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By
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§1. Introduction

A complex ^-dimensional Kahler manifold of constant holomorphic sectional

curvature c is called a complex space form, which is denoted by Mn(c). A

complete and simply connected complex space form consists of a complex

projective space PnC, a complex Euclidean space Cn or a complex hyperbolic

space HnC, according as c > 0, c = 0 or c < 0.

In this paper, we consider a real hypersurface M in Mn{c). Typical examples

of M in PnC are the six model spaces of type A＼,A2,B,C,D and E (cf.[10]),and

the ones of M in HnC are the four model spaces of type Aq,A＼,A2 and B (cf.[1]),

which are all given as orbits under certain Lie subgroups of the group consisting

of allisometries of PnC or HnC. Denote by (<f>,,r},g) the almost contact metric

structure of M induced from the almost complex structure of Mn{c) and A the

shape operator of M. Eigenvalues and einvectors of A are called principal

curvatures and principal vectors, respectively.

Many differentialgeometers have studied M from various points of view. In

particular, Berndt [1] and Takagi [10] investigated the homogeneity of M.

According to Takagi's classificationtheorem and Bemdt's one, the principal

curvatures and their multiplicitiesof homogeneous real hypersurfaces in Mn(c)

are given. Moreover, it is very interesting to characterize homogeneous real

hypersurfaces of Mn{c). There are many characterizations of homogeneous ones

of type A since these examples have a lot of beautiful geometric properties, where

type A means type A＼ or A2 in PnC and type Ao,A＼ or A2 in HnC. Okumura [8]

and Montiel-Romero [7] proved the fact in PnC and HnC, respectively that M

The third author is partiallysupported by Pukyung University Research Foundation (1997)

Received July 6, 1998.

Revised October 26, 1998.



370 H. S. Kim, J.-H. Kim and Y.-S. Pyo

satisfiesA(f>= <f>Aif and only if M is locally congruent to type A. The following

theorem is proved by Kimura and Maeda [4] and Ki, Kim and Lee [2] for M in

PnC and HnC, respectively.

Theorem A. Let M be a real hypersurface of Mn(c), c ^ 0, n>2. If it

satisfies

V^ = 0, g(A£,Z)*O,

then M is of type A, where V is the Riemannian connection on M.

In his previous paper [9], the third named auther proved the following

Theorem B. Let M be a real hypersurface of Mn(c), c # 0, n > 2. If it

satisfies

VfA=a{Aj-tA), 2a*-g(A£,Z)

for some non-zero constant a, then M is of type A.

Motivated by these results,in this article we will give a generalization of

Theorems A and B and another characterizations of homogeneous real hyper-

surfaces of type A in Mn(c). The purpose of this paper is to prove the following

Theorem 1. Let M be a real hyper surface of Mn(c), c#0, n>2. If it

satisfies

(1.2) V^=/(^-^4)-<//(<*)/, 2f*-g(A£,Z)

for a smooth function f where I denotes the identity transformation, then M is of

type A.

Theorem 2. Let M be a real hypersurface of Mn(c),c # 0,≪> 2. If it

satisfies

(1.3) <?t(H + fg)=0, 2f*-g(AZ,£)

for a smooth function f then M is of type A, where ££＼is the Lie derivative with

respect to £ and H is the second fundamental form of M in Mn{c), namely

H(X, Y) = g(AX, Y) for any vecror fields X and Y.
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§2. Preliminaries

First of all,we recall fundamental properties about real hypersurfaces of a

complex space form. Let M be a real hypersurface of a complex ^-dimensional

complex space form Mn(c) of constant holomorphic sectional curvature c, and let

C be a unit normal vector field on a neighborhood in M. We denote by / the

almost complex structure of Mn(c). For a local vector field X on the neigh-

borhood in M, the images of X and C under the linear transformation / can be

represented as

JX = $X + ri(X)C, JC=-£,

where </>defines a skew-symmetric transformation on the tangent bundle TM of

M, while rjand £ denote a 1-form and a vector fieldon the neighborhood in M,

respectively.Then itis seen that g(£,X) ―rj(X), where g denotes the Riemannian

metric tensor on M induced from the metric tensor on Mn(c). The set of tensors

{(/>,df,tj,g) is called an almost contact metric structure on M. They satisfy the

following properties:

02 = -/ + ≫7Rf, # = 0, 7/(0 = 1,

where / denotes the identity transformation. Furthermore the covariant deriva-

tives of the structure tensors are given by

(2.1) Vx£ = * AX, Vx</>(Y)=t,{ Y)AX - g(AX, Y)£

for any vector fieldsX and Y on M, where V is the Riemannian connection on M

and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature c, the

equations of Gauss and Codazzi are respectively given as follows:

(2.2) R(X, Y)Z = | {g( Y, Z)X - g(X, Z) Y

+ g{<t>7,Z)</>X - g(jX,Z)<j>Y - 2g(<f>X,Y)</>Z}

+ g(A Y, Z)AX - g(AX, Z)A Y,

(2.3) VXA( Y) - VYA(X) = ~{rj(X)</>Y- q( Y)0X - 2g(<f>X,Y)£},

where R denotes the Riemannian curvature tensor of M and VxA denotes the

covariant derivative of the shape operator A with respect to X.

Next, we suppose that the structure vector field t,is principal with the

corresponding principal curvature a, namely A^ = <x£.Then it is seen in [31 and
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[6]thata is constanton M and it satisfies

(2.4) 2A<f>A= C-(I>+ a(A</>+ <f>A).

§3. Proof of Theorems

Let M be a real hypersurface of Mn(c), c =£0, n > 2. First of all, we shall

give a sufficient condition for the structure vector field £ to be principal. We

suppose that £is principal, i.e., A£,= a.£,where a is constant. Then, by (2.1) and

(2.4), we get

yXA^) = -C-(t>X~l-ai{A<t>-(l>A)X,

from which together with (2.3) it follows that

(3.1) VzA = --a(A</>-<f>A)-

Taking account of this property and the already known some theorems, in order

to prove our theorems, we shall assert the following

Proposition 3.1. Let M be a real hypersurface of Mn(c), c^O, n>2. If it

satisfies

(3.2) VtA=f(At-jA)-df(Z)I

for a smooth function f then £ is principal, and hence df(£) = 0.

By the assumption (3.2) and (2.3), it turns out to be

(3-3) VYA(£) = f(A</> -*A)Y- df(£) Y-^Y.

Differentiating thisequation with respect to Xcovariantly and using (2.1), we get

(3.4) VxVyA(£) = f{VxA((/>Y) + g(F, ^)A2X - g(AX, Y)A£

- g{AY,£)AX + g(AX,AY)Z - </>VxA(Y)}

- C-{g{Y, QAX - g(AX, 7)£} - VyA^AX)

+ df(X)(A</>-</>A)Y

for any vector fieldsX and F. Since the Ricci formula for the shape operator A is

given by
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VxVyA(Z) - VyVxA(Z) = R(X, Y){AZ) - A(R(X, Y)Z),

it follows from (2.2),(2.3)and (3.4)that

(3.5) VxAtfAY) - VYA{<t>AX)+f{VxA(<t>Y) - VYA(<f>X)}

= ~{fg{Y,£)+ g(A YA)}A2X + {fg(X^) + g(AX, £)}A2Y

+ {fg(AY,£)+ g(A2 Y,£)}AX - {fg(AX,£) + g(A2X,£)}AY

+ C-{fg(Y,Q + g{AYA)}X-C-{fg{XA)+g{AXA)}Y

+
%(A<f>Y,Z)<f>X-g(A<f>X,Z)<f>Y}-^g(0X,Y)<f>At
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+
l{g{AtY,Z)4X-g(AtX,Z)tY}-lg(tX,Y)tAZ

+ df(Y)(A<f> - <f>A)X - df{X)(A<f) - <f>A)Y

for any vector fields X and Y.

Now, in order to prove Proposition 3.1, we shall express (3.5) in the simpler

form. The inner product of (3.5) and £,combining with (2.3) and (3.2),implies

(3.6) fg((A<f>A</>-</>A<f>A)X,Y)

+ f{g(X, Z)g(A Y,£)-g(Y, £)g(AX, £)}

- df(£){g((A4 + *A)X, Y) + 2fg(</>X: Y)}

+ f{g{X, £)g(A2 Y,£)-g{Y, Z)g(A2X, f)}

+ 2{g(AX,£)g(A2 Y,£) - g(A Y,£)g(A2X,£)}

- df(X)g(A4Y,Z) + df(YMAjX,£) = 0

for any vector fields X and Y. Since Y is arbitrary, we get

{f(A<j>A</>- </>AM) ~ df{Z)(Aj + (t>A)}X - 2fdf(£)0X

+ {fg(X, Q + 2g(AX, ^}A2^ + {f2g(X, £)

- 2g{A2X, £)}At - f{fg(AX, ^ + g(A2X, £)}£

+ df(x)4A + g{A4xt£)Vf = o

for any vector fieldX, where we denote by V/ the gradient of the function /. On

the other hand, taking account of (2.1) and the skew-symmetry of the trans-
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formation <j>,we have

(3.7) QikMM - MM)*, <t>%)= 9(X, ZMAjAX, f).

Putting Y = <j)Xin (3.6) and applying the above property, we get

(3.8) fg(X, £){g(A4AX, £)+ fg(AjX, £)+ g(A2<f>X,f)}

+ 2{g(AX, £)g(A2</>X,Z) - g{A<$>X,^)g{A2X, f)}

- df(Z){g({Aj + +A)X, 4>X) + 2fg(fX, <t>X)}

- df{X)g{AfX^) + df(<f>X)g(A0X, £) = 0.

Let 7o be the distribution defined by the subspace To(x) = {ue TXM:

g(u,£(x))= 0} of the tangent space TXM of M at any point x, called a holo-

morphic distribution.

Now, suppose that the structure vector field£is not principal. Then we can

put A^ = <x£,+ fiU, where U is a unit vector fieldin the holomorphic distribution

To, and a and $ are smooth functions on M. So we may consider the case that

the function /? does not vanish identically on M. Let Mo be the non-empty open

subset of M consisting of points x at which fi{x)i=-0. And we put A U =

fi£+ yU + SV, where U and V are orthonormal vector fieldsin To, and y and 5

are smooth functions on Mo. And let L(£,U) be a distribution spanned by £,and

U.

For any vector field X belonging to the holomorphic distribution To, (3.8)

can be simplified as

2{g(AX, Z)g(A2</>X,f) - g(A<f>X,£)g(A2X, f)}

- df(£){g{{A4 + <j>A)X,<f>X)+ 2fg(jX, 0X)}

+ P{df(X)g(X, U)+df(<f>X)g(<f>X, U)} = 0.

Furthermore, we can see that this equation holds for any vector field X. By the

polarization of the above equation, we have

2{g(AX, £)g(A2tY, £)- g(AjX, £)g(A2 Y,f)

+ g(A7, £)g(A2<f>X,{) - g(A</>Y,£)g(A2X,Z)}

- df(Q{g{{A<t> + jA)*JY) + g((A</>+ jA) Y, <j>X)

+ 4fg(<f>XJY)} +/]{df(X)g(Y, U) + df(</>X)g(</>Y,U)

+ df(Y)g(X, U) + df(</>Y)g(</>X,U)} = 0
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for any vector fields X and Y. Hence we have

(3.9) df(Z){<f>(A</>+ <j>A)X + {A(t>+ *A)tX + 4f<f>2X}

- 2{g(AX, Q(t>A2^ + g(A<f>X,QA2{ - g(A2<f>X,^)A^

- g(A2X,Z)<f>AZ}+PW(X)U- df(</>X)0U

+ g(X, UWf + g(dX, U)dfUl)＼ = 0.

375

First,in order to prove Proposition 3.1, we shall assert the following

Lemma 3.2. The distributionL{£,U) is A-invariant on Mq, namely we have

(3.10)

on Mq

AU = P£+ yU

Proof. On the open subset Mo, by the forms At; = a£+ ftU and AU = /?£+

yU + SV, it turns out to be

Thus we can rewrite (3.9) as

(3.11) df(Z){<f>{A<f>+ </>A)X + (A<f>+ </>A)<fiX+ Affx]

+ 2{ag(A2</>X, Q - (a2 + fi2)g(AfX, ^)K

+ 2,%(^X, 0 - (a + y)^(^^, 0} C/ - 2j5Sg{A<l>X}£)F

+ 2^{^(^2Z, 0 - (≪+ y)≫(^JT,̂ )}^f/ - 2^(^Z, ^)^F

+ 0{df(X) U - df{<t>X)<l>U+ g(X, U)Vf + gtfX, U) df (</>!)}

= 0

for any vector field X. The inner product of (3.11) and £implies that

ag(</>X,A2£) - (a2 + /J2)g(<f>X,A£) = 0

for any vector field X. This gives us

olA2£-(ol2+P2)A£ = Q

on Mo and hence we have

B{(ay-B2)U + oiSV} = O.
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Consequently, we have

(3.12) P2 = ay, <S = 0

on Mo. So it completes the proof.

Furthermore, by (3.12), we also get

(3.13)

on Mn

^ = (≪+ y)^

J

Let M' be a closed subset in M containing all points x where f(x) = 0

Suppose that Mo ―M' is not empty. Then we have the following

Lemma 3.3. If (3.2)is satisfied,then we have

(3.14)

on Mq ―M'

A</>U = -tyU, l = f + (x+ y

Proof. By using the polarization of (3.8) together with (3.13), we have

fg(X,Z){g(A4AY,£)+fg(AtY,Z) + g(A2tY,Z)}

+ fg(Y,Z){g(A<f,AX^)+fg(A</>X,t)+g(A2</>X:Z)}

- df(£){g{(At + <t>A)X^Y) + 4fg(jX, <f>Y)+ g((A</>+ fA) 7, <f>X)}

- df(X)g(A</>2 Y^)+ df(4X)g{AtY, f)

- df(Y)g(A<f>2X, £)+ df(tY)g(AjX, £)= 0

for any vector fields X and Y. Putting Y = £,we have

f{g{A<l>AX, £)+ fg(AjX, S) + g(A2<j>X,^)] = 0

because A(f>A£,is orthogonal to £,.Since / has no zero points on Mq ―M', we

have

A^A^ + f<l>AZ + <l>A2Z= Q.

This equation, by (3.13), completes the proof. ■

Next, we give the following
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Lemma 3.4. Assume that A2** + hAl; = 0, where h is a smooth function on

Mo ―M'. Then it satisfies

(3.15) fX2 + (Afy -2hy + ^A- f2y -C-(2h + 2* + y) - (3dh{<j>U)=0

on Mo ―M'.

Proof. Differentiating our assumption A2£ + hA£ = 0 with respect to X and

taking account of (2.1),(2.3) and (3.3), we get

VxA(A£) + fA(A</> - (f)A)X + fh(A</> - (/>A)X + A2<f>AX

+ hA<f>AX - df(£){AX + hX) - -AA$X - -h^X + dh(X)A£ = 0

for any vector fieldX. The inner product of thisequation with any vector field Y

implies

g(VxA(Y),AZ)+fg(A(A4 - <f>A)X,Y) + fhg((A</> - <f>A)X, Y)

+ g{A2(t>AX, Y) + hg{A<l>AX, Y) - df(£)g(AX + hX, Y)

-
C-g{A(l>X,

Y) - -Ahq(tX, Y) + dh(X)g{A£, Y) = 0.

Exchanging X and Y in the above equation and substituting the second one from

the firstone, we have

g{VxA{ Y) -VYA{X),AQ + fg((A2</> - 2A<j>A + <f>A2)X,Y)

+ g{{A2(f>A+ A<f>A2)X, Y) + 2hg(A</>AX, Y)

-^g((At + tA)X,Y)-lhg(4X,Y)

+ dh{X)g{At Y) - dh( Y)g{AZ, X) = 0

for any vector fieldsX and Y. Putting X = U and Y = <f>Uin this equation and

taking account of (2.3), (3.10), (3.12) and (3.14), we can easily see that the

equation (3.15) holds. ■

Now, we are in position to prove Proposition 3.1, namely to prove the fact

that under the condition (3.2), the structure vector £is principal. We suppose that

the open set M$ ― M' is not empty. Then, differentiatingthe form A£ = a.%+ BU
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with respect to £ covariantly on Mq ―M', we have by (2.1)

V^(f) = d<x(£)£+ ap</>U+ dp{£)U - PA<t>U + ^ U.

This, combining with the assumption (3.2) and (3.14), implies

d(f+ *){£)$+ dp{£)U + P(2f + '2*+ y)<l>U+ psJsU = Q.

From the inner product of £ and U respectively, we get

(3.16) VtU=-(2f + 2a + y)<f>U, </(/ + a)(O=0, <#(£) = <>

on Mo - M', where we have used that g(V^U,^) = 0 and g(V^U, U) = 0. By

making use of (3.2) and (3.10), y = g(AU,U) gives us dy{£,)= ―df{^).

Therefore, from (3.14) and (3.16), we get dk{£) = -d/{£,).Differentiating(3.14)

with respect to £covariantly, and taking account of (2.1) and the above property,

we get

VtAtfU) - g(AU, QAS - Xg(AU, ^ + (A<f>+ ^)V{ J7 - df(£)fU = 0.

By (3.2),(3.10),(3.12),(3.14) and the firstequation of (3.16), the above equation

gives the following

(3.17) (/ + a + y)(/ + 2a + 2y)=0, #(<*)=<)

on Mq ― M'. Since / =£0, we have a + y ^ 0 on Mo ―M' by the above equation.

Now, we consider the firstcase / + a + y = Q. By (3.14) and (3.16), we get

(3.18) A$U = 0, ViU = y<f>U.

Differentiating A£ = a£+ [$U with respect to any vector fieldX covariantly, and

taking account of (2.1), (3.3) and the second equation of (3.17), we get

f(A<t>- (/>A)X -^<f>X + A(/>AX - da(X)£ - ol^AX - dfi(X)U -PVXU = 0.

By taking the inner product of this equation with t,and U respectively, we get

(3.19) da(X) = ffigtfX, £/), dfi(X) = (fy - %)g(*X, U)

where we have used (3.10) and the firstequation of (3.18). Owing to ft2 = ay, itis

easily seen that

2BdB(X) = yda(X) + <xdy(X),
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from which together with (3.19),it turns out to be

fi(f* + fy- %)9(tx, u) + oidf(x) = o
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for any vector field X, where we have used / + a + y = 0. This implies

/?(/2 + c/2) + otdf{(t>U)= 0. Hence, by the firstequation of (3.12) and (3.15), we

get fi= 0 on Mo ―M', where we have used that X ― 0 and h = f. It is a

contradiction.

Lastly, we suppose that f + 2cc+ 2y = 0 in the first equation of (3.17).

Putting X ■=£,and Y = U in (3.5) and from the inner product of £,and U

respectively,we obtain

and

fig(WuU,U) = (f + y)(f + * + y) + yU' + *)+l

P(f + 0L+ 2y)gUVvU,U) = f(f + 2y)(f + a + y)+ y2(f + a) - !</ + ≪)

where we have used (3.2), (3.10), (3.13), (3.14), (3.16) and df{£)=dy(£)=0.

Combining the above two equations, we get

(/ + a + y)(/a + 2/y + 2ay + 2y2+|) =0

By the supposed condition / + 2a + 2y = 0, we have f2 = c. Therefore, we

obtain a = 0, where we have used (3.15), / + 2a + 2y = 0 and h = X = f/2.

Hence /?= 0 on Mq ―M' by the firstequation of (3.12).It is also a contradition.

Consequently, these two cases mean that the subset Mq ― M' is empty and

hence the subset Mq is contained in the subset M'. Hence it satisfies

V^ = 0, g(A£,£)＼:0

on Mq. Since Theorem A is a local property, we see that the structure vector field

£is principal on Mq. Then it is a contradiction. Therefore the subset Mo of M is

empty and hence £is principal on M. Thus, comparing (3.1) with (3.2), we get

df(£) = 0. It completes the proof of Proposition 3.1. ■

The following is immediate from Proposition 3.1.

Corollary 3.5. Let M be a real hypersurface of Mn(c), c ^ 0, n > 2. If it

satisfiesV?A = 0, then t,is principal.
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Remark. Kimura and Maeda [4] proved Corollary 3.5in the case where

c>0.

Proof of Theorem 1. By Proposition 3.1,the structure vector £is principal

and df{£) = 0. Combining (3.1) with the assumption (1.2) of Theorem 1, we

have

(2/ + a)(^-^4)=0,

which implies that A</>―</>A= 0 by the assumption. Thus, the real hypersurface

M is of type A. ■

Proof of Theorem 2. Since se^H +fg)(X, Y) = g(^A{X), Y) - fg{(A(/>-

<j)A)X,Y) + df(£)g(X, Y) for any vector fieldsX and Y, by the assumption (1.3)

of Theorem 2, we have

VtA = f(At-tA)-df(Z)I.

Hence Theorem 2 is proved by Theorem 1. ■

Remark. Theorem B which was Introduced in §1 can be obtained by

Theorem 1.
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