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WEIERSTRASS POINTS AND RAMIFICATION LOCI ON

SINGULAR PLANE CURVES

By

E. Ballico and S. J. Kim

Let X be a smooth compact RIemann surface (or a smooth projective

curve) of genus g. A classicaltopic of study in Complex Analysis and Algebraic

Geometry was the study of Weierstrass points of X. For a survey and the

history of the subject up to 1986, see [EH]. For another survey containing the

main definitions and results on Weierstrass points on singular Gorenstein

curves, see [G]. For the case of a base field with positive characteristic,see [L].

Since Weierstrass points are "special" points on a curve, they have been very

useful to study moduli problems. In particular, some subvarieties of the moduli

space of smooth genus g curves are defined by the existence of suitable

Weierstrass points. Several papers were devoted to the study of Weierstrass

points on some interesting classes of projective curves (e.g. smooth plane curves

and k-gonal curves). Our paper belong to this set of papers. We consider

singular plane curves with ordinary cusps or nodes as only singularities.We

believe that our paper gives a non-trivial contribution to the understanding of

the existence of certain types of Weierstrass points and osculating points on

these curves. In the firstsection we make easy extensions of [K2], Th. 1.1, to the

case of singular curves. In the second section we use deformation theory to

show the existence of several pairs (C,P) with C in integral nodal plane curve,

P e Creg, such that the tangent line D of C at P has high order of contact with

C at P (see Theorems 2.1 and 2.2 for precise statements). Calling X the

normalization of C and seen Pas a point of X, these pairs (C,P) satisfiesthe

conditions of Proposition 1.1 below and hence P is a Weierstrass point of X. In

the third section we consider the Weierstrass semigroup of the Weierstrass

points obtained in this way. Here the main aim is to give a recipe to extract

from the numerical calculations in [K2] as much informations as possible for the

Weierstrass semigroup of the pair (X,P). The case of a total inflection point for

nodal plane curves was considered in detailsin [CK]. Our recipe (see 3.1) gives
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some Informations when the plane curve has ordinary nodes and ordinary cusps

as only singularities.In section 4 we will construct nodal plane curves, say C,

with a high order inflection point P e Creg which is not a Weierstrass point of

the normalization X of C. In particular this construction shows that the results

in section 1 are reasonably sharp.

The firstnamed author was partially supported by MURST and GNSAGA

of CNR (Italy), by a joint program CNR-KOSEF.

§1. In this section we generalize [K2]. Th. 1.1, to the case of singular

plane curves.

Proposition 1.1. Fix integers d, u, m, x with m > 0, d >m + 3 > 0,

O + 2)(w+l)/2>x>0, m{d-u-3) > (d-2){d - l)/2-x >0. Let t<d-

u-3 he the first integer with mt > (d - 2){d - l)/2 - x. Let C a P2 be an

integral degree d curve with x double points {ordinary nodes or ordinary cusps) as

only singularities. Let X be the normalization of C {hence g := g{X) =

[d ―2){d ―l)/2 ―x). Assume the existence of a point P e Creg such that the

tangent line D to C at P as multiplicityat P. Then P {seen as a point of C) is a

Weierstrass point of X with h°(X,Ox(qP)) > 1 + (d - t - ＼)(d- t - 2)/2 - x.

Proof. By Serre duality and Riemann-Roch It is sufficientto check that

hQ{X,Kx{-gP)) >{d-t- ＼){d- t- 2)/2 - x. The canonical bundle Kx is

induced by the linear subsystem of H°(P2,0(d ―3)) formed by the curves of

degree d ― 3 passing through the x singular points of C. Thus it is sufficientto

note the existence of several reducible degree d - 3 curves M = tD + Z with Z

curve of degree d ―3 ―t containing Sing(X) and use the inequalities g <mt <

mu＼tP(C-M).

Now we consider the case in which the integral plane curve C has a smooth

point P such that there is a degree s > 1 curve E which osculates to high order

C at P. The proof of 1.1 gives with no change the following result.

Proposition 1.2. Fix integers d, s, m, e, x with e > 0, m > 0, s > 0,

d - 3 > es > 0, {d - se - 2)(d - se - l)/2 > x >0, me > {d - 2)(d - l)/2 - x > 0.

Le? C a P2 be an integral degree d curve with x double points (ordinary nodes

or ordinary cusps) as only singularities.Let X be the normalization of C (hence

g := g(X) ―(d ―2)(d ―l)/2 ―x). Assume the existence of a point P e Creg such

that there is a degree s curve E which intersects C at P with multiplicitym. Then
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P {seen as a point of X) is a Weierstrasspoint of X with h°(X:Ox(gP)) >

l + {d-se-l)(d-se- 2)/2 - jc.

Now we consider the case in which the point P is a singularpoint of C

and thereis a line D (or a degree s curve E) which osculateswith high order

one of the branches of the curve C at P.

Proposition 1.3. Fix integers d,s,m,e,x with e > 0, m> 0, s > 0, d ―3 >

es>0, (d-se-2)(d-se-l)/2>x>0, me > {d - 2)(d - l)/2 - x > 0. Let

C c=P2 be an integral degree d curve with x double points (ordinary nodes or

ordinary cusps) as only singularities.Let X be the normalization of C (hence

g := g{X) = (d ―2)(d ―l)/2 ―x). Let P be an ordinary node of C. Assume the

existence of a degree s curve E which intersects one of the two branches of C at P

with multiplicitym. Then the point P' e X corresponding to thisbranch ofCatP is a

Weierstrass point of X with h°(X,Ox{gP')) > 1 + (d + se - l){d - se - 2)/2 - x.

Proof. To copy the proof of 1.1itis sufficientto note that now we need

to count only the curves, M, of the form eE + Z with Z curve of degree

d - 3 - se containing Sing(C)＼{i>}.

The proof of 1.3 gives with no change the following result.

Proposition 1.4. Fix integers d, s, m, e, x with e > 0, m > 0, s > 0,

d - 3 > as > 0, (d - se - 2)(d - se - l)/2 > x > 0, me > {d - 2){d - l)/2 - x > 0.

Let C <^F2 be an integral degree d curve with x double points (ordinary nodes or

ordinary cusps) as only singularities.Let X be the normalization of C (hence

g := g(X) = (d ―2)(d ―l)/2 ―x). Let P be an ordinary cusp of C. Assume the

existence of a degree s curve E with P e E and such that E induces a degree ds

divisor on X whose component supported by the point P' of X corresponding to P

has degree m. Then P' is a Weierstrass point of X with h°(X,Ox(gP)) >

l + (d-se-＼)(d-se-2)/2-x.

§2. In this section we will give two related constructions of several pairs

{C,P) satisfying all the conditions of Proposition 1.1.

We will use the following notations. Fix integers d, m, x with d > m > 0,

x > 0. Fix P g P2, a line D with P e D and the length m scheme B with B c D

and i?reci―{P}, i.e. the divisor mP on the line D. Let V(B, d) be the set of

degree d curves containing B. Since m < d, we have dim (V(B,d)) = {d2 + 3d)/
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2 ―m. If S is a finite subset of P2, let V(B, d, S) be the linear subsystem of

V(B,d) formed by the curves of V(B,d) which are singular at each point of

S. Since being singular at a fixed point imposes at most 3 conditions at each

linear system of curves on a smooth surface,if dim(V(B,d)) > 3card(5') we see

that V{B,d,S) is non empty and dim{V(B,d,S)) > (dim(V(B,d)) - Scard^).

Furthermore, by [AC], Lemma 4.2, we see easily that if 5" is general

dim( V(B, d, $)) = dim( V{B, d)) - 3card(5) if dim( V(B, d)) > 3card(5) and

V{B,d,S) = 0 if dim(V(B,d)) < 3card(5). See Lemma 4.1 for more.

Theorem2.1. Fix integers d,m,xwithd > m>2, x > 0, 3x + m< (d2 + 3d)/2,

x < (d - 2){d - l)/2. Let S(x) be a general subset of P2 with card(S(x)) = x.

Then V(B, d, S(x)) is integral, non empty, of dimension (d2 + 3d)/2 ―3x ―m and

there is a pair (C,P) with C degree d integral plane curve with x ordinary nodes

as only singularitiesand P e Creg such that the tangent line D of C at P has

multiplicitym at P unless (d2 + 3d)/2 ― 3x + m and d2 + 6d = 8x + 4m; we may

take as C a general element of V(B,d,S(x)). If (d2 + 3d)/2 = 3x + m and

d2 + 6d = 8x + 4m and the unique C e V(B, d, S(x)) is not integral with ordinary

nodes at the points of S(x) as only singularities,then C = 2T with T integral

curve of degree d/2 intersecting D at P with multiplicity m/2.

Proof. The proof is a modification of the proof of [AC], Prop. 4.1. The

added difficultyis that now we are working on linear systems of curves

containing B. However if we use proper notations, we will be able to "copy"

the proof of [AC], Prop. 4.1. Look at that proof. Each time you see there a

complete linear system ＼Q＼in our situation thislinear system would be better

described as |C;|(―2?,-)in the following sense. We have a linear system V

contained in ＼d＼and a general Ze V intersects D in a divisor whose part

supported by P is Bt; furthermore, if in [AC] there is a system ＼Q + Cj＼,the

proper notation for us would be |Q + Cy-|(―I?,-―Bj) with B{ + Bj sum of

effective divisors on the line D. Since every two plane curves intersect, every

part of the long proof of [AC], Prop. 4.1, which concerns curves Q and Cj with

Q ･ Cj ― 0 may be ignored. In [AC] the letter 5 is used instead of x. For the

case x = 0 instead of the proof in [AC], p. 353, now it is sufficient to apply

Bertini's theorem (characteristic 0). The use of Bertini's theorem at the

beginning of step III of the proof of [AC], 4.1,is allowed because also in our

situation the linear system |2Ci|(―B＼) is not composed with a pencil. The

exceptional case "(d2 + 3d)/2 ― 3x + m and d2 + 6d = 8x + 4m" arises in the
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same way as the exceptional case in the statement of [AC], 4.1 (see [AC], end of

d. 356). With these remarks, the theorem follows.

Theorem 2.2. Fix integers d, m, x with d >m + 2>4, 0 < x <

(d ―2)(d ― 3)/2. Then there is a pair (C,P) with C degree d integralplane curve

with x ordinary nodes as only singularitiesand P e Creg such that the tangent line

D of C at P has multiplicity m at P.

Proof. Since x < (d ―2)(d ―3)/2 Itis very well known the existence of an

integral plane curve A with deg(A) = d ―1 and with x ordinary nodes as only

singularities.We fix P e P2＼A and a line D with P e D and D intersecting trans-

versally A. Consider the length m scheme B with B a D and BTe<i= {P}, i.e.the

divisor mP on the line D. Set Y :― ADD. We claim the existence of a flat

family of plane curves, all of them containing B and such that the general curve

C of this family satisfiesthe thesis of the theorem. Let U be the normalization

of A and M ― UUD (disjoint union) the normalization of Y. We consider the

deformation theory of nodal plane curves containing the scheme B. This well-

known theory is just the union of the classical deformation theory of plane

curves (see e.g. [T]) and the deformation theory due to Kleppe (see e.g. [P],

Th. 1.5) of projective varietiescontaining a fixed subscheme. By this theory (and

see in particular [HH], §2] to prove the claim it is sufficientto use the following

two remarks. Note that the normal bundle of D in P2 has degree 1 and A

intersects transversally D at exactly d ―＼ points,. Thus I + (d ―I) ―m> ―1

and hence the line bundle of degree ＼+ {d―＼)―m on D is not special,i.e.,

with the notations of [HH], §2, hl(D, {NY＼D)~) = 0. Calling ADD the corre-

sponding subset of UHD, note that deg((NM＼U+)) = (d - I)2 -x + d- 1 >

2g(M) - 2 + d - I; hence hl(D, (NM＼U)+) = 0 and the the restriction map

(Nu＼U)+) -> (Nm＼U)+＼(ADD) is suriective.

§3. In this section we give a recipe to extract from the numerical cal

dilationsin [K2] as much informations as possible for the Weierstrass semi

erour) of the rair (X.P).

Proposition 3.1. Fix integers d, i, x, m with d ― 3 > /, x > 0,

d ―3 < m < d ― 1, and a finite set S a P2 with card(S) = x. Assume

h1(P2,Is(d ―3 ―/)) = 0. Let C a P2 be an integral degree d curve with

S = SinaiC) and with only ordinary nodes and ordinary cusps as singularities.Let
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X he the normalization of C {hence g := g(X) = (d ―2){d ―l)/2 ―x). Assume

the existence of a point P e Creg such that the tangent line D to C at P as

multiplicitym at P. See P as a point of X, too. Then the part of the gap sequence

of the pair (X, P) concerning the divisors tP with t < im is the one described in

[K2], Th. 2.4, for m = d-l, in [K2], Th. 2.5, for m = d-2, and one of the

a priori possible ones described in [K2], Th. 3.1, for m ― d ―2.

Proof. By Riemann-Roch and the adjunction formula for all integer

k<d-3 we have hl(X, Ox{{d -2- k)mP)) - hl(X, Ox((d - 3 - k)mP)) =

hl(C, Oc((d - 2 - k)mP)) - hl(C, Oc{{d - 3 - k)mP)) + hx(F2, Is{{d -3-k))-

hl(P2,Is{{d -2-k)). By assumption if k < i the last two terms vanish. Hence

we may repeat verbatim the corresponding parts of the numerical calculations in

[K2], §2 and §3.

Remark 3.2. If S is a general subset of P2 the condition

"hl(P2,I$((d - 3 - /)) = 0" is equivalent to the condition "x <{d-i-2)x

(d-l- 0/2." For the case 1 < x < 3, see 3.4.

Remark 3.3. The numerical calculations in [K2] gives easily many partial

informations on the gap sequence of (X,P) also if m < d ―3. Our recipe 3.1

applies also to these informations.

Proposition 3.4. Fix the notations and assumptions of 3.1 and 3.2. Assume

also l<x<3, m = d ― 1 or d ―2 and d > 2x + 2. Then the g ―1 gap values

of the Weierstrass points P of X are the first g ―1 of the g ― 1 + 2x integers

of the non gaps listed in [K2], Th. 2.4, for m = d-l, [K2＼. Th. 2.5, for m =

■d-2.

Proof. Since x < /i°(F2,0(1)) and if x = 3 & is assumed to be not col-

linear, by 3.1 it remains only to consider the gaps tP with t> (d ―A)m for

x―＼ and t > (d ―3)m for x = 2, 3. Hence we take i = d ―3 for x = 1 and

i = d - 4 for x = 2, 3 and copy the proofs in [K2] with no change. For instance

if m = d ―1 it remains only to prove that (d - 3)(d - 1) + 1 is a nongap for P,

i.e. we are in the case i =j = d ―2 considered in the proof of [K2], Th. 2.4.

The proofs in [K2], §2 and §3, were based on a few lemmas on Weierstrass

pairs proved in [Kl]. We plan in a future paper to change the point of view and

show that the work in this section may be applied to Weierstrass pairs (and

Weierstrass triples,and so on) coming from ramification loci.



Weierstrass points and ramification loci 735

§4. Here we will show that Proposition 1.1 (and [K2], Th. 1.1) is rea-

sonably sharp. Indeed we will construct for many integers d, m several pairs

(C,P) with C degree d integral plane curve and P e Creg such that the tangent

line D to C at P has mp(C,D) ―m and P is not a Weierstrass point of

the normalization X of C. In 4.5 we will prove that in the boundary case

2m = d for smooth plane curves for a general such pair (C,P)P is an ordinary

Weierstrass point of C. First we will consider the case of smooth degree d plane

curves and take as m any integer < (d ―l)/2. We fix integers d, m d > 4,

m < (d ―l)/2, P e P2, a line D with P e D and the length m subscheme B with

B c D and Bred = {P}. As in section 2, if 5" c P2 set K(5, d,S):= {plane degree

</ curves C with 5cCand5c Sing(C)} and K(5,</) := V(B,d,0).

Lemma 4.1. Assume x := card{S) < (m2 +m)/2, (d ―m)2 > 2x and d >

m + 3. Then we have dim{ V(B, d, $)) = (d2 + 3d)/2 - 3card($) -m and a

general C e V(B, d, S) is integral and its only singularitiesare x ordinary nodes

at the points of S. If x = 0, the same is truefor every d > m, i.e.for every d > m

a aeneral dearee d plane curve containina B is smooth.

Proof. To check the smoothness outside {P} U S we will use Bertini's

theorem. To check the assumptions of Bertini'stheorem, justuse the reducible

curves(A U T) e V{B, d,S) with A e V{B, m), S c A, deg(T) = d - m and S c T.

For general such A and T we see also that A U T has ordinary nodes at S and

it is c-mnntliat P

Proposition 4.2. Fix integers d, m with d>A and m < ＼{d- l)/2]. Then a

general C e V{B, d) is a smooth curve such that P is not a Weierstrass point of C.

In particular there is a smooth degree d plane curve X with a inflectionaltangent

of order m at a point P which is not a Weierstrass point of X.

Proof. Set g := {d ―＼){d―2)/2. we assume by contradiction that for a

general C e V(B, d)P is a Weierstrass point of C, i.e. there is a degree d ―3

curve Y such that scheme CD Y contains the divisor gP of C. We divide the

proof into 4 steps.

Step 1. Since V(B',d) £ V(B,d) if B c B' we may assume m = [(d - l)/2].

Step 2. Here we will show that Y is singular at P. This step will work with

no change for the case of plane nodal curves considered in 4.3. Note that the set

of all curvilinear subschemes A of P with length (A) = g, A = {P＼ and B a A is
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an integral smooth variety of dimension g ―m (use for instance g ―1 blowing

ups to reduce the case m = 1,i.e.to the case of the punctual Hilbert scheme of

C{x, y} considered in [Br]. Since dim V(B,d ―3) = g - m - 1 and every curve

T with P e Treg has a unique divisor of degree g with P as support, we conclude.

Step 3. Here (and thisis the key step) we will show that Y is not integral.

We consider the surfaces U(i), 0 < i < g, obtained from the plane with the

following sequence of i blowing ups. Set U(0) := P2 and let C/(l) be the

blowing up of t/(0) at P. Call E(＼) the exceptional divisor of U(l). For every

i > 0 U(i+ 1) will be the blowing up of U(i) at a suitable point P(i) of the

exceptional divisor E{i) of U(i) corresponding to the blowing up U(i) ―>

U(i ― 1).If i < m, P(i) is the point containing the stricttransform of D. If i > m

we take as P(i) a general point of E(i). Let C{() (resp. Y{i)) be the strict

transform of C (resp. Y{i)) into U(i). By the generality of C and the

assumption on Y we see that A(i) := C(i) DE(i) e Y(i). Call V**(i) the set

of degree d ―3 plane curves whose strict transform into Y(i) contains A{j)

for all j < i. We have V(B,d) = V**(m). Each V**(i) is a projective space,

dim V**(i + 1) < dim V**(i) < dim V**(i + 1) + 1. Since Y e V**(g), we see the

existence of a minimal integer i < g with V**(i) = V**(i+ 1). By the generality

of the point A(i) thisimplies that every W e V**{i) has a stricttransform which

is singular at A(i). We claim that this implies that the difference between the

arithmetic genus of the partial normalization of Y which resolve only the

singularity of Y at P is at least i.Indeed this differenceis given by the sum over

allinfinitelynear points Pj of Y at P of mjirrij―l)/2 with m,-multiplicity of Y

at Pj. Since fory" < i the curve Y has multiplicity at A(j) at least equal to the

multiplicity at A(i) which is > 2, we obtain the claim. Our second claim is that

i > ―(2d ―3). Indeed, since the Proposition is triviallytrue for d = 4,5, we may

work by induction from the case d' = d ―2 to the case d' = d. The case

d' = d-2 shows exactly that V**(i) # V**(i) for i< (d - 3){d - 4)/2. Hence

the second claim. Since g - (2d - 3) > pa(Y), by the second claim Y is not

integral.

Step 4. Let W＼,...,Wt,t>2, be the irreducible components of Y (taking c

times in thislista component which occur with multiplicityt).Set et = mp{C, Wt)

and di := deg(Wi)- We have rnP(C, Y) = £),.e,-> gf.Since /w(rf- 3) < g, there

is an integer i with e,-> m. Thus 5c FFf. This implies that either Wi = D or

di>m. Since C and D are smooth at P, if either 1 < d, < m or <a?,-= 1 but

Wi^D we have et := mP{C,D) < dt (see [Fu], Ex. 1.1, part 6). By Step 1

we may assume m = ＼{d―1)/21. Hence there are at most one component of
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Y, say W＼, with deg(Wi) > m; by induction on d we may assume et <

(d＼+ l)(di +2)/2. Hence, since d＼< d ―3 we find V. a < a, contradiction.

Theorem 4.3. Fix integers d, m, x with 2 < m < [(d - l)/2], m(d - 3) <

g :―(d ―l)(d ―2)/2 ―x, 3x + m < (d2 + d)/2 and d>x + l. Fix a general

S a P2 with card(S) = x. Then a general C e V{B, d, S) is an integral curve with

x nodes at S as unique singularitiesand P is not a Weierstrass point of the

normalization X of C.

Proof. The firstassertions is a particular case of Lemma 4.1. Look at the

proof of 4.2 in our new set-up. Now set g := pa{X) ―(d ―＼){d― 2)/2 ―x. Step

1 and Step 2 of the proof of 4.2 work verbatim. Step 3 works with no change,

but only because we have introduced the very restrictivecondition "d > x + 7"

which is equivalent to the condition "g - {Id - 3) > pa(Y)". Then Step 4 works

with no change.

Here is the analogous of Proposition 1.2.Its proof follows with no change

from the woofs of 4.2 and 4.1.

Proposition 4.4. Fix integers d, s, m, e, x with e > 0, s > 0, d ―3 < es,

(d-se- 2)(d -se-2-l)/2>x>0,me<(d- 2){d - l)/2 -xandd>x + l.

Fix a general S cz P2 with card(S) = x. Let E be a degree s integral curve and

P e Ereg. Let B be the length m subscheme of E with P as support. Set

W(B,d,S) := {plane degree d curves C with B c C and S c Sing(C)}. Then a

general curve C e W(B, d, S) is integral, with ordinary nodes at the points of S as

only singularitiesand P is not a Weierstrass point of the normalization X of C.

The proof of Proposition 4.2 gives with no change the following result.

Proposition 4.5. Assume 2m = d. Then a general C e V(B,d) is a smooth

plane curve such that P is an ordinary Weierstrass point of C, i.e.

A0(C,Oc((g - DP)) = 1 and A°(C,OAgP)) = A0(C,Oc((g + l)P)) = 2.
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