturally arises from Corollary 2.7.

Question 4. Let X be a metrizable space which is scattered with respect to

compact subsets, i.e. every non-empty closed subset of X contains a non-empty

compact and relatively open subset. Does StdðXÞ coincide with DðX Þ?

In conclusion, the authors would like to express their sincere appreciation to

the referee for many helpful suggestions and remarks.
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