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MODULES OF INFINITE PROJECTIVE DIMENSION OVER

ALGEBRAS WHOSE IDEMPOTENT IDEALS ARE

PROJECTIVE
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FlavioU. Coelho, Eduardo N. Marcos, Hector A. Merklen, and

Maria I. Platzeck

Abstract. Let A be a finitedimension algebra over an algebraically

closed field such that all its idempotent ideals are projective. We

show that if A is representation-infinite and not hereditary, then

there existinfinitelymany nonisomorphic indecomposable ^-modules

of infinite projective dimension.

In [2], M. Auslander, M. I. Platzeck and G. Todorov have studied

homological properties of the idempotent ideals of an artin algebra A. They

gave there a characterization of the idempotent two sided ideals which are

projective left A -modules. Their main motivation for this study came from the

work of Cline Parshall-Scott [6],Dlab-Ringel [7, 8] and Burgess-Fuller [5].Also,

in [9], Platzeck has studied artin rings with the property that all their idem-

potent ideals are projective. In particular, she has shown that the finitistic

projective dimension of such a ring is at most one.

Let A be a finitedimensional fc-algebra,where k is an algebraically closed

field,and assume in addition that each idempotent ideal of A is a projective A-

module. By Platzeck's result, the projective dimension of any indecomposable

nonprojective ^-module is either one or infinite.Therefore, if A is not hereditary,

then there always exist nonprojective indecomposable
^4-modules

of infinite

projective dimension. In case A is representation-infinite (that is, such that

there exist infinitely many nonisomorphic indecomposable A -modules) and not

hereditary, one can ask if the number of nonisomorphic indecomposable A-

modules of infinite projective dimension can be finite.The main aim of this

paper is to show the following result.
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Theorem. Let A be a finite dimension indecomposable algebra over an

algebraically closed field. Suppose that all idempotent {bilateral) ideals are

projective A-modules. If A is representation-infiniteand not hereditary, then there

exist infinitely many nonisomorphic indecomposable A-modules of infinitepro-

jective dimension.

The proof of this theorem will be given in section 3. Observe that if A is

such that allidempotent ideals are projective and there exist only finitelymany

nonisomorphic indecomposable vl-modules of infiniteprojective dimension, then

the projective dimension of all but finitelymany nonisomorphic indecomposable

v4-modules is at most one, because the finitisticprojective dimension is at most

one. We will use the fact that the latter condition is equivalent to saying that A

is a right glueing of tiltedalgebras in the sense studied by I. Assem and F. U.

Coelho in [1]. In section 1 we shall recall some basic facts in representation

theory of algebras, and also recall the notion and basic properties on right glued

algebras. Section 2 will be devoted to some preliminary results on algebras

whose idempotent ideals are projective modules.

1

1.1.

Preliminaries

Unless otherwise stated, all algebras in this paper are basic, connected

finite dimensional algebras over a fixed algebraically closed field k. Therefore,

any algebra A can be viewed as a quotient kQ(A)/I of a path algebra kQ(A),

where Q(A) is a finite quiver and / is an admissible ideal of kQ(A). Recall that

an ideal / of kQ(A) is said to be admissible if there exists an n such that

J2 =3 / => /", where / is the ideal of kQ(A) generated by the arrows from Q(A).

The elements of an admissible ideal are called admissible relations. The uniquely

determined quiver Q{A) will be referred to as the ordinary quiver of A. For a

given quiver Q, we shall denote by Qq and by Q＼, the set of vertices and arrows

of Q, respectively. If a is an arrow in Q＼ then s(tx) and e(a) denote, respectively,

the start and the end vertices of a. A loop is an arrow a such that s(a) = e(a).

Following [4], we shall sometimes equivalently consider an algebra as a ^-linear

category. An ideal is always a two sided ideal.

Let / be an admissible ideal in a path algebra kQ and let a,be Qq. We

denote by I(a, b) the set of the elements £) A,-,yt e /, where, for each i,A,-e k, and

the path yt starts at a and ends at b.

1.2. For a given algebra A, let A-mod denote the category of finitely

generated left
^4-modules.

All modules and maps are in A-mod. Denote by ^f-ind
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the category with one representative of each isoclasse of indecomposable A-

modules.

Given M e A-mod, denote by add M the fullsubcategory of A -mod consisting

of all finitedirect sums of summands of M.

Let A = kQ(A)/I be an algebra and let a e (Q(A))0. Denote by S(a) the

simple A -module associated to a and by P{a) the projective cover of S(a). It is

well-known that there existsan equivalence between the category A-mod and the

category of the (g(,4),/^representations. Recall that a (Q(A),/^representation

X is given by X = ({Xi)ie(QiA))o,(/a)ae(e^))1),where for each i e (Q{A))Q, Xt is a

finite-dimensional fc-vector space, for each <xe(Q(A))l, fa is a linear trans-

formation from Xj(a) to Xe(a), and such that these linear transformations are

subjected to the relations of /. We shall now agree to identify a kQ(A)/I-

module with the corresponding (Q{A), I)-representation.

We denote by pdZ the projective dimension of the module X. Also, the

global and the finitisticprojective dimensions of A are defined, respectively, by

gl.dim A ―maxjpdX : X e A-ind} and

fpd A = maxjpd X : X e A-ind and pd X < oo }

1.3. We shall now recall the notion of right glued algebras introduced in

[1] that will be needed in the proof of our main theorem. Let B＼,...,Bt be

representation-infinite tilted algebras having complete slices Ei,...,E, respec-

tively,in the preinjective components and no projectives in these components,

B = B＼ x ･･･ x Bt and C be a representation-finite algebra. An algebra A is

called a right glueing of B＼,...,Bt by C along the slices £i,...,Sr or, more

briefly,to be a right glued algebra if A = C or:

(RG1) each of B＼,...,Bt and C is a fullconvex subcategory of A, and any object

in A belongs to one of these subcategories;

(RG2) no injective A -module is a proper predecessor of the union Si U ･･･UX,,

considered as embedded in
^4-ind;

and

(RG3) B-ind is cofinitein y4-ind.

The algebra C being an arbitrary representation-finite algebra, the com-

ponent of the Auslander-Reiten quiver Ta of A containing Ei U ･･･U Y,t may

contain periodic modules and oriented cycles: it is actually an i-component

containing all the injective
^4-modules

(see [1] for details).On the other hand,

the projective v4-modules are either projective i?-modules or belong to the i-

component containing the S.'s.Consequently, the ordinary quiver of A is the
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union of the ordinary quivers of B＼,...,Bt and C together with some additional

arrows of the form x ―>■y, with x in the quiver of C, and y in the quiver of

some Bt. In particular, a right glued algebra A may be written as a lower

triangular matrix algebra

＼n b
where TV"is a J?-C-bimodule.

The next result,proven in [1], will be very useful. We say that a property

holds for almost all ^-modules if it holds for all but finitely many of the

indecomposable A -modules.

Theorem. Let A be a finite dimensional k-algebra, where k is an alge-

braically closed field. Then A is a right glued algebra if and only if pdX < 1 for

almost all indecomposable A-modules X.

We refer the reader to [1] for detailson right(and its dual left)glued

algebras.For unexplained notations and notions in representationtheory, we

refer the reader to [3, 101.

2. Algebras wlose idempotent Meals are projective

2.1. Let A be an algebra. If M, N are ^-modules, denote by tm{N) the

trace of M in N, that is, the submodule of N generated by all homomorphic

images of M in TV.If P is a projective
^4-module,

then Tp(A) is an idempotent

ideal of A, and any such ideal is obtained in this way. Observe also thatif P and

P' are projective A -modules, then rP(A) = xP>(A) if and only if addP = addi3'

(see [2]).

We are particularly interested in the situation when the algebra A satisfies

the following property:

(IIP) All idempotent (bilateral)ideals of A are projective yi-modules.

The class of algebras satisfying(IIP) clearlyincludes the hereditary and the

local algebras, but it also contains other algebras as shown by the following

examples.

Examples. Let Q be the quiver

■OH-O'
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(a) Let A{ be the £>algebra given by Q with relations a3 = 0 and y2 ― 0.

Clearly, tp(1)(^i) = P(l) and tp{2)(Ai) = P{2) c P{2) 0 P{2) c P(2), and hence

A＼ satisfies(IIP) (see [9](1.2)).

(b) Let Ai be the A:-algebra given by Q with relations a2 = 0, y2 ― 0 and

Pol = 0. In this case, tp{i)(A2) = P{1) and tp{2)(A2) = P(2) c P(2), and hence A2

also satisfies(IIP) (see [91(1.2)).

2.2. The next resulthas been proven in [9](2.5).

Theorem. If A is an algebra satisfying(IIP), thenfpd A < 1.

Corollary. Let A be an algebra satisfying(IIP). Then there existsan

indecomposable A-module M of infiniteprojectivedimension if and only if A is

not hereditary.

Our main result states that, if A is a representation-infinite algebra with

(IIP) which is not hereditary, then, in fact, there are infinitely many non-

isomorphic indecomposable ,4-modules with infinite projective dimension.

Therefore, from now on, we shall concentrate our attention on the study of

algebras satisfying (IIP) which are not hereditary. For such an algebra A =

kQ(A)/I, with / # 0, we shall see that Q(A) has always a loop and / is

generated by relations which contain always summands starting at loops. We

shall also discuss the notion of suitable arrows for A. The rest of this section

will be devoted to these questions.

2.3. We recall the following resultfrom [9](2.1),which holds for artin

algebras.

Proposition. Let A be an (artin)algebra with(IIP), and let P and P' be

indecomposable projective A-modules such that JJom^J3,/*')# 0. Then

Tp(P') ^ Pr, for some r > 0. Consequently,if P is not isomorphic to P', then

HomA(P',P) =0.

This proposition has the following nice consequence. Let A be an algebra

with (IIP). Then the indecomposable projective .4-modules P＼,...,Pn can be

indexed in such a way that Horn^P,-, Pj) = 0 whenever i <j. In particular, the

ordinary quiver Q(A) has no oriented cycles involving arrows which are not

loops. Example (2.1) shows that loops can occur in Q(A), and, In fact, we shall
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show now that they do occur if A is not hereditary.This fact will be a

consequence of the next proposition.

2.4. Proposition. Let A be an (artin)algebra satisfying{IIP).If P is an

indecomposable projectiveA-module whose endomorphism ringis a divisionring,

then radP is projective.As a consequence,pdiP/radP) < 1.

Proof. Since P is an indecomposable projective module, then P = P,-for

some i,in the indexing given in (2.3). Therefore, the projective cover of rad Pi,

P', belongs to add(P?- c ･･･ c?,). However, by hypothesis, Honu(P,-, radP,-) = 0

and then P' e add(P,-+i c ･･･ RPn)- Then tj≫(P,-)= radP,-, and hence, radi3,-is

projective, as required. □

2.5. Corollary. Let A be a basic {artin)algebra satisfying(IIP). Then A is

hereditary if and only if End^P) is a division ring for every indecomposable

projective module P.

Proof. By (2.4), rad P is a projective ^-module for every indecomposable

projective module P, and therefore the algebra A is hereditary. The converse is

direct. □

2.6. Corollary. Let A = kQ{A)/I be a finite dimension k-algebra with

(IIP). If Q(A) has no loops, then A is hereditary, that is, 1 = 0.

Proof. Let P(i) be the indecomposable projective associated with the

vertex i. Then, P(i) = Aet, where e, is an idempotent of A. Since Q(A) has no

loops and A satisfies(IIP), we infer that there are no oriented cycles in Q(A)

(2.3). Therefore

EndA(P(i))
ei(kQ(A))et

/(m)

is a division ring. This being true for each vertex i, we conclude, by (2.5),that A

is hereditary. □

2.7. For the rest of this section let A = kQ(A)/I be a nonhereditary

algebra over the algebraically closed field k, and satisfying (IIP). We shall

look now at the relations which generate /. Fix u e (Q(A))0 and let /?,･:u―>vt,

for i = 1,...,≪, be all the arrows starting at u which are not loops. Let

P ― Rni=lP{vi), where P(x) denotes the indecomposable projective module
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corresponding to the vertex x. Let

(cu...,cm):@P(vi)dl-+TP{P(u))

1=1

351

be the projective cover of tp(P(u)). Since A satisfies(IIP), then (ci,...,cm) is

indeed an isomorphism. Denote Pr = R"=lP{vj)di.

Proposition. Under the above hypothesis, there exists an isomorphism

(fix,...Jn, bn+l,...,*,):/"―> tp{P{u))

{reordering the summands of P' if necessary), with bn+i,...,bm e rad2 A.

Proof. We firstshow that there exists an isomorphism

(ci,...,C/_l,/?i,C/+i,...Cm)

n

i=＼

P{vt)*-+TP{P{u))

(using the above notations).Indeed, since$x exp{P{u)), and (ci,...,cw)is an

epimorphism, there exists

(<Ji,...,8n)g 0 P{vif, such that ft

!=1

m
£

1=1

SiCt

Observe that c,-e rad A because u,-# m for each i = 1,...,≪, and the rela-

tions are all admissible. Then, there exists an / such that 0 # Si $ rad A.

Therefore Si = kpi, Xi e k. We claim that/' = (c＼,...,Q-i,/^, c/+i,...cm) is also

an isomorphism. It sufficesto show that itis an epimorphism. This is indeed the

case, because if x e xp(P(u)), then

X =
m£

fijCj = Mi

＼ j*l /

J2 w

and then x e Im/', which proves the claim. Reordering the summands of P', we

have an isomorphism

(ft, ci,...,c/_i,c/+i,...c,) :i5'―> Tp(P{u)).

Observe that the same procedure can be repeated for /?2,...,/?B.In the i-th

step one can choose the element c/.we removed to be differentfrom /?!,..-Pi-＼

because the relations are admissible. Then, reordering the summands of P1 we

will end up with an isomorphism (/?l5...,fin,b'n+},...,b'm) from P' to rp(P(u)).
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By subtracting, for each i = 1,..., m ― n, from the h'n+i

combinations of /?!,...,/?,, we obtain bn+＼,... ,bm in

(/?,,...,/?,bn+＼,... ,bm) is the required isomorphism.

appropriate linear

rad2 A such that

□

2.8. We have seen in (2.6) that, since A = kQ(A)/I is not hereditary, Q(A)

has loops. The next result, which follows easily from the above proposition,

shows that there is a set of relations, each of them with a summand starting at a

loop, which generates /.

Corollary. Let A ― kQ(A)/I be an algebra satisfying {IIP), and Pu...,Pn

be arrows in Q(A) which are not loops and starting at the same vertex. If

r = YTi=＼ yfii E I> for some linear combinations of paths yl1... ,yn, then yt e I, for

each i = !,...,≪.

Proof. By (2.7), there exists an isomorphism (/?l5...,fin,bn+i,...,bm) from

P' to %p{P(u)). The hypothesis implies that the element (yl5...,yB,0,..., 0) goes

to zero under this isomorphism. Therefore, y,-= 0, for each /=!,...,≪. □

2.9. In the proof of our main theorem in section 3, we will consider the

following construction. We shall start with a subquiver Q' of Q(A) and extend a

representation of Q' to one of Q(A) through an arrow a^ (O')i- Clearly, this

can not be done always because of the relations involving a. However, we shall

show that, under the hypothesis of the theorem, we can always find a suitable

arrow for this extension. We shall prove now some preliminary results in this

direction. We start with an example.

Example. Let A = kQ(A)/I, where Q(A) is the quiver

1 ―-o a

and / is generated by the relations So.―yfi,fia and a2. We leave to the reader to

show that A satisfies(IIP). Consider the full subquiver Q' of Q containing the

vertices 1 and 3 and let V be an indecomposable (/-representation. Observe that

we can extend V to a Q(A)-representation V given by V＼ = V＼, Vi = V＼,

Vi― V3, fy =fy, fs = Id, and fp=fa = 0. However, if one tries to extend V
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to V through the arrow /?in the same fashion, that is, by putting, V＼ = V＼,

F3 = V3, V2 = V3Jy =fyjp = Id, andfs =fa = 0, thisdoes not define a Q{A)-

representation because of the relation 8a ―yfi.In the sense given by the definition

below, the arrow S is suitable and the arrow 8 is not suitable.

Definition. An arrow f$x: u ―* v＼which is not a loop, is called suitableif

there are no relations of the type

i

1=1 ij

where arrow yt and ytJ-are linear combinations of paths from u,-to a (fixed) vertex

w, y{ # 0 and dy e rad
^4,

that is,it is a nonzero linear combination of ad, which

/ > 0 and oLjis a loop around m.

2.10. Fix u £(Q(A))0 and let fit: u ―> i;,-,for i = 1,...,≪, be all the arrows

starting at u which are not loops. We will show that if there are no loops at the

vertices v＼,...,vn and u has a unique loop around it, then there exists a suitable

arrow starting at u. We need the following result.

Proposition. Let u e (Q(A))0 and let fit: u ―> vi}for i = 1,...,≪ be all the

arrows starting at u which are not loops. Px is not suitable, then there exists a

path of length greater than zero from v＼ to Vj,for some i.

Proof. Assume that Px satisfies a relation

!=1

E yyfi& (･)

where y{ and ytjare linear combinations of paths from vt to a (fixed) vertex w,

y1 # 0 and dy(e r&dA) are nonzero linear combinations of aj, with / > 0 and 09

is a loop around ut. Let P = (ffi=lP{vi), and P' = R"=lP(vi)di ^rP(P(u)). We

know by (2.7) that there exists an isomorphism

(f3{,...Jn,bn+l,...,bm):P' - rP(P(u))

with bl=pl,...,bn=fln and ftB+1,...,bm e rad2 A. Since jS^ g tp(!;.)(P(u)) c

t^(P(m)), we can write

PAj = (･･)
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with fiyilinear combinations from the end of hi to the end of /?,-.In particular,

since b＼= fi＼,we have that /^ goes from v＼to u,-.Observe that piyie rad A

because fitSijemd2A, all relations are admissible and (b＼,...,bm) is a mono-

morphism. Assume that there are no paths of length greater than zero from v＼to

Vj, for any i. Hence /i^ = 0, for each /. Replacing now (**) in (*), we get a

relation, which is a linear combination of b＼,...,bm with the coefficients of

b＼―Px equal to yx. Using again that(b＼,...,bm) is a monomorphism, we conclude

that yi = 0, a contradiction. Therefore, there existsa path from v＼to some vi}as

required. □

2.11. The next result will be essentialin the proof of our main theorem.

Corollary. Let u e (Q(A))0 and let /?,-:u ―>i;,-,/or i = 1,...,n, be all the

arrows starting at u which are not loops. Suppose, furthermore, that there are no

loops at the vertices v'ts.Then one of the fi{sis suitable.

Proof. Since there are no oriented cycles involving v＼,...,vn,there exists a

partial order for these vertices given by: Vi< Vjif and only if there exists a path

from Vf to Vj.Let u/ be a maximum element under this order. The corresponding

arrow /?/is, clearly, by (2.10), a suitable arrow. □

2.12. We end this section with the following example which shows that the

hypothesis of the nonexistence of loops around the vertices v'tsis essential for

the validity of (2.11).

Example. Let A be the algebra given by the quiver

■CV-O'

with relations a2 = 0, y2 = 0 and fia ― yfi.Observe that A satisfies(IIP) but there

are no suitable arrows.

3. The main theorem

3.1. In this section we shall prove our main result, that is, that any

representation-infinite artin algebra satisfying (IIP) and not hereditary has an

infinitenumber of nonisomorphic indecomposable modules of infiniteprojective

dimension. First we start observing that there are many such algebras, showing

examples of them. Then we will prove some preliminary results needed in the

proof of the theorem.
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Examples. The following are examples of representation-infinite artin

algebras satisfying (IIP) and not hereditary.

(a) Representation-infinite local algebras. Our main theorem is trivialin this

case, since the only modules of finite projective dimension are projective.

(b) Let Q be a quiver with at least one loop but not oriented cycles

containing an arrow which is not a loop. Consider the algebra A = kQ/I, where

/ is an admissible ideal generated by linear combinations of products of loops.

Then A satisfies(IIP) and it is not hereditary. Many of these algebras are

representation-infinite.

(c) Let A be the algebra given by the quiver

with relations a3

conditions.

= 0, y2 = 0 and /?.a = Q. Clearly, A satisfies

3.2. We shallneed the following lemma.

Lemma. Let R and B be algebras,

the required

M be a B-R-bimodule and

＼M B

// A satisfies(IIP), then B also does

Proof. Observe that we have an embedding of categoriesB ―mod ≪^

^4-mod, which preserves projectivemodules and resolutions.Let / be an

idempotent ideal of B. Therefore

is an idempotent ideal

f R 0＼ / 0 0

＼M B) ＼IM I

of A.

'-
(

In fact,

0 0＼

IM I)

J ＼M B) ＼IM

and

/ 0 0

＼IM I

)■

-

(

:) (R °

＼M B

0 0

IM I

)-(
0 0＼

IM l)
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Since A satisfies(IIP), we have that / is a projectiveA -module. On the

other hand, the natural epimorphism

n:A -> B given by
(r 0＼

n[ =b＼m b

takes projective modules to projective modules. Since n(J) ―I, we conclude that

/ is projective, as required. □

3.3 Corollary. Let A be a right glueing algebra of B＼,...,Bt by C. If A

satisfies(IIP), then Bj is hereditary for each i.

Proof. By (1.3), we know that

(c

＼M

0

*)

where B = B＼ x ･･･ x Bt and M is a 2?-C-bimodule. By the lemma above, B also

satisfies (IIP) and, in particular, fpdi? is at most one (2.2). On the other hand,

since B is a product of tilted algebras, we have that gl.diml?<2. Hence,

gl.dimi?< 1, and B is a product of hereditary algebras. D

3.4. We shall now prove our main theorem.

Theorem. Let A be a finite dimension indecomposable algebra over an

algebraically closed field k, satisfying (IIP). If A is representation-infinite and not

hereditary, then there exist infinitely many nonisomorphic indecomposable A-

modules of infinite projective dimension.

Proof. By (2.2), we know that fpd A is at most one. Assume that there are

only finitelymany nonisomorphic indecomposable ^-modules of infinite pro-

jective dimension. Therefore, pd M < 1 for almost all indecomposable A-

modules M.

By (1.3), A is then a right glueing of B＼,...,Bt by C, where C is

representation-finiteand, for each i, Bt is a representation-infinitetiltedalgebra.

By (3.3), each Bt is hereditary.

If now C = 0, then A is hereditary, a contradiction. Therefore C # 0. By the

description of right glued algebras, the ordinary quivers of B＼,...,Bt, and C are

full convex subquivers of Q(A), and there are neither arrows from a vertex of
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Q{Bi) to a vertex of Q(Bj), if i #y, nor arrows from a vertex of Q(Bj) to Q(C),

for z = 1,...,?. Since <2C<4) *s connected, there are arrows from Q(C) to each

Q(Bt). For a given i, Bt is a connected representation-infinite hereditary algebra,

and then each vertex of Q(Bt) belongs to the support of infinitely many

indecomposable 2?,-modules. The strategy now is the following: we start with an

infinite family of indecomposable 5,-modules with support containing a vertex

which is the end of a convenient arrow /? which starts at Q(C). We shall then

extend each module of this family, through the arrow /?, to an indecomposable

v4-module which is not a 5-module, leading to a contradiction to the fact that

l?-ind is cofinite in A-ind. The key point of this proof is the choice of the arrow

fi.

Claim. There exists a suitable arrow from a vertex of Q(C) to a vertex of

Q(B).

Let F = {we (fi(C))o : there exists an arrow u ― y,with v e {Q{B))0}. Since

the only oriented cycles are sequences of loops, there exists a vertex uq e F such

that there are no paths in Q(C) from uq to any other vertex of F. Let i be such

that there is an arrow from uq to a vertex of Q(Bi). Without loss of generality,

suppose i = 1. Let fii: uq ―> v＼,...,/?,: mq ―* vn be all the arrows from ≪q to a

vertex of Q{B＼). Observe that, by the choice of uq, any path from wo to a vertex

of Q{B＼) has to pass through one of the /?-s. On the other hand, observe that

there are no loops around the vertices u-s because they belong to (Q(Bi))Q and

B＼ is hereditary. By (2.11), we infer that one of the $s is a suitable arrow. This

proves the claim.

Denote by /?: u ―> v a suitable arrow in (Q(A))l, with ue(Q(C))Q and

v e (Q(B＼))Q. Let now SCV be the (infinite) set of all nonisomorphic indecom-

posable B＼-modules whose support contains v. This means that if ((Mi)ie,Q,Bxy. ,

(fy)yein(Bi))) e ^v, then My # 0. We shall construct an infinite set of non-

isomorphic indecomposable A -modules which are not B＼-modules using the

(suitable) arrow fi. For an X = ((X;)/e(G(i?l))o, (/y)ye(e(Sl))i) e 3EV define X =

((Xi)ie(Q(A))Qi(fy)ye(Q(A))l)> bY

Xt =

r

IXv

10

if *e(OW)o

ifi ―u

otherwise

and / =

fy

Id

0

if y is an arrow in {Q(B＼))}

otherwise

Since /?is a suitable arrow, the representation X as defined above satisfiesall the

relations required to be an A -module. We shall show now that X is inde-
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composable. Suppose X ― Y＼c Yi, and define,for each i, Y[ by (Y/)y-= (7j)y-if

j e (Q(Bi)Q) and (Y-)j = 0, otherwise. Then X = Ff c 7^ in 5i-ind. Since X is

indecomposable, it follows that either Y[ = 0 or Y'2= 0. Therefore, either ^ or

Y2 is a sum of copies of the simple S(u) associated to u, contradicting the

hypothesis that fp = id. Moreover, if X and X' are two nonisomorphic inde-

composable B＼-modules in 9£v,then X and X are also nonisomorphic. Therefore,

there existinfinitelymany indecomposable ^-modules which are not B＼-modules,

a contradiction to the fact that 2?i-ind is cofinitein
^4-ind,

and the result is

proven. □
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