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CERTAIN CHARACTERIZATIONS OF
REAL HYPERSURFACES OF TYPE 4
IN A COMPLEX SPACE FORM

By

Hyang Sook Km, Jong-Hoon Km and Yong-Soo Pyo

§1. Introduction

A complex n-dimensional Kihler manifold of constant holomorphic sectional
curvature ¢ is called a complex space form, which is denoted by M,(c). A
complete and simply connected complex space form consists of a complex
projective space P,C, a complex Euclidean space C” or a complex hyperbolic
space H,C, according as ¢ >0, ¢c=0 or ¢ <O0.

In this paper, we consider a real hypersurface M in M,(c). Typical examples
of M in P,C are the six model spaces of type 4;, 4, B, C, D and E (cf. [10]), and
the ones of M in H,C are the four model spaces of type Ay, 41, A2 and B (cf. [1]),
which are all given as orbits under certain Lie subgroups of the group consisting
of all isometries of P,C or H,C. Denote by (¢,&,7,g) the almost contact metric
structure of M induced from the almost complex structure of M,(c) and A4 the
shape operator of M. Eigenvalues and einvectors of 4 are called principal
curvatures and principal vectors, respectively.

Many differential geometers have studied M from various points of view. In
particular, Berndt [1] and Takagi [10] investigated the homogeneity of M.
According to Takagi’s classification theorem and Berndt’s one, the principal
curvatures and their multiplicities of homogeneous real hypersurfaces in M,(c)
are given. Moreover, it is very interesting to characterize homogeneous real
hypersurfaces of M,(c). There are many characterizations of homogeneous ones
of type A since these examples have a lot of beautiful geometric properties, where
type A means type A, or 4, in P,C and type Ao, 4; or 4, in H,C. Okumura (8]
and Montiel-Romero [7] proved the fact in P,C and H,C, respectively that M
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satisfies A¢ = ¢A if and only if M is locally congruent to type A. The following
theorem is proved by Kimura and Maeda [4] and Ki, Kim and Lee [2] for M in
P,C and H,C, respectively.

TuEOREM A. Let M be a real hypersurface of M,(c), ¢ #0, n>2. If it
satisfies
Ved =0, g(4E,¢) #0,

then M is of type A, where V is the Riemannian connection on M.
In his previous paper [9], the third named auther proved the following

THEOREM B. Let M be a real hypersurface of My(c), ¢#0, n>2. If it
satisfies

Ved = a(4$ — ¢4), 2a# —g(4L,<)
Sfor some non-zero constant a, then M is of type A.
Motivated by these results, in this article we will give a generalization of

Theorems A and B and another characterizations of homogeneous real hyper-
surfaces of type 4 in M,(c). The purpose of this paper is to prove the following

THEOREM 1. Let M be a real hypersurface of My,(c), ¢ #0, n>2. If it
satisfies

(1.2) Ved = f(Ap—¢A4) —df (&)1, 2f # —g(4E, <)

Jor a smooth function f, where I denotes the identity transformation, then M is of
type A.

THEOREM 2. Let M be a real hypersurface of M,(c),c #0,n>2. If it
satisfies

(1.3) Le(H+ fg) =0, 2f #—g(4E &)

Jor a smooth function f, then M is of type A, where ¢ is the Lie derivative with
respect to ¢ and H is the second fundamental form of M in M,(c), namely
H(X,Y)=yg(AX,Y) for any vecror fields X and Y.
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§2. Preliminaries

First of all, we recall fundamental properties about real hypersurfaces of a
complex space form. Let M be a real hypersurface of a complex n-dimensional
complex space form M,(c) of constant holomorphic sectional curvature ¢, and let
C be a unit normal vector field on a neighborhood in M. We denote by J the
almost complex structure of M,(c). For a local vector field X on the neigh-
borhood in M, the images of X and C under the linear transformation J can be
represented as

JX = ¢X +5(X)C, JC = ¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle TM of
M, while  and ¢ denote a 1-form and a vector field on the neighborhood in M,
respectively. Then it is seen that g(&, X) = 5(X), where g denotes the Riemannian
metric tensor on M induced from the metric tensor on M,(c). The set of tensors
(¢,&,n,9) is called an almost contact metric structure on M. They satisfy the
following properties:

P =—-I+n@®¢& ¢E=0, 5(&) =1,

where 7 denotes the identity transformation. Furthermore the covariant deriva-
tives of the structure tensors are given by

(2.1) V¢ =AX, Vyd(Y)=n(Y)AX - g(AX, Y)¢

for any vector fields X and Y on M, where V is the Riemannian connection on M
and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature ¢, the
equations of Gauss and Codazzi are respectively given as follows:

(2.2) R(X,Y)Z = g{g( Y, Z)X — g(X,2)Y
+9(8Y, 2)6X — g(4X,Z)$Y - 29(4X, Y)$Z)
+9(AY,Z)AX — g(AX,Z)AY,

(23)  VxA(Y) = VrA(X) = 3 {(n(X)9Y = n(Y)eX - 29(4X, Y)¢},

where R denotes the Riemannian curvature tensor of M and VyA denotes the
covariant derivative of the shape operator 4 with respect to X.

Next, we suppose that the structure vector field ¢ is principal with the
corresponding principal curvature «, namely 4¢ = «f. Then it is seen in [3] and
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[6] that o is constant on M and it satisfies

(2.4) 2444 = g(p +a(Ag+ ¢A).

§3. Proof of Theorems

Let M be a real hypersurface of M,(c), ¢ #0, n > 2. First of all, we shall
give a sufficient condition for the structure vector field ¢ to be principal. We
suppose that ¢ is principal, i.e., 4¢ = a&, where o is constant. Then, by (2.1) and
(2.4), we get

c 1
VxA(E) = _Z¢X - 5“(A¢ — ¢4)X,
from which together with (2.3) it follows that

(3.1) Ved = —%a(A¢—¢A).

Taking account of this property and the already known some theorems, in order
to prove our theorems, we shall assert the following

PROPOSITION 3.1. Let M be a real hypersurface of M,(c), ¢ #0, n>2. If it
satisfies

(3.2) Ved = f(A¢ — $A4) —df (&)
for a smooth function f, then & is principal, and hence df({) =0.

By the assumption (3.2) and (2.3), it turns out to be
. ¢
(3.3) VyA(S) = f(Ag— ¢A)Y —df(E)Y — 14T
Differentiating this equation with respect to X covariantly and using (2.1), we get

(3.4) VxVyA(E) = f{VxA@Y) + g(Y,E)A’X — g(AX,Y)AL
—g(AY,E)AX + g(AX, AY)E — ¢V A(Y)}

_ % {9(Y,E)AX — g(AX,Y)E} — Vy A($AX)

+df(X)(A¢ —94)Y

for any vector fields X and Y. Since the Ricci formula for the shape operator 4 is
given by
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VxVyA(Z) ~ VyVxA(Z) = R(X, Y)(AZ) — A(R(X, Y)Z),
it follows from (2.2), (2.3) and (3.4) that
(3.5)  VxA($AY) = VyA($AX) + [{VxA($Y) - VyA($X)}
= —/9(Y.&) + gAY, OIA’X + {f4(X, &) +g(4X, &)} A7
T9(AY,8) + (47T OIAX — (94X, &) +g(4>X )} AY
+7{190Y.0) + gAY X = L{fg(X,&) + g(AX,E)} Y
+7{0(40Y O)0X — g(49X,E)PY} - S g(9X, V)pAc
Fdf(Y)(Ag — pA)X —df (X)(Ag — $A)Y

for any vector fields X and Y.
Now, in order to prove Proposition 3.1, we shall express (3.5) in the simpler
form. The inner product of (3.5) and &, combining with (2.3) and (3.2), implies

(3.6) f9((Ag4¢ — $4pA) X, Y)
+Hg(X,6)g(AY, &) — g(¥,&)g(AX )}
—df(E){g((49 + )X, Y) +2/9(¢X, )}
+f{9(X, E)g(47Y, &) — g(Y,E)g(A7X &)}
+2{g(4X,&)g(A°Y, &) — g(AY,&)g(47X &)}
—df(X)g(A9Y,&) +df(Y)g(A$X &) =0
for any vector fields X and Y. Since Y is arbitrary, we get
{/(A9A — pAPA) — df ()(AP+ pA}IX — 2/df(E)pX
F{f9(X,&) +2g(AX, &)} A%+ {fg(X, &)
—2g(A°X, E)}AE — f{f9(AX, &) + g(47X,&)}¢

+df(X)gpAL + g(4gX, L)V =0

for any vector field X, where we denote by Vf the gradient of the function f. On
the other hand, taking account of (2.1) and the skew-symmetry of the trans-
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formation ¢, we have

(3.7) 9((ApAp — pA$A) X, $X) = g(X,{)g(ApAX ).
Putting ¥ = ¢X in (3.6) and applying the above property, we get
(3.8) S9(X,E){g(APAX &) + fg(ApX &) + g(44X &)}

+ 2{g(AX,E)g(A*$X &) — g(AdX ,E)g(A> X, &)}
—df(E){g((Ad + pA) X, $X) + 2fg($X,$X)}
—df(X)g(A$*X, &) +df ($X)g(A$X &) = 0.

Let Ty be the distribution defined by the subspace Ty(x)={ue T M :
g(u,&(x)) = 0} of the tangent space ToM of M at any point x, called a holo-
morphic distribution.

Now, suppose that the structure vector field ¢ is not principal. Then we can
put A = af + BU, where U is a unit vector field in the holomorphic distribution
Ty, and o and f are smooth functions on M. So we may consider the case that
the function f does not vanish identically on M. Let M, be the non-empty open
subset of M consisting of points x at which f(x) # 0. And we put AU =
BE+yU + 0V, where U and V are orthonormal vector fields in Ty, and y and &
are smooth functions on My. And let L(£, U) be a distribution spanned by ¢ and
U.

For any vector field X belonging to the holomorphic distribution Ty, (3.8)
can be simplified as

2{g(AX,E)g(A’X, &) — g(ApX, E)g(A*X &)}
—df(E){g((Ad+ pA) X, 4X) + 21 g($X , $X)}
+ Bdf(X)g(X, U)+df($X)g(¢X,U)} = 0.

Furthermore, we can see that this equation holds for any vector field X. By the
polarization of the above equation, we have

2{g(AX,E)g(A*PY &) — g(APX ,&)g(A7 Y, &)
+g(A4Y,8)g(AX &) — g(AY,&)g(47 X, &)}
—df(E){9((A4 + $A) X, 9Y) + g((A+ $A) Y, $X)
+4fg(4X,¢Y)} + B{df (X)g(Y,U) +df($X)g($Y,U)
+df(Y)g(X,U) +df($Y)g(¢X,U)} =0
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for any vector fields X and Y. Hence we have

(3.9) df (E){$(Ag + $A)X + (Ap + JA)PX + 41X}
— 2{g(AX, E)PAE + g(APX &) A%E — g(47pX &) AE
—g(A°X, E)pAL} + PLdf (X)U — df ($X)pU
+9(X, U)VSf +g(¢X, U)df(¢I)} = 0.

First, in order to prove Proposition 3.1, we shall assert the following

LemMa 3.2, The distribution L(&, U) is A-invariant on My, namely we have
(3.10) AU = pE+yU
on Mj.

ProoF. On the open subset My, by the forms 4¢ = aé + fU and AU = pé+
yU +4dV, it turns out to be

APE = (o + BAE + Bla+y)U + BoV.
Thus we can rewrite (3.9) as
(3.11)  df(E){#(A4 + PA)X + (Ap + pA)pX + 41 ¢ X}
+2{ag(A’X, &) — (o + f7)g(ApX, &)}
+2B{g(4°9X &) — (2 +7)g(APX, E)}U — 2p3g(ApX &)V
+2B{g(4°X &) — (2 +7)9(AX,£)}pU — 2p59(AX &) pV
+H{df(X)U —df(¢X)pU + g(X, U)VS + g(¢X, U) df (¢])}
=0
for any vector field X. The inner product of (3.11) and ¢ implies that
ag(pX, A7) — (& + f7)g(pX, AE) = 0
for any vector field X. This gives us
aAd?E — (a® + HAE=0
on M, and hence we have

B{(ay = BHU + adV} = 0.
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Consequently, we have

(3.12) Br=ay, 6=0

on Mpy. So it completes the proof. [ |
Furthermore, by (3.12), we also get

(3.13) APE = (a+ )AL

on M().
Let M’ be a closed subset in M containing all points x where f(x)=0.
Suppose that My — M’ is not empty. Then we have the following

LemMMa 3.3. If (3.2) is satisfied, then we have
(3.14) ApU = —igU, L=f+a+y
on My—M'.
PrROOF. By using the polarization of (3.8) together with (3.13), we have
F9(X,E){g(APAY &) + fg(APY &) + g(474Y, &)}
+ f9(Y, E{g(AAX &) + fg(ApX &) + g(A7$X &)}
—df(E){g((Ap + pA)X,$Y) + 41 g($X,$Y) + g((Ad + $A) Y, $X)}
—df(X)g(A$*Y, &) + df($X)g(A$Y &)
—df(Y)g(A$* X, &)+ df($Y)g(A$X,&) =0
for any vector fields X and Y. Putting ¥ = ¢, we have

F{a(ApAX &) + fg(ApX, &) + g(A29X &)} =0

because APAE is orthogonal to £. Since f has no zero points on My — M', we
have

APAE + fPAE + pA*E = 0.

This equation, by (3.13), completes the proof. [ |

Next, we give the following
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LEMMA 3.4. Assume that A*¢ +hAE =0, where h is a smooth function on
My — M'. Then it satisfies

(.15  fA%+ <4fy ~2hy +£)l 1Y —2(2/1 + 20+ ) — Bdh(¢U) = 0

on My— M'.

Proor. Differentiating our assumption 42¢ + hA¢ = 0 with respect to X and
taking account of (2.1), (2.3) and (3.3), we get

VxA(AE) + fA(AP — 9A)X + fh(Ap — pA)X + A*pAX
+ hAGAX — df (E)(AX +hX) — §A¢X - gh(px + dh(X)AE =0

for any vector field X. The inner product of this equation with any vector field Y
implies
g(VxA(Y), A) + fg(A(Ad — $A)X, Y) + fhg((A¢ — ¢A4) X, Y)
+ g(A*PAX,Y) + hg(AgAX,Y) — df(£)g(AX + hX, Y)
—£9(4¢X,Y) - ghg(qﬁX, Y) + dh(X)g(AE, Y) = 0,

Exchanging X and Y in the above equation and substituting the second one from
the first one, we have

g(VxA(Y) = VyA(X), AE) + fq((A%p — 24¢A + $A*)X, Y)
+ g((A%0A + APAP) X, Y) + 2hg(APAX, Y)

_29((A¢+¢A)X’ Y) —ghg(¢X, Y)

+dh(X)g(AS, Y) — dh(Y)g(4L, X) =0

for any vector fields X and Y. Putting X = U and Y = ¢U in this equation and
taking account of (2.3), (3.10), (3.12) and (3.14), we can easily see that the
equation (3.15) holds. |

Now, we are in position to prove Proposition 3.1, namely to prove the fact
that under the condition (3.2), the structure vector ¢ is principal. We suppose that
the open set My — M’ is not empty. Then, differentiating the form A¢ = «f + fU
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with respect to ¢ covariantly on My — M’, we have by (2.1)
VeA(S) = da()E + appU + dB(E)U — fAU + pV: U.
This, combining with the assumption (3.2) and (3.14), implies
d(f + ) (&) +dpE)U + B2f +2u+ y)¢U + VU = 0.
From the inner product of ¢ and U respectively, we get
(3.16) VeU=—(2f +2a+y)¢U, d(f+a)(&)=0, dp(&)=0

on Moy — M’', where we have used that g(V:U,&) =0 and ¢g(V:U,U)=0. By
making use of (3.2) and (3.10), y=g(4U,U) gives us dy(&) = —df(&).
Therefore, from (3.14) and (3.16), we get dA(&) = —d f(£). Differentiating (3.14)
with respect to & covariantly, and taking account of (2.1) and the above property,
we get

VeA(9U) — g(AU, &) AL — ig(AU, E)E+ (g + )VeU — df ($)pU = 0.

By (3.2), (3.10), (3.12), (3.14) and the first equation of (3.16), the above equation
gives the following

(3.17) (fH+o+p)(f+20+2y)=0, df(&)=0

on My — M’. Since f # 0, we have o + y # 0 on My — M’ by the above equation.
Now, we consider the first case f+a+y=0. By (3.14) and (3.16), we get

(3.18) APU =0, V:U = ygU.

Differentiating A¢ = aé + U with respect to any vector field X covariantly, and
taking account of (2.1), (3.3) and the second equation of (3.17), we get

f(Ag — pA)X — §¢X + APAX — da(X)E — agAX — dB(X)U — fVx U = 0.

By taking the inner product of this equation with & and U respectively, we get

(3.19) dx(X) = fBg(¢X, U), dB(X) = (f7—5)9(#X,U),

where we have used (3.10) and the first equation of (3.18). Owing to % = ay, it is
easily seen that

2Bdp(X) = ydou(X) + ady(X),
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from which together with (3.19), it turns out to be

B(fo+ 17 =5)9(dX,U) +ad(X) =0

for any vector field X, where we have used f+a+y=0. This implies
B(f*+¢/2) + adf(pU) = 0. Hence, by the first equation of (3.12) and (3.15), we
get f=0 on My— M’, where we have used that 1 =0 and A= f. It is a
contradiction.

Lastly, we suppose that f+2x+2y=0 in the first equation of (3.17).
Putting X =¢ and Y =U in (3.5) and from the inner product of ¢ and U
respectively, we obtain

Ba#VuU,U) = (f +9)(f + o+ +9(/ +20)+7

and

BU +a+2)g(@Vo U, U) = [(f + 2)(f + 24 7) + 7 +2) = 5 (f +a),

where we have used (3.2), (3.10), (3.13), (3.14), (3.16) and df (&) =dy(&) = 0.
Combining the above two equations, we get

(f+0‘+V)(fa+2f}’+2ocy+2y2+2£) =0.

By the supposed condition f + 2x+2y =0, we have f 2 = ¢. Therefore, we
obtain « =0, where we have used (3.15), f+2x+2y=0 and h=1= f/2.
Hence f =0 on My — M’ by the first equation of (3.12). It is also a contradition.

Consequently, these two cases mean that the subset My — M’ is empty and
hence the subset My is contained in the subset AM’. Hence it satisfies

Ved =0, g(AEE)#0

on M. Since Theorem A is a local property, we see that the structure vector field
& is principal on My. Then it is a contradiction. Therefore the subset My of M is
empty and hence ¢ is principal on M. Thus, comparing (3.1) with (3.2), we get
df{&) =0. It completes the proof of Proposition 3.1. [ ]

The following is immediate from Proposition 3.1.

COROLLARY 3.5. Let M be a real hypersurface of M,(c), ¢ #0, n>=2. If it
satisfies Ve A =0, then & is principal.
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ReMARK. Kimura and Maeda [4] proved Corollary 3.5 in the case where
c>0.

Proor oF THEOREM 1. By Proposition 3.1, the structure vector ¢ is principal
and df(¢) =0. Combining (3.1) with the assumption (1.2) of Theorem 1, we
have

(2f +«)(A4¢ — ¢4) =0,

which implies that 4¢ — ¢4 = 0 by the assumption. Thus, the real hypersurface
M is of type A. [ |

PrOOF OF THEOREM 2. Since L:(H +/4)(X,Y) = g(V:A(X),Y) - fg((44 -
pA)X,Y)+df(&)g(X,Y) for any vector fields X and Y, by the assumption (1.3)
of Theorem 2, we have

Ved = f(A¢ — ¢A4) —df (O]

Hence Theorem 2 is proved by Theorem 1. |

REMARK. Theorem B which was introduced in §1 can be obtained by
Theorem 1.
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