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ON FOUR-MANIFOLDS FIBEMMG OVER SURFACES

By

Alberto Cavicchioli, FriedrichHegenbarth and Dusan Repqvs

Abstract. We study closed connected topological or smooth 4-

manifolds fiberingover a surface in terms of classifyingspaces,

characteristicclasses,and intersectionforms.

1. Introduction.

Let F and X be closed connected oriented surfaces of genus h and g,

respectively.We are going to study closed connected 4-manifolds M which admit

a fibration

(1) F―>M^X

with base X and fiber F.

It was shown by Meyer [11] that for a fixed h > 3 any integer Am e Z may

appear as signature of such a manifold M. So these manifolds provide an

interesting class of 4-manifolds (see also [1] and [2] for related examples).

More recently Hillman ([5]and [6])has proved that the necessary conditions:

X{M')=X{X)X{F)

and

IIi(Af') is an extension of Ui(F) by Hi(X)

are sufficientfor the closed 4-manifold M' is homotopy equivalent to a 4-

manifold M with fibration structure (1).Here / denotes the Euler characteristicas
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usual. Moreover, if the homotopy equivalence is simple, then M' and M are

topologically s-cobordant.

In this paper, we are going to study the problem of uniqueness of the

fibration structure (1). If for example M = X x F, then there are at least two

such structures. But even if we fix the base X and the fiber F, the following

question arises:

Does M admit non-isomorphic fibration

fJ^M-^X and F -^ M i X?

We are trying to construct invariants of such fibrations which are not invariants

of the manifold M. A complete set of such invariants will give a classificationof

closed 4-manifolds fiberingas in (1) in terms of homotopy classes of maps from X

to certain classifying spaces described below. As a general reference on the

algebraic theory of closed 4-manifolds see for example [6].For a standard text on

differentialtopology of fiber bundles we refer to [81.

2. The descriptionin terms of classifyingspaces.

Let X and F be given as above. We fix an orientation on F = F/,,where h is

the genus of F.

T.f≫t

G =
Aut+(F)

Diff+(F)

with the compact-open topology

with the C00-topology,

where Aut+(F) (resp. Diff+(ir)) is the group of orientation preserving homeo-

morphisms (resp. diffeomorphisms) of F.

Any fiber bundle (1), F ―>M ―*■X, is classifiedby a map / : X ― BG.

Isomorphism classesof bundles (1) correspond bijectivelyto homotopy classes of

maps X ―>BG, i.e. to elements of [X,BG＼.

The component Go c G of the identity is (weakly) contractible if h > 2 (see

[3] and [4]). Classical results, due to Nielsen, Dehn, and Birman, imply the

following canonical group isomorphisms:

G/Go s Aut+iU^F^/lnnOJ^Fh)) s E+(Fh),

where

E+(Fh) = {[(p)e [Fh,Fh] :(p orientation preserving homotopy equivalence of Fh}.

Note that F* := E+(Fu) is just the Teichmuller group of Fh.
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It follows that G/Gq is a discretegroup. Since Go ~{*} (at least weakly), the

fibration

G/Gq ―> BG0 ―+ BG

implies that 5G ~ J5T(rA,1) = BTh.

Assuming that the genus of X is > 2, i.e. X = K(TLi{X), 1) = BTli(X), we

obtain

[X,B(7] -5U [2ffIi(Jir),JMrA]s HomCO^X),^)/^,

where Th acts on Hon^O^X),!^) by setting (ya)(c) = ya(c)y~1for any y e T/,,

a e Mom(Ui(X),Th), and celli(J). The last isomorphism holds for discrete

groups n = Ili(X) and T = Th. Under this isomorphism the classifying map

/ : X ―>BG of the fibration (1) goes to the induced homomorphism

/* : nx(X) -･･ni(^G) S no(G/Go) s FA.

In particular, we note that the obvious map

(2) Biff+(F)-^E+(F)

is a homotopy equivalence (see [4]).

On the other hand, any fibration F ―>M ―>X defines an element in

Ext(ni(F),ni(jr))

by the sequence:

i _ ni(F) ―. nj(M) ― n,(*) ― i.

Conversely, given

[1 _, Ol(F) - O - ni(JT) - 1] eExtCn^F),^^)),

where /j= genus i7 > 2 and g = genus X > 2, we obtain a homotopy fibration

F -> ^O -> X and a classifying map fi : X-* BE+{F). Using (2), we find a

unique DIFF fiber bundle (up to bundle isomorphism) F -* E ―>X inducing the

sequence:

i _^ yh(f) ―> n^E) = n ―> ni(jr) ―^ 1.

Let / : X ―>5(j be its classifying map. Now it is well-known that the set of

extensions

[i _ mf/n - II - EUX) - 1] e ExtmUF), O^X)),
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inducing the same homomorphism /* : Ili(X) ―>ITi^G) ^ Ft,,is isomorphic to

H2(X;Cni(F)), where £IIi(F) denotes the center of TLi(F) (see [10], p. 128). But

CTli(F) = {1} if h>3. Hence we conclude that the fibration structure

F ―*■M ―>X is uniquely defined by the element

(3) [i _> n,(F) -+ n - n,(jr) ->i] gExt^^n^x))

if h = genus F > 3.

In this case our question is equivalent to:

In how many elements ofExt(U＼(F),Ili(X)) can a given group U occur (as in

(3))?

As pointed out by Hillman in [7],a closely related question was considered

by Johnson in [9] from a purely algebraic point of view. He proved that if the

homomorphism /* is not injective but has infiniteimage, then the extension is

unique; if/* has finiteimage, there are at most two distinctextension structures,

and that there are such groups II with two extension structures.If II has one

extension structure with/* injective,then all have this property, but he does not

settlethe question completely in this case. Note also that Wh(II) = 0 in all cases

(see for example F61,V.I, p. 68).

3. Characteristic: classes.

Let F -≫M -^ X be given as in Section 1. Let £c TM be the subbundle of

vertical vectors, i.e.vectors tangent to the fibers.We assume that t,―>M is an

orientable bundle. Such fibrations F ― M ―^X are called orientahle in [12] and

[13]. Let e(£)eif2(M;Z) be the Euler class of £. Note that e(M) =

c(Ow*(≪W), where e(M)eH4(M;Z) and e(X) e H2(X;Z) denote the Euler

classes of M and X, respectively.

Following [12], we define ei(Q = 3f*(e(£)2)eH2{X;Z), where ^* is the

Gysin homomorphism

H4(M

PD =:

Z)
<st

H2{X-Z)

^ PD

H0(M;Z) ~1^ H0(X',Z).

It is clear that the higher classes e, = @*(eJ'+l) = 0 in our case. However there is

another characteristicclass.The classifyingmap /* :IIi(X) ―>･Th composes with
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a* : Th ―>Sp(2/i;Z), which is induced by the action of

rA = Aut(n1(F))/Inn(ni(F))

on Hl(F;Z). The composition of the maps

(4) ni (X) -> T* -> Sp(2/i;Z) c: Sp(2/i;R)

induces X ― B§p(2h; R). Here we continue to assume that the genus of X is >2.

Let us consider the bundle r＼associated to the fiber bundle F ―>M ― X. For

every xe X, the fiber of r＼over x is the real cohomology of the fiberFx. Since the

unitary group %(h) is a maximal torus in Sp(2/*;U), the structure group of this

bundle can be reduced to the unitary group, i.e.tjcan be considered as a complex

vector bundle over X.

Then we have the firstChern class c＼{rj)eH2(X;Z).

Now from [12], p. 555, it follows that e＼(£)= ―12ci(i7).

One of the results proved by Meyer in [11], p. 246, is

Sign(M) = -<4ci(i7),[*]>,

where Sign(M) denotes the signature of M.

Furthermore, assuming h>3, any class c＼(r/) can be realized by a fibration

F ―≫M ―>X. Here h > 3 is fixed, but X may vary.

Summarizing we have

Proposition 3.1. The characteristicclasses c＼(rj)and e(£)of the fibration

F-+M-* X

are uniquely defined by the signature of M. Moreover, since £,―>M is a bundle of

dimension two, it is also defined by the signature (because it is defined by e(£)).

Now we can state the following problem: define characteristicclasses of the

fibration F ―*■M ―>X using other representation of TL＼(X) instead of (4).

4. The spectral sequence and the intersection form.

The spectral sequence of the fibration F -U M A X is of the following type:

E[q = Hp{X-W＼F)) =$>Hp+q(M;Z),

where H?(F) = X xni(x) Hq(F;Z) is the coefficientsystem over X induced by

the homomorphism L :IIi(X) ―>Sp(2/i;Z).
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Since we continue to assume that F -+ M ―>X is oriented,we have

E＼2 = H°{X;JP(FJ) £ H2(Ffl{x) s J^2(F) s Z

E$°= Hp{X-H＼F)) * Hp{X;H°(F))

The only possible non-trivial differentialsare

*H'(XSZ)

d^-E^^Z-^Ef and rf201: E＼x- £f°s ^2(X;Z)

There is the following commutative diagram

H2(M-Z) ―^-> H2(F;Z)^Z

EQJ > E＼2^Z.

Since i*(*?(£))= e(Fh) # 0, h > 2, it follows that E^2 s Z, which implies J202

From this we obtain

(5) H2(M;Z)^H2{F;Z)RHl(X-WiF))REJ0/Jmd^.

Since El0 = H2(X;Z) ^ Z, there are three possibilities:

E^/lmd*1 ss

{ z

Z/kZ

0.

= 0

Meyer has proved in [11] that

Sign(M) = Siga.(H1(X;Hl(F)), with respectto the obvious pairing)= Am

for some integerm. This implies thatrank H2(M;Z) and rank Hl(X;Hl(F)) are

even. Then it follows from (5) that £%°/Imd$l ^ Z, hence d＼x=0.

So we have proved the followingresult.

Theorem 4.1. If F -> M -> X

suhbundle t,c TM is oriented), then

is an oriented fibration (i.e. the vertical

the spectral sequence

E{q = Hp{X;Hi(F)) => Hp+q(M;Z)
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collapses.In particular, we have

Hl{M;Z)^Hl(F;Z)niix)RHl{X;Z)

and

H2(M;Z) g* H2{F;Z)RHl(X;Hl{F))@H2{X;Z).

We remark that in [12] Morita proved that the spectral sequence of the

rational cohomology of any surface bundle collapses.

As a consequence, the homomorphism n* : H2(X;Z) ―>H2(M;Z) is not

trivial,and hence the quadratic form on H2(M;Z) is indefinite.Then we must

distinguish two cases according to the intersection form is even or odd (in the

second case there exists an element xe H2{M;Z) such that x2 # 0 (mod 2)).

Let us consider now the second Stiefel-Whitney class

w2(M) = w2(TM) e H2(M;Z2).

Let £<= TM be as above the subbundle of vectors tangent to the fibers of

M-^X. Then we have TM/^n*(TX), i.e. w2{M) = w2{£)+ n*(w2(X)) =

w2(£).Since w2(£) = e(£)(mod 2), we conclude with the following implications:

w2{M) = 0 =*>e{£)= 2xe H2(M; Z)

=> ei(£)= ^*(e(<^)2)= 0 (mod 4) in H2{X＼Z) ^ Z

^> c＼(n) = 0 (mod 4)

=> Sign(M) = -4<ci(i7),[X]} = 0 (mod 16).

In particular, one reobtains Rohlin's theorem for the special class of 4-

manifolds fibering over surfaces.

Theorem 4.2. The closed TOP or DIFF 4-manifolds M considered above

satisfythe Rohlin theorem, i.e. wi{M) ― 0 implies that Sign(M) = 0 {mod 16).In

this case the integral intersectionform piM is always even.

On the other hand, if w2(M) # 0, then e(£)2# 0 (mod 2), hence the

intersection form fiM is odd, i.e.it is of type:

/% = (i)e--- e(i)c(-i)e ... e(-i).

Finally, let us calculate the Euler characteristicsfor oriented fibrations

F^M->X,

i.e. £is oriented.
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y(M) = x(F)X(X) = (2 - 2h){2 - 2g)

X(M) = 2 - 2(rank Hl (Ffl{x) + 2g) + rank Hl(X; Hl(F)) + 2,

hence

Agh -4h = rank Hl (X; if1^)) - 2 rank #! {F)m{x) > rank if1(X; W{F)) - 4h

Thus we have the following

Proposition 4.3.

Hl(F)ni{x) ^Hl(F)

rank Hl(X;Hl(F)) < Agh and equalityholdsif and onlyif

i.e. if and only if the classifyingmap

nl(x)^urh^sp(2h:Z)

vanishes.

5. The Pontryagin and Eider classes.

In dimension four the Hirzebruch formula for the signature writes as follows:

Sign(M) = (l/3)</>,(JI/),[M]>-

Now the formula of Meyer [11]

Sign(M) = -4<^),[X]>

and the above calculated relations

ar,(e(02)=e,(£) = -12ci(i7)

give

Sign(M) = (l/3)<e1(^),[X]>.

The commutative diagram in Section 3 implies that

w*<e(02,[Jf]> = <ei(£),[*]>,

where n* : H0(M;Z) -^H0{X;Z).

But n* = identity via the identificationHo(M;Z) ^ Z ^ Hq(X;Z), hence

(l/3Ve(O2, fMl> = Sign(M) = (l/3KPl(M), ＼M}＼
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Pl(M)=e(£)2.

This is a well known relationbetween p＼and e2.

For the Euler classwe have

e{M) = e(Z)n*(e{X)).

Now recallthe product BSO(4) = BSO(3) x BSU(2) induced by the fibration

(which has a section):

SO(3) ―> SO(4) ―+ S3 = SU(2).

Hence we have px e if4(BSO(3);Z) ^ Z and i?4(BSO(4);Z) s Z|>i]R Z[e],so

P＼(M) and e(M) determine the tangent bundle TM.

Remark 1: If e{£) = 0, thenpx{M) = e(M) = 0. Since i*(e{£)) = e{£＼F)= 0,

it follows that h = l, i.e. F = Sl x Sl. In this case we have a map

III(JT) - I*! = SL(2;Z) = Sp(2;Z).

Assume that the composition FI^A") ―> Ti = SL(2;Z) ―> SL(2;i^) induces the

constant map. Does it follow that Ili(X) ―≫SL(2;Z) is trivial? (in other words:

Is then M = X x F7). As remarked by Hillman in [7], M need not be a product.

Let N be an orientable Sl -bundle over the torus T with nonzero Euler class.

Assume that Ili(r) acts trivially on the fibre. Then N x Sl is a T-bundle over T

of the requested type.

Remark 2: It is well-known that an aspherical4-manifold M which fibres

over a surface admits the geometry H2 x H1 if and only if the map

/* : Oi(Af) ― Oi(BG) (our notation in Section 2) has finiteimage (see for

example [6]).

Open problem (J. A. Hillman) Find examples of asphericalsurfacebundles

over surfaceswhich admit one of the geometriesH4 or H2(C) (note that/* must

be injectivein these cases).
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