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GENERALIZED HELICAL IMMERSIONS
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Naoyuki Koike

Introduction.

In thispaper, we assume that all geodesies are parametrized by the arclength.

Let / be an isometric immersion of a Riemannian manifold M into a Riemannian

manifold M. If geodesies in M are viewed as specificcurves in M, what are the

shape of /(M)? Several geometricians studied this problem. K. Sakamoto

characterized an isometric immersion / of a complete connected Riemannian

manifold M into a Euclidean space or a sphere such that every geodesic in M is

viewed as a helix in the ambient space and that the order and the Frenet

curvatures of the helix are independent of the choice of the geodesic (cf. [15],

[16]).In [5],D. Ferus and S. Schirrmacher investigated an isometric immersion/

of a compact connected Riemannian manifold M into a Euclidean space Rm

satisfying the following condition:

(A) Almost every geodesic in M is viewed as a generic helix in Rm.

Here "almost every geodesic" means that the tangent vectors of such geodesies fill

the unit tangent bundle of M up to a closed set of measure zero and a generic

helix means a helix of even order such that the closure of the image coincides

with the lowest dimensional Clifford torus containing it. In [4] and [5], they

showed that the condition (A) is equivalent to the following two conditions,

respectively:

(B) / is extrinsic symmetric in the sense of [4].

(C) The second fundamental form of / is parallel.

In thispaper, we consider an isometric immersion / of a Riemannian manifold M

into a Riemannian manifold M such that every geodesic in M is viewed as a helix

in M, where the order of the helix may depend on the choice of the geodesic. We

call such a immersion a generalized helicalimmersion and the highest order of

those helices the order of f. First, we show that all isometric immersions with

parallel second fundamental form are generalized helical.Conversely, it is very

interesting to investigate in what case a generalized helical immersion has the
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parallelsecond fundamental form. We tackle this problem for a generalized

helicalimmersion of a compact Riemannian manifold into a Euclidean space.

Concretely, we can obtain the followingresult.

Theorem. Let f he a generalized helicalimmersion of order Id of a compact

connected Riemannian manifold M into a Euclidean space Rm. Assume that the

following condition (*) hold:

(*) For each p e M, there is at least one geodesic in M through p which is

viewed as a generic helix of order Id in Rm.

Then f has the parallel second fundamental form and hence f is congruent to the

composition of the standard isometric embedding of a symmetric R-space Mq and a

totally aeodesic embeddina.

Furthermore, we can show that the symmetric R-sp&ce Mo is of rank d. Note

that this condition (*) is very weaker than the above condition (A) in a sense.

In Sect. 1 and 2, we prepare basic notations, definitionsand lemmas. In Sect.

3, we show that allisometric immersions with parallel second fundamental form

are generalized helical,where the ambient space may be a general Riemannian

manifold. In Sect. 4, we investigate the order of the standard isometric embedding

of a symmetric J?-space into a Euclidean space. In Sect. 5, we characterize a

generalized helicalimmersion / of a compact connected Riemannian manifold M

into a Euclidean space satisfying the above condition (*), where we use resultsin

Sect. 2 and 4. In Sect. 6, we obtain results analogous to those of Sect. 5 in the

case where the ambient space is a sphere. In Sect. 7, in the case where Mis a

Riemannian homogeneous space G/K and / is a G-equivariant, we state results

deduced from those in Sect. 5 and 6.

Throughout this paper, unless otherwise mentioned, we assume that all

geometric objects are of class C00 and all manifolds are connected ones without

boundary.

1. Notations and definitions.

In this section, we shall state basic notations and definitions. Let a : / ―> M

be a curve in a Riemannian manifold M parametrized by the arclength s, where /

is an open interval of the real line R. Denote by vq the velocity vector field a of

a. Set X＼:= ||V,,oyo||,where V is the Levi-Civita connection of M. If X＼is not

identically zero, then we define v＼by VVovo = X＼V＼on I＼:= {s e I ＼Xi(s) ^ 0}. Set

h. '■=||Vyoui + Aiuolj. If X2 is not identically zero, then we define vi by V^i +
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l＼vo = X2V2 on I2 :― {se I＼＼his) # 0}. Inductively, we define Xi} /,･and vt (1 > 3).

If Ai is identically zero on /, that is, a is a geodesic, then a is said to be of order

1. If Xd-＼ is not identically zero on Id-2 and Xd is identically zero on Id-＼, then a

is said to be of order d, where d > 2. If cris of order d, then we have a matrix

equation

(1.1) Vvo(V0,VU--',Vd-l) = (vo,Vi,...,Vd-i)A

on Id-＼,where A is a matrix of type (d,d) defined by

/o

A
=

°

I
0

h 0 0

0 -A2

h 0

0

0 Arf_i 0 /

Let lj_x be a component of Id-＼- Then the restriction of the relation (1.1) to I^_v

A/|ro and vAro (t<i<d―l) are called the Frenet formula, the i-th Frenet

curvature and the i-th Frenet normal vector of cr|7o , respectively. Also, if A,-|7o
d―I rf―1

(1 < i < d ― 1) are constant along <t|7o , then cr|/0 is called a helix of order d.

d―＼ d―1
Then we note that /? = / (1 < j < rf ― 1). In particular, a helix o＼ (resp. 02) of

order Id (resp. 2J+ 1) in an m-dimensional Euclidean space Rm is expressed as

follows:

(1.2) ffl(j)= C0 +

(resp. oj(s) = co 4-

dE

dE

rdeit-i cos diS + en sinais)

rt(e2i-＼cosats + e2isinais) + bseu+x),

where cq is a constant vector of Rm, e＼,...,e2d+＼is an orthonormal system of Rm,

Tt(1 < i < d) and b are positive constants and a,-(1 < i < d) are mutually distinct

positive constant. Thus Imtri is contained in the ^-dimensional Clifford toras

( d
r,-(e2i-i cos 0t + e2i sin 0,-) O^0i<2n(i= l,...,d)

}

If Im G＼ ― T holds, then a＼is said to be generic, where Im o＼is the closure of the

image of a＼. Note that o＼ is generic if and only if ai,...,ad are linearly in-
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dependent over the rational number field Q. Let abea helixin an m-dimensional

sphere Sm and i a totallyumbilical embedding of Sm into Rm+l. Then, since i is

extrinsic spherical,i o a is a helix in Rm+l by Corollary 3.3 of [17]. Furthermore,

since Im(i o a) is contained in a compact seti{Sm), the order of i o a is even. Let

Id be the order of i o a. It is shown that the order of a is 2d ― 1 (resp. Id) if the

centroid of the ^/-dimensional Clifford torus T containing Im(i o a) coincides

(resp. does not coincide) with the center of Sm. If i o a is generic, then we shall

call a a generic helix (in Sm).

Let / be an isometric immersion of an ^-dimensional Riemannian manifold

Mn into an m-dimensional Riemannian manifold Mm. We shall identify the

tangent space TPM of M at p with the subspace f*(TpM) of Tf^p)M, where /* is

the differentialof/. Denote by V (resp. V) the Levi-Civita connection on M (resp.

M) and A, h and V1 the shape operator, the second fundamental form and the

normal connection of/, respectively.Denote by V both V* R ･･･(g)V* R V1" and

V"1*R V* (x)･･･(g)V* (g)V, where V* is the dual connection of V. Also, we shall

denote the ?-th order derivative of h (resp. A) with respect to V by Yh (resp.

VlA). If, for every geodesic a in M, f oa is a helix of order d and the Frenet

curvatures of / o a do not depend on the choice of a, then / is called a helical

immersion of order d. In this paper, if, for every geodesic a in M, f o a is a

helix of order at most d and there is at least one geodesic <jqin M such that

/ o ao is a helix of order d, then we shall call/ a generalized helicalimmersion of

order d.

2. Bask lemmas.

In this section, we prepare basic lemmas which are used in Sect. 5. Let /

be an isometric immersion of an ^-dimensional Riemannian manifold Mn into an

m-dimensional Riemannian manifold Mm. Take a geodesic a :I ― Mn. Denote

by vo the velocity vector fielda of ex.Assume that a :―f o a is a helix of order d

in Mm. Let X＼(resp. u,-)be the i-th Frenet curvature (resp. the i-th Frenet normal

vector) of a (i ― 1, ...,d― 1). For convenience, let Xt = 0 and vt = 0 (i>d). In

terms of the Gauss formula and the Weingarten formula of / and the Frenet

formula of a, we can deduce the following relations.

Lemma 2.1. The vector fields Ai･･･A,-i?,-(i>1) along a are expressed as

follows:

(Fi) Xivi = h(vo,vQ),
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i-2

(Fi) X1--Xtvl = aiv0+ J2<yiA)

7=0

+

^
(i>o,..., i>o)

J-l _
^(V^)(≫o,...,i>o,w,y) (i>2)

j=0
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where at (i > 2), £$ (i > 2,0 < j < i - 2) and wg (i > 2,0 < j < i - 1) are given

by

a2

H>20

Ai2,a3

0,W2l

Z*

0,af = Xi-i2tXi-2 (i > 4)

^0,^20 = -h(vo,vo)

i-2
£io

― k-＼
£1-2,0 + V^<!;,･_

1,0

i-2)

5^(V-'A)(i;o,...,uo,wI-_i)7-) (i>3)

7=0

Wy = Xi-i2Wi_2j + wt-ij-1 + VvoWi-ij (i ^ 3,1 < j < i - 1)

Here let 6.-

+

7=0

&,<-!
0, wa = wu+i = 0 (i > 1) and h>io= vq

For each unit tangent vector w of M, we denote the maximal geodesic in M

parametrized by the arclength s whose velocity vector field at s = 0 is equal to

w by aw and the osculating order of / o aw at s = 0 by o(w). For each p e M,

set VPit:= {we SpM＼o(w) = i} (i > 1), where SpM is the unit tangent sphere

of M at p. We define a function I, (*'> 1) on the unit tangent bundle SM of

M by

i/M

( XJ{0)

1°
(W£ Ul<j<i(JPeMVPj)>

where XJ is the i-th Frenet curvature of the restriction/oerw|/0 of f o aw to a

sufficientlysmall neighbourhood 7°of of w e U/+i</ U≫eM VpJj- Also, we define

a map vt: SM -> TM (i > 1) by
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i>i(w) ■

{
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vf(O)

0

(w £ Ui+l^y ＼JpeM
'PJ)

(WE
Ul<j<iUPeMVPj)>

where vj is the i-th Frenet normal vector of the restriction / o aw＼l0 of / o aw to a

sufficiently small neighbourhood 7° of 0 (we Ui+i^/U
em

^pj)- ^ *s easy to

show that
i; is continuous on Uf<

･
UneM ^≫.;('

― ^)-
^ere we s^a^ ^ve ^atas

of Vp,t and Xt for the Clifford embedding /0 : 5}(1) x Sl{＼) ^ R4. The sets Kp>/

jitp ≪s fniinws*

vP,i = 0, vpo
l±eh±e2,± e＼ +e2

V2 '

e＼ -e2

V2

Vp,3 = 0, VpA = SpM＼Vpa, Vp4 = 0 (i > 5)

and the functions A,- are as follows:

X＼(e＼cos 0 + e2 sin 6) = Vcos4 0 + sin4 9

i / n ･ n＼
Isin40|

A2{e＼cosO + ej sin 0) = ― '

k(ei cos9 + e2 sin0) =
<

|sin20|

4 Vcos4 0 + sin4 0

iVcos4 e + sin40

0

Xi{e＼ cos 0 + ei sin 6) = 0

}

(n 3n 5n 7n＼

(n 3n 5n ln＼

(*->4),

where (ei,^) is an orthonormal tangent frame at p such that e＼(resp. e-i)is

tangent to the fibre of the projection of ^(l) x ^(l) onto the first(resp. the

second) component and 0 < 9 < 2n. This implies that Jo is a generalized helical

embedding of order 4. Also, we see that X3 is contionuos on ＼J->3Vpj{― Vp$)

but so is not on (Jy<2 Vpj(= VPt2U Vp^).

From Lemma 2.1, we can prove the following lemma.

Lemma 2.2. Assume thatf is a generalized helical and VP:d^ 0 and VPj = 0

(i >d +1) for p e M. Then the set VP)i(1 < i < d ― 1) are closed sets of measure

zero in SPM and VPtd is a dense open set is SPM.

Proof. According to Lemma 2.1, for each i (<d ―1), there exist non-zero

polynomial functions Pt and Qt on TPM such that P,-ii･･･%$ = Qi on SpM and

that Pi has no zero point on (J,-_1</<rfVpj. Hence we have
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VP,2

Generalized helical immersions

{v e SPM |h (v) = 0} = {v e SPM |Qi (v)

= {v

VP4-i

= 0}

e SpM＼VpA |h{v) = 0} = {v e 5/,M＼^,i |62(≫)= 0}

lveSpM＼

!veSpM＼
(

u

l<i<d-2

u

l<i<d-2

VpA

O

Xd-i{v) =

Qd-i(v)

･

-
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Thus we see that VP:i (1 < i < d ― 1) are closed sets of measure zero In SPM.

Therefore, Vpj is a dense open set in SPM. □

3. Isometric immersions with parallel second fundamental form.

In this section, we shall show that all isometric immersions with parallel

second fundamental form are generalized helical. Let / be an isometric immer-

sion of an w-dimensional Riemannian manifold Mn into an m-dimensional

Riemannian manifold Mm with parallel second fundamental form and a : / ―*■M

a geodesic in M. Assume that the osculating order of / o a at each point is d. Set

vo := a and denote by /L;(resp. i?,-)the i-th Frenet curvature (resp. the i-th Frenet

normal vector) of / o a (1 < i < d ― 1). Then we can obtain the following fact.

Lemma 3.1. The

{i.e., f oa is a helix)

Frenet curvatures A,-(1 < i < d ―1) are constant along a

and the following relations hold:

(Fl) k＼■･ ･ XiVt = CLtVQ + A^.vq + h(wt, v0) (1 < i < d - 1),

where a,-, £,･anrf wr- (1 < i < </ ― 1) are given by

<

<Xi =

W＼ =

0,a2

vq,w2

Ai2,a/ = AI-_i2aI-_2(3<i<d-l),

= O,d;i= 0,£2= -h(vo,vo)

wi = a,-_ii?o+ A,-_i2w,-_2+ 4j,_,t>o(3 < i < rf- 1),

^ = h-Hi-i - Hwi-uvo) (3<i<d- 1).

Proof. We shall prove in case of d > 4. First,by using the Gauss formula

and the Frenet formula, we have

hn =VVnvQ = h(vo,vQ),
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which implies (F[). Also, from this relation, we have k＼2= (h(vR,vo),h(vo,VQ)y.

Differentiating this relation in the direction vq and using Vh = 0, we have

vo(M2) = 0- Thus k＼is constant along a. By operating V^ to (F[) and using

Vh = 0, we have

A1A2U2 ― h VQ ―^h(vo,vo)Vo,

which implies {F'2). From this relation, we have

Differentiating this relationin the direction vq, we have M2vo(fa2) ― 0, where we

use VA ― 0 and Vh = 0. Thus X2 is constant along a. Assume that {F[_^) and (F-)

hold and k＼,...,A,-are constant along a, where 2 < 1 < d - 2. By operating VVo to

(F-), we have

(3.1) X＼ ･･･ki+＼vi+＼ = Xi (Ai ･･･ ki-＼vt-＼)+ A^t^.^VQ

+ hfavo + A^.vo + VVQWi, v0).

On the other hand, it follows from VA = 0 and Vh = 0 that V^f,- = 0 and

Vyow?- = 0. Hence, by substituting (i^'_i) in (3.1), we can obtain

which implies (-f1/+1).From this relation, we have

M2 ･ ･･ 4+-12 = a/2 + 2a,-<,4{.i;o,̂o> + <^6^o,^≪o> + <A(w,-,≫o),A(w/, ≪o)>.

Differentiating this relation in the direction vq, we

(yoAj+i2) = 0. Thus A,-+iis constant along a. Therefore

proof is completed.

can obtain /Ii2---/l/2

by the induction, the

□

Remark. It is clear that (x2;+i= 0, £2l+i- 0 (1 < i < [d/2] - 1) and wy ― 0

(1 <j < [(d - l)/2]), where [ ] is the Gauss symbol. Hence we have vu £TM

(0 < i < ＼{d- l)/2]) and v2J+i£T^M (0 < j < [d/2] - 1).

From this lemma, we can obtain the following result.

Proposition 3.2. Let f : Mn <-*Mm he an isometric immersion with parallel

second fundamental form. Then f is generalized helicalimmersion of order at most

min{2≪, 2(m - n) + 1}.
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Proof. Let a : I ― M be a geodesic in M parametrized by the arclength s.

Denote by d(s) the osculating order of foa at (foo)(s) and set do :=

maxje/ d(s). Also, set 1% := {sel＼d(s) = k} (1 < k < do). It is clear that /<*,is

open. By the previous lemma, A,-(1 < i < do ― 1) are constant on <r(/rf0),where A,-

(1 < i < ^o ― 1) are functions on SM defined in Sect. 2. Hence, it follows from

the continuity of i,- on (JJ<y- ＼JpeM Vpj (1 <i <do ― ＼)that / = I<j0 holds, that

is, / o a is a helix of order do. Therefore, by the arbitrarily of a, /is generalized

helical. Furthermore, by the above remark, we see that / is of order at most

min{2n,2(m - n) + 1}. □

4. The order of the standard isometric embedding of a symmetric J?-§ptce.

At the beginning of this section, we shall recall the characterizing theorems of

isometric immersions into a Euclidean space and a sphere with parallel second

fundamental form, which are used in Sect. 5 and 6.

Theorem 4.1 ([3]). Let f he a full isometric immersion of a complete Rie-

mannian manifold M into a Euclidean space with parallel second fundamental form.

Then f is congruent to <j)on or {<f>x id) o n, where (j>is the standard isometric

embedding of a symmetric R-space Mq, id is the identity map of an l-dimensional

Euclidean space Rl and n is a Riemannian covering of M onto Mq or Mq x Rl.

Theorem 4.2 ([18]). Let f he a full isometric immersion of an n-dimensional

complete Riemannian manifold M into a sphere with parallel second fundamental

form. Then the following statements (i) and (ii) hold:

(i) If f is minimal, then f is congruent to <j>on, where $ is the umbilical

reduction of the standard isometric embedding (f>of a symmetric R-space M$ to a

hypersphere containing (f>{Mo) and n is a Riemannian covering of M onto Mo,

(Ii) Iff is not minimal, then f is congruent to ＼j/o <fton, where <ftand n are as

in the above and [//is a totally umbilical (but non-totally geodesic) embedding of

codimension-l into a sphere and n is a Riemannian covering of M onto Mq.

Since the standard isometric embedding of a symmetric J?-space and the

umbilical reduction of one to hypersphere containing the image have the parallel

second fundamental form, they are generalized helical by Proposition 3.2. Now

we shall investigate the orders of those embeddings. Let <f>:Mq <-^Rm be the

standard isometric embedding of a symmetric i?-space Mo of rank d, where the

rank of Mo is the maximal dimension of a flat totally geodesic submanifold in

Mq. Take an arbitrary unit tangent vector v of Mq. Since Mo is of rank d, there is
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a ^-dimensional flat torus T tangent to v totally geodesically embedded into Mo

(see [6, Chapter V, Theorem 6.2]). Let av be a maximal geodesic in Mq with

&v(0) = v. Since T is totally geodesic in Mo, av is a geodesic in T, that is, (j>o av is

a curve in #(T). On the other hand, since the second fundamental form of (j>is

parallel, for almost every geodesic a in Mo, (f>o a is a generic helix. From this

fact, we can show that, for almost every geodesic a in T, <f>o a is a generic helix.

So, 4>＼Tis extrinsic symmetric. Hence, by Theorem 3 of [4], </>(T) is a Clifford

torus. Therefore, since helices in Rm are given as (1.2), the order of a helix (j>o av

is at most 2d. Also, we see that, for almost every geodesic a in T, a o a is a helix

of order Id. This implies that ^ is of order 2J. Furthermore, this fact implies that

the umbilical reduction (f of <f>to the hypersphere 51"1"1 containing <j>(Mq) is of

order 2d ― 1 or 2J. Let ^ be a totally umbilical (but non-totally geodesic)

embedding of Sm~l into an w-dimensional sphere Sm and i a totally umbilical

embedding of Sm into i?m+1. Set <j>:= ijjo $, It is clear that $ is generalized

helical. Let <7o be a geodesic in Mo such that ^o a0 is a helix of order 2*/ ― 1 or

2≪/ and To be the rf-dimensional flat torus tangent to ri"o(O) totally geodesically

embedded into Mo. It is clear that the centroid of the Clifford torus (io^)(Tq)

does not coincide with the center of Sm. Hence the order of (Jou0 is Id. This

implies that d> is of order Id.

5. Generalized helicalimmersions into a Eiiclidean space.

In this section, we shall characterize a generalized helical immersion of a

compact Riemannian manifold into a Euclidean space satisfying the condition (*)

stated in Introduction. In the sequel, we assume that all geodesies are maximal

and denote the maximal geodesic in M parametrized by the arclength s whose

velocity vector at s = 0 is v (eSM) by av. First we shall prepare the following

lemma.

Lemma 5.1. Let f he an isometric immersion of an n{>2)-dimensional

compact Riemannian manifold M into a Euclidean space. Assume that f*{TqM) ―

f*(TpM) holds for every q ef~l(f(p)) and furthermore, for every great circle C in

SpM through a point vq of SpM, there are four unit tangent vectors u＼,...,M4 e C

with Ui # + Uj (1 < i # j < 4) such that f o oUiis a generic helix (1 < i < 4). Then

V/jD = 0 holds.

Proof. Take an arbitrary wq e SpM＼{±vq}. Let C be a great circlein

SPM through vo and wo- From the assumption, there exist unit tangent vectors

mi,...,≪4e C with ut # ±ui (1 </'#/< 4) such that / o ov is a generic helix
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(1 < i < 4). Then, we can show Vh{uhuuui) = 0 (1 < i < 4) because f*(TqM) =

f*(TpM) holds for every qef~l(/(/?)) and M is compact (see [5, the proof of

Theorem]). Hence, since V/i is symmetric by the Codazzi equation, we see that

V/i = 0 on C3. In particular, we have (V/i)(uo, vo, vo) ― (V/i)(h>o,h>o, w>o) = 0. Thus,

from the arbitrarity of wq, we see that Vh(w, w, w) = 0 holds for every w e SPM.

Therefore, we obtain Vhp = 0. □

For simplicity,we shall denote the fact that two isometric immersions f＼and

fi are congruent by f＼tufa.

In case of dim M = 2, we can show the following result in terms of the

previous lemma.

Proposition 5.2. Let f be a full isometric immersion of a 2-dimensional

compact Riemannian manifold M into a Euclidean space. Assume that,for each

p e M, there are at leastfour geodesies in M through p which are viewed as generic

helicesin the ambient Euclidean space. Then the following (i),(ii)or (iii)holds:

(i) / ≪ ^l5 where (f>xis a totallyumbilical embedding of a 2-dimensional sphere

into a 3-dimensional Euclidean space J?3,

(ii)/≪^ok, where (f>2is the Veronese embedding of a 2-dimensional real

projectivespace RP2 into a 5-dimensional Euclidean space R5 and n is a Riemannian

covering of M onto RP2,

(iii)/ ≪ ^3 o n1, where ^3 is the Clifford embedding of a 2-dimensional flat

torus T into a 4-dimensional Euclidean space R4 and 7t?is a Riemannian covering of

M onto T.

Proof. Let U := {p e M＼ (Vq e/"1 (/(/>)))[/*(W =f#(TpM)]}. From

Lemma 5.1, we have Vh ― 0 on U. It is clear that U is dense in M. Therefore,

V/j = 0 holds on M. Hence, according to Theorem 4.1, / is congruent to the

composition ^ o n of the standard isometric embedding ^ of a 2-dimensional

symmetric i?-space Mo and a Riemannian covering n of M onto Mo. It follows

from dim Mo = 2 that Mo is of rank 1 or 2. If Mo is of rank 1, then Mo is a

2-dimensional sphere or a 2-dimensional real projective space. Also, if Mo is

of rank 2, then Mo is a 2-dimensional flat torus. Hence we can obtain the

conclusion. □

In the sequel, we assume that / is generalized helical.For each geodesic a in

M, foa is contained in a compact set /(M). Hence, f o a is a helix of even

order. Thus/is of even order. Let the order of/be Id. As in Sect. 2, we define
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VP)i,Xi and u,-,where i > 1 and p e M. Also, we define a matrix-valued function

A on SM bv

/

A:=

＼

0 -Xt

o

o

0

0 -k2

X2 o

0

0

―fad-l

0 Xjd-x 0

＼

/

Let '(^0(u,j),..･,^-i(y5'?)) ^e tne first column of the matrix JJexp^A(y)<i?,

where t?e SM and 5 > 0. Since / is of order 2d, there is p e M with F^ # 0. In

the sequel, we assume that ye Vp^d- From the Frenet formula (1.1), we can

obtain the following expression of f o &v:

(5.1)
2d-＼

/Ms)) =f(P) + J2 ni(v,s)vi(v)

1=0

for s > 0. By the straightforward computation,

det A(≫) = M(v)2h(v)2 ■■■X2d-i{v)2± 0

is shown. Hence, since A(v) is skew-symmetric and non-singular, the normal form

of A(v) is given bv

d
T(v)-lA(v)T(v) =c%(≫))

1=1

with some orthogonal matrix T(v), where

B(at{v)) =

( 0

-adv)

cn(v)

0

)

{R<al(v)<---<ad(v))

In the same method as the proof of Lemma 3.1 in [16],we can show that

a＼(v),...,ad(v) are mutually distinctand that the followingrelationshold:

(5.2)
d

tfaCM = J2b2iM(l ~<x>s(<*k(v)s))(R<i<d- 1),

k=＼

d

72i+l(M =
E

k=＼

?>2i+i,k(v)sin(ak(v)s) (0<i<d- 1),



where

Xi,....

foav:

(5.3)
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bye (0<i <2d- 1,1 <k<d) are functions on VpM determined by

%u-＼. From (5.1) and (5.2),we can obtain the following expressionof

i=0

£{(

-

k=＼ W

/ d

＼k=＼

V) 1 V2i{v)

*Y

^
b2i,k{v)v2i{v)

i=0 /

(

cos{ak(v)s)

d-l

^2b2i+i,k{v)v2i+

8=0

i(v)

)

sin( ak(v)s)

}

On the other hand, we can prove the following lemma.

Lemma 5.3. The functions at (1 < i < d) on Vp^d ore analytic.

Proof. Denote by p(z,v) the characteristicpolynomial det(zE ―A(v)) of

A(y), where v e Vp^d and E is the identity matrix. Since h＼v u (1 < z < 2c? ―1)

are analytic by Lemma 2.1, p(z,v) is analytic with respect to v on Vp^d- Also, we

have

(5.4) p(z, v) = (z2 + ai(v)2)･･･(z2 + ad(v)2)

for every v e Vp^d- Hence, we see that a,-(1 < i < d) are continuous on Vp^d- Fix

^o e VPy2dand iqe {!,.. .,d}. Since a＼(vo),...,a^(yo) are mutually distinct,we can

take a closed curve K in the complex plane such that a^vo)^/―! positions inside

K and ai(vo)y/^l (i ^ k) position outside K. It follows from the continuity of a,-

(1 <i <d) that there is a neighbourhood 17 of yo in Vp,2d such that, for every

veU, a^(y)-＼/^T positions inside ^T and a,-(y)＼/^T(i ＼=io) position outside K.

From (5.4), we have

i ＼/~T ! f
dp{z,v)/dz

advW-l = =: z-^-^t―^―rfz

for every v e U. Hence, it follows from the analyticityof p(z,v) with respect to v

that au is analytic on U. Therefore, from the arbitrarilyof vq, we see that so is a^

on VPj2d-
□

From Lemma 5.1,5.3 and (5.3),we can prove the followingcharacterizing

theorem.
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Theorem 5.4. Let f be a full generalizedhelicalimmersion of orderId of

an n{>2)-dimensional compact Riemannian manifold M into a Euclidean space.

Assume that thefollowing condition(*) holds:

(*) For each p e M, thereis at leastone geodesicin M through p which is

viewed as a generichelix of order 2d in the ambient Euclidean space.

Then f ≪(/>o n, where $ is the standard isometricembedding of a symmetric

R-space Mn of rank d and n is a Riemannian coveringof M onto Mq.

Proof. In case of d = 1, /is a planar geodesic immersion. Hence, by [14],

/ ≪ ^ o 71, where ^ is the standard isometric embedding of a symmetric R-space

Mo of rank 1 and n is a Riemannian covering of M onto Mo. Assume that d > 2.

Set tf := {/> gM|(V? ef-l{f{p)))[f*{TqM) =f*{TpM)}}. Fix /*, U. From the

assumption, there exists vq e VP0j2d such that / o aVo is generic. Since VP0)2d is a

dense open set in SPoM by Lemma 2.2, there is a convex neighbourhood W of vq

in 5^,,M contained in VP0j2d- Take an arbitrary h>o e ^＼{±yo}- Let CWo be the

great circle in SPoM through vo and wq. Let F : [0, tt/2] ― Rd be a curve in Rd

defined by F(9) := (tfi((uocos0 + H>osin0)/(||uocos0 + H>osin0||)),... ,a£/((yocosi9+

wosin^)/(||i;ocos^ +wosin^U))) for 0e[O,n/2], where at {＼<i<d) are the

above functions on VPo>2d- This curve F is an analytic curve by Lemma 5.3. Let

Prv-rd be the hyperplane in Rd through the origin and with the normal vector

(n,..., rd). Since / o aVo is generic, F(0) e ^rf＼ U(r1).../rf)ee"＼{(o,...,o)}^.-^ by (5J)-

Suppose that / := {0e (0,w/2] |F(^) e ^＼ U(r1,...^)e^＼{(o)...,o)}i>n-rrf} is finite.

Set 0O := min /. Since F((0,0O)) <= U(rll...fr(,)6fi-＼{(o,..fo)}pn-r,, there is (rf,..., r°d)

Ggd＼{(0,...,0)} such that ^([^i,^ +'ej) <= Pro...ro for some 9ie(Q,60) and a

1 rf
sufficiently small positive number e. Hence, since F is an analytic curve, we have

F([0,n/2]) c Pro...ro. In particular, we have F(0) <=Pro...ro. This contradicts F(Q) e

, 1 rf 1 rf
^

＼U(r,,...,r(,)6fi'＼{(o,...,o)}/>n-^-Therefore, / is infinite. This implies that

{v e CWo ＼foav : a generic helix}

is infinite. Hence, from the arbitrarity of w0 e W＼{±vq}, we can obtain VhPo ― 0

in terms of Lemma 5.1. Thus, by the arbitrarity of po, Vh = Q holds on U.

Furthermore, since U is dense in M, V/s = 0 holds on M. Hence, from Theorem

4.1, we have f&$on, where $ is the standard isometric embedding of a

symmetric i?-space Mo and n is a Riemannian covering of M onto Mo. Fur-

thermore, since / is of order 2rf, Mq is of rank d (see Sect. 4). □

Here we shall construct an example of a generalized helical immersion of a

flat torus into a Euclidean space. Let ut = (l/y/m ― 1,..., l/y/m ― 1, ―＼lsjm ― 1,



anbi 1

(an,..., aim) = (u2t-i,･･･,≪2'-2,0) (2 < i < n).

It is clear that YljLi ahjahj = ^hh^＼ ^ h,h < n), which assures that /is an

isometric immersion. Clearly / deduces an isometric immersion / of an n-

dimensional flat torus Tn = Sl(^/m(m- 1)) x Sl{Vm- 1) x ･･･ x Sl(y/m- 1)

into R2"1, where Sl(^/m(m ―1)) (resp. Sl(s/m ―1)) is a 1-dimensional sphere of

radius y/m(m ―1) (resp. ＼Aw ―1). Let G be the transformation group of Tw

induced from that of allparalleltranslations of Rn and H the isotropy group of G

at a point of Tn. It is easy to show that/ is G-equivariant, where we note that

the definitionof a G-equivariant immersion willbe stated in Sect. 7. Denote by n

the covering map of Rn onto Tn ― G/H. Take an arbitrary geodesic a(s):=

n(b＼s,...,bns) in rw, where Y!i=＼h) = L Then we have

y/m(m ― 1)
^Jm(m

― 1)

(

)
>siiv

£

/ V 1=1

I COS

@im%i
))

1

system of Rn and aij (1 < i < n,

of order 2m. On the other hand, since 1 ･ YX=i a≪'i&?H Hi- YX=i ai,m-＼bi+

n

i=l

(1 <i<n ―l) be prime numbers with 3 <p＼ <pi < ･･･ <pn-＼- In particular, if

{b＼,..., bn) = (1, y/pi, y/pi,..., y/p^Ti), then | J^"=l a{ibi＼(1 <j<m) are mutually

distinct and hence / o oris of order 2m. Thus / is a generalized helical immersion

which implies that foa is a helix of 2m in R2m. Let ptorder at most

nE anht(foa)(s) =

cosl j^afoA- I, sin
I

V 1=1 / V

dimbi 1 I,
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...,―l/s/m ― 1), where m = 2k + ＼{k> 1) and the numbers of l/y/m - 1 and

―＼/y/m - 1 are r(r > 1). Let / be a map from an n(= k+ 1)-dimensional

Euclidean space Rn to a 2m-dimensional

/(*!,...,*,):=U±

COS

Euclidean space R2m defined by

anXi J, sin I

aimXi
1

where (x＼,...,xn)is a Euclidean coordinate

1 < j <m) are constants defined by

{an,..., aim)

( 1

n£

sin(E

anxt 1
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(―1)' YX=iaimbi = 0, foa cannot be a generic helix of order 2m. This fact

implies together with Lemma 2.2 that almost every geodesic in Tn is not viewed

as a generic helix in Rlm. Namely, the second fundamental form of/ is not

parallel.In particular,if {b＼,...,bn) = (0, -s/3,y/5,0,..., 0), then we have

n

i=l

= {

^5 + ^

y/m ―1

x/5-%/3

＼/m ― 1

u

u

0,1 (mod 4), j < m)

2,3 (mod 4), j < m)

and Yli=i aimbi = 0 and hence/ o a is a generic helix of order 4. Therefore, since /

is G-equi variant, we see that, for each p e Tn, there is at least one geodesic in Tn

through p which is viewed as a generic helixin R2 .From thisexample, we see that

the condition (*) in Theorem 5.4 cannot be replaced by the following condition:

For each p e M, there is at least one geodesic in M through p which is

viewed as a generic helix in the ambient Euclidean space.

From Theorem 5.4, we can obtain the following resultin the case where / is

of order 4.

Corollary 5.5. Let f be a full generalized helical immersion of order 4 of

an n{>2)-dimensional compact Riemannian manifold M into a Euclidean space.

Assume that,for each p e M, there is at least one non-periodic geodesic in M

through p. Then f a <j>o n, where <j>is the standard isometric embedding of a

symmetric R-space Mq of rank 2 and n is a Riemannian covering of M onto Mq.

Proof. Let a be a non-periodic geodesic in M. From the assumption, / o a

is a helix of order 2 or 4. Since a is non-periodic, so is also / o a (see Proof of

Theorem 2 of [5]). Hence foa is a generic helix of order 4. Therefore, the

conclusion is deduced from Theorem 5.4. □

6. Generalized helicalimmersions into a sphere.

In this section, we shall deduce some results for an isometric immersion into

a sphere.

Proposition 6.1. Let f he a full isometric immersion of a 2-dimensional

compact Riemannian manifold M into a sphere. Assume that, for each p e M, there

are at least four geodesies in M through p which are viewed as generic helices in

the ambient sphere. Then, if f is minimal, then the following (i), (ii) or (iii)holds:
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(i) / ≪ id, where id is the identity transformation of a 2-dimensional sphere,

(ii)/ ≪ fa o n, where fa is the umbilical reduction of the Veronese embedding

<j>iof a 2-dimensional real projective space RP2 into a 5-dimensional Euclidean

space to a hypersphere, n is a Riemannian covering of M onto RP2,

(iii)/≪^2o n', where <j>2is the Clifford embedding of a 2-dimensional flat

torus T into a ^-dimensional sphere S*, n! is a Riemannian covering of M onto T.

Also, iff is not minimal, then /≪ifo^, where <ftis the above immersion id, fa o n

or (j>2°7t!and i//is a totally umbilical (but non-totally geodesic) embedding of

codimension-l into a sphere.

Proof. Let i be a totally umbilical embedding of codimension-1 of the

ambient sphere into a Euclidean space. It is easy to show that i of satisfiesthe

conditions (other than the fullness) of Proposition 5.2. Hence, we can obtain

the conclusion in terms of Proposition 5.2. □

Also, we can obtain the following characterizing theorem in terms of

Theorem 5.4.

Theorem 6.2. Let f be a full generalized helical immersion of order 2d ― 1

or 2d(d > 2) of an n{> 2)-dimensional compact Riemannian manifold M into a

sphere. Assume that, for each p e M, there is at least one geodesic in M through p

which is viewed as a generic helix of order 2d ― 1 or 2d in the ambient sphere.

Then the following statements (i) and (ii) hold:

(i) If f is minimal, then f ≪ 0o n, where Of is the umbilical reduction of the

standard isometric embedding (f> of a symmetric R-space Mq of rank d to a

hypersphere and n is a Riemannian covering of M onto Mq.

(ii) Iff is not minimal, then f is of order 2d and f ≪ ＼/jo <j>on, where <j>and

n are as in the above and i// is a totally umbilical (but non-totally geodesic)

embedding of codimension-l into a sphere.

Proof. Let i be a totally umbilical embedding of codimension-l of the

ambient sphere into a Euclidean space. It is clear that iof is a (not necessarily

full) generalized helical immersion of order Id. Also, it follows from the

assumption that, for each pe M, there is at least one geodesic in M through p

which is viewed as a generic helix of order Id in the Euclidean space. Hence, we

can obtain the conclusion in terms of Theorem 5.4. □

In particular, we can obtain the following result in the case where / is of

order 3 or 4.
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Corollary 6.3. Let f be a full generalized helical immersion of order 3 or 4

of an n{ > 2)-dimensional compact Riemannian manifold M into a sphere. Assume

that, for each p e M, there is at least one non-periodic geodesic in M through p.

Then the following statements (i) and (ii) hold:

(i) If f is minimal, then f tn (fo n, where ^ is the umbilical reduction of

the standard isometric embedding <f>of a symmetric R-space Mq of rank 2 to a

hypersphere and n is a Riemannian covering of M onto Mq.

(ii) If f is not minimal, then f is of order 4 and f ≪ if/o (j>o n, where <j>and

n are as in the above and i// is a totally umbilical (but non-totally geodesic)

embedding of codimension-l into a sphere.

Proof. Let a be a non-periodic geodesic in M. From the assumption, / o a

is a helix of order at most 4. Since a is non-periodic, / o a is a generic helix of

order 3 or 4. Therefore, the conclusion is deduced from Theorem 6.2. □

7. Concluding remarks.

In this section, we shall state results deduced from those in Sect. 5 and 6 in

the case where M is a Riemannian homogeneous space and / is equivariant. Let /

be an isometric immersion of a Riemannian homogeneous space M = G/K into a

Riemannian manifold M. If there is a continuous homomorphism p of G into the

isometry group of M such that f(g ･p) = p{g)(f(p)) for every p e M and every

g e G, then / is said to be G-equivariant. The following result is deduced from

Theorem 5.4.

Theorem 7.1. Let f he a G-equivariant full generalized helicalimmersion of

order Id of an n(>2)-dimensional compact Riemannian homogeneous space M ―

G/K into a Euclidean space. Assume that thereis at least one geodesic in M which

is viewed as a generic helix of order Id in the ambient Euclidean space. Then

f ≪ <f>o 7i,where <j)is the standard isometric embedding of a symmetric R-space Mq

of rank d and n is a Riemannian covering of M onto Mq.

Also, the following result is deduced from Theorem 6.2.

Theorem 7.2. Let f be a G-equivariant full generalized helicalimmersion of

order 2d ―1 or 2d of an n(>2)-dimensional compact Riemannian homogeneous

space M = G/K into a sphere. Assume that there is at least one geodesic in M

which is viewed as a generic helix of order Id ― 1 or 2d in the ambient sphere.

Then the statement (i) and (ii)in Theorem 6.2 hold.



Generalized helical immersions

References

425

[ 1 ] Besse, A. L.: Manifolds all of whose geodesies are closed. Berlin, Heidelberg, New York:

Springer 1978

[ 2 ] Ferus, D.: Immersionen mit paralleler zweiter Fundamentalform. Beispiele and Nicht-Beispiele.

Manuscripta Math. 12, 153-162 (1974)

[3] Ferus, D.: Immersions with parallel second fundamental form. Math. Z. 140, 87-93 (1974)

[4] Ferus, D.: Symmetric submanifolds of Euclidean space. Math. Ann. 247, 81-93 (1980)

[ 5 ] Ferus, D., Schirrmacher, S.: Submanifolds in Euclidean space with simple geodesies. Math. Ann.

260, 57-62 (1982)

[ 6 ] Helgason, S.: Differential geometry, Lie groups and symmetric spaces, Academic Press, New

York, 1978

[ 7 ] Hong, S. L.: Isometric immersions of manifolds with plane geodesies into a Euclidean space.

J. Differential Geometry 8, 259-278 (1973)

[ 8 ] Ki, U. H., Kim, Y. H.: Surfaces with simple geodesies through a point. J. of Geometry 51,

67-78 (1994)

[ 9 ] Kobayashi, S., Nagano, T.: On filteredalgebras and geometric structures. J. Math. Mech. 13,

875-907 (1964)

[10] Kobayashi, S.:Isometric imbeddings of compact symmetric spaces. Tohoku Math. J. 20, 21-25

(1968)

[11] Little, J. A.: Manifolds with planar geodesies. J. Differential Geometry 11, 265-285 (1976)

[12] Nagano, T.: Transformation groups on compact symmetric spaces. Trans. Amer. Math. Soc.

118, 428-453 (1965)

[13] Nakagawa, H.: On a certain minimal immersion of a Riemannian manifold into a sphere. KSdai

Math. J. 3, 321-340 (1980)

[14] Sakamoto, K.: Planar geodesic immersions. Tohoku Math. J. 29, 25-56 (1977)

[15] Sakamoto, K.: Helical immersions into a unit sphere. Math. Ann. 261, 63-80 (1982)

[16] Sakamoto, K.: Helical immersions into a Euclidean space. Michigan Math. J. 33, 353-364

(1986)

[17] Song, H. H., Kimura, T., Koike, N.: On proper helices and extrinsic spheres in pseudo-

Riemannian geometry. Tsukuba J. of Math. 20, 263-280 (1996)

[18] Takeuchi, M.: Parallel submanifolds of space forms. Manifolds and Lie groups: Papers in honor

of Yozo Matsushima, Birkhauser 1981, 429-447

[19] Takeuchi, M., Kobayashi, S.: Minimal imbeddings of R-spaces. J. Differential Geometry 2,

203-215 (1968)

[20] Tsukada, K.: Helical geodesic immersions of compact rank one symmetric spaces into spheres.

Tokyo J. Math. 6, 267-285 (1983)

[21] Walden, R.: Untermannigfaltigkeiten mit paralleler zweiter Fundamentalform in euklidischen

Raumen und Spharen. Manuscripta Math. 10, 91-102 (1973)

Naoyuki Koikie

Department of Mathematics

Faculty of Science

Science Universityof Tokyo

Tokyo 162-0827

Japan


