REAL HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE WITH THREE CONSTANT PRINCIPAL CURVATURES

By
Jun-ichi Sarto

1. Introduction

Let $H_{n}(\boldsymbol{C})$ be a complex hyperbolic space of complex dimension $n(\geq 2)$ with the metric of constant holomorphic sectional curvature -4 and M be a real hypersurface in $H_{n}(\boldsymbol{C})$ with the induced metric. We denote by \tilde{J} the natural complex structure of $H_{n}(\boldsymbol{C})$.
S. Montiel [4] gave the following classification theorem.

Theorem. If M is a connected real hypersurface of $H_{n}(C)(n \geq 3)$ with two distinct constant principal curvatures, then M is holomorphic congruent to an open part of one of the following real hypersurfaces of $H_{n}(\boldsymbol{C})$: a geodesic hypersphere in $H_{n}(\boldsymbol{C})$; a tube around $H_{n-1}(\boldsymbol{C})$ in $H_{n}(\boldsymbol{C})$; a tube of radius $\ln (2+\sqrt{3})$ around $H_{n}(\boldsymbol{R})$ in $H_{n}(\boldsymbol{C})$; a horosphere in $H_{n}(\boldsymbol{C})$.

Moreover, J. Berndt [1] classified all real hypersurfaces with constant principal curvatures in $H_{n}(\boldsymbol{C})$ under the assumption:
(C) The structure vector field is principal.

In this paper we prove that Berndt's theorem holds without the condition (C) for the case where the number of constant principal curvature is three and $n \geq 3$. More precisely,

Main Theorem. Let M is a connected real hypersurface in $H_{n}(C)(n \geq 3)$ with three distinct constant principal curvatures. Then M is holomorphic congruent to an open part of one of the following hypersurfaces:
(a) a tube of radius $r \in \boldsymbol{R}^{+}$around $H_{k}(\boldsymbol{C})$ for a $k \in\{1, \ldots, n-2\}$,
(b) a tube of radius $r \in \boldsymbol{R}^{+} \backslash\{\ln (2+\sqrt{3})\}$ around $H_{n}(\boldsymbol{R})$.

I would like to express my gratitude to Professor R. Takagi for his useful advice.

2. Preliminaries

Let $n \geq 3$ and $H_{n}(\mathbb{C})$ be a complex hyperbolic space with the metric of constant holomorphic sectional curvature $4 c(c<0)$ and M be a real hypersurface in $H_{n}(\boldsymbol{C})$ with the induced metric. Choose a local field $\left\{e_{1}, \ldots, e_{2 n}\right\}$ of orthonormal frame in such a way that, restricted to M, the vectors $e_{1}, \ldots, e_{2 n-1}$ are tangent to M. Hereafter let the indices i, j, k, l run through from 1 to $2 n-1$ unless otherwise stated. We denote by $\theta_{i}, \theta_{i j}$ and $\Theta_{i j}$ the canonical 1-forms, the connection forms and curvature form of M respectively. Then they satisfy

$$
\begin{gather*}
d \theta_{i}=-\sum_{j} \theta_{i j} \wedge \theta_{j}, \quad \theta_{i j}+\theta_{j i}=0 \tag{2.1}\\
d \theta_{i j}=-\sum_{k} \theta_{i k} \wedge \theta_{k j}+\Theta_{i j} \tag{2.2}
\end{gather*}
$$

Let \tilde{J} be the natural complex structure of $H_{n}(\boldsymbol{C})$ and $\left(J_{i j}, f_{k}\right)$ be the almost contact structure of M, i.e., $\tilde{J}\left(e_{i}\right)=\sum_{j} J_{j i} e_{j}+f_{i} e_{2 n}$. Then $\left(J_{i j}, f_{k}\right)$ satisfies

$$
\begin{gather*}
\sum_{k} J_{i k} J_{k j}=f_{i} f_{j}-\delta_{i j}, \quad \sum_{j} f_{j} J_{j i}=0 \tag{2.3}\\
\sum_{i} f_{i}^{2}=1, \quad J_{i j}+J_{j i}=0
\end{gather*}
$$

The vector field $\sum_{i} f_{i} e_{i}$ is called the structure vector field of M.
Let ϕ_{i} be 1 -forms of M such that $\sum_{i} \phi_{i} \theta_{i}$ is the second fundamental form of M for $e_{2 n}$. Then the parallelism of \tilde{J} implies

$$
\begin{gather*}
d J_{i j}=\sum_{k}\left(J_{i k} \theta_{k j}-J_{j k} \theta_{k i}\right)-f_{i} \phi_{j}+f_{j} \phi_{i}, \tag{2.4}\\
d f_{i}=\sum_{k}\left(f_{k} \theta_{k i}-J_{k i} \phi_{k}\right) . \tag{2.5}
\end{gather*}
$$

The equation of Gauss is given by

$$
\begin{equation*}
\Theta_{i j}=\phi_{i} \wedge \phi_{j}+c \theta_{i} \wedge \theta_{j}+c \sum_{k, l}\left(J_{i k} J_{j l}+J_{i j} J_{k l}\right) \theta_{k} \wedge \theta_{l} \tag{2.6}
\end{equation*}
$$

The equation of Codazzi is given by

$$
\begin{equation*}
d \phi_{i}=-\sum_{j} \phi_{j} \wedge \theta_{j i}+c \sum_{j, k}\left(f_{j} J_{i k}+f_{i} J_{j k}\right) \theta_{j} \wedge \theta_{k} \tag{2.7}
\end{equation*}
$$

3. Formulas

In this section we assume that all principal curvatures $x_{1}, \ldots, x_{2 n-1}$ (not necessarily distinct) of M for $e_{2 n}$ are constant. We may set $\phi_{i}=x_{i} \theta_{i}$. Then by (2.1) and (2.7) we can write the connection forms $\theta_{i j}$ in the form

$$
\begin{equation*}
\left(x_{i}-x_{j}\right) \theta_{i j}=c \sum_{k}\left(A_{i j k}+f_{i} J_{j k}+f_{j} J_{i k}\right) \theta_{k} \tag{3.1}
\end{equation*}
$$

where $A_{i j k}=A_{j i k}=A_{i k j}$ (cf. [5]). In particular, we have

$$
\begin{gather*}
A_{i j k}=-f_{i} J_{j k}-f_{j} J_{i k} \quad \text { if } x_{i}=x_{j} \tag{3.2}\\
f_{i} J_{j k}=0 \quad \text { if } x_{i}=x_{j}=x_{k} \tag{3.3}
\end{gather*}
$$

We quote an important formula,

$$
\begin{align*}
& 2 c^{2} \sum_{k}^{x_{k} \neq x_{i}} \frac{\left(A_{i j k}+f_{k} J_{i j}+f_{i} J_{k j}\right)^{2}}{x_{k}-x_{i}} \tag{3.4}\\
& -2 c^{2} \sum_{k}^{x_{k} \neq x_{j}} \frac{\left(A_{i j k}+f_{k} J_{j i}+f_{j} J_{k i}\right)^{2}}{x_{k}-x_{j}} \\
& -6 c\left(x_{i}-x_{j}\right) J_{i j}^{2}+3 c\left(x_{i} f_{j}^{2}-x_{j} f_{i}^{2}\right)-\left(x_{i}-x_{j}\right)\left(c+x_{i} x_{j}\right)=0
\end{align*}
$$

(cf. [5]).
For an index i, we denote by $[i]$ the set of indices j with $x_{i}=x_{j}$. Then it is obvious that the vector $F_{i}=\sum_{j \in[i]} f_{j} e_{j}$ is independent of the choice of orthonormal frame $\left\{e_{j} \| j \in[i]\right\}$ for the eigenspace belonging to x_{i}. Therefore for any index i we can indicate a special index i^{\prime} so that the vector F_{i} linearly depends on $e_{i^{\prime}}$. In other words, we can choose an orthonormal frame for the eigenspace belonging to x_{i} so that $f_{j}=0$ for $j \in[i] \backslash\left\{i^{\prime}\right\}$. In the same way, for $J_{j k}$ (j is any index and fixed and k is the index that $x_{k} \neq x_{i^{\prime}}$), we can indicate a special index k^{\prime} and choose an orthonormal frame for the eigenspace belonging $x_{k^{\prime}}$ so that $J_{j l}=0$ for $l \in[k] \backslash\left\{k^{\prime}\right\}$.

Hereafter we assume that $\operatorname{dim} M \geq 5$ and that M has three distinct constant principal curvatures x, y, and z. Let $m(x), m(y)$ and $m(z)$ be the multiplicities of x, y and z respectively. We shall make use of the following convention on the range of indices:

$$
\begin{gathered}
1 \leq a, b, c \leq m(x), \quad m(x)+1 \leq r, s, t \leq m(x)+m(y) \\
m(x)+m(y)+1 \leq u, v, w \leq 2 n-1
\end{gathered}
$$

Now, we quote a Lemma.

Lemma 3.1 ([5]). If $f_{a} f_{r} f_{u} \neq 0$ then

$$
\begin{array}{ll}
f_{a} \sum_{r} f_{r} J_{r b}-f_{b} \sum_{r} f_{r} J_{r a}=0, & f_{a} \sum_{u} f_{u} J_{u b}-f_{b} \sum_{u} f_{u} J_{u a}=0, \\
f_{r} \sum_{a} f_{a} J_{a s}-f_{s} \sum_{a} f_{a} J_{a r}=0, & f_{r} \sum_{u} f_{u} J_{u s}-f_{s} \sum_{u} f_{u} J_{u r}=0, \tag{3.5}\\
f_{u} \sum_{a} f_{a} J_{a v}-f_{v} \sum_{a} f_{a} J_{a u}=0, & f_{u} \sum_{r} f_{r} J_{r v}-f_{v} \sum_{r} f_{r} J_{r u}=0 .
\end{array}
$$

4. Proof of Main Theorem

It is sufficient to prove that two of f_{a}, f_{r} and f_{u} are 0 . For this, first, suppose that $f_{a} f_{r} f_{u} \neq 0$. Then, from (3.3), $J_{a b}=J_{r s}=J_{u v}=0$. We quote equations which are obtained by taking the exterior derivative of $J_{a b}=0, J_{r s}=0$ and $J_{u v}=0$.

$$
\begin{align*}
& 2 c(x-y) \sum_{r}\left(f_{u} J_{v r}-f_{v} J_{u r}\right) J_{r w} \tag{4.5}\\
& \quad-(y-z)\left(z^{2}-x z+2 c\right)\left(f_{u} \delta_{v w}-f_{v} \delta_{u w}\right)=0
\end{align*}
$$

$$
\begin{align*}
& 2 c(x-y) \sum_{a}\left(f_{u} J_{v a}-f_{v} J_{u a}\right) J_{a w} \tag{4.6}\\
& \quad-(z-x)\left(z^{2}-y z+2 c\right)\left(f_{u} \delta_{v w}-f_{v} \delta_{u w}\right)=0
\end{align*}
$$

(4.7) $2 c(y-z)\left(\sum_{r} f_{r}^{2}-\sum_{a, u} J_{a u}^{2}\right)-(z-x)\left(x^{2}-y x+2 c\right)(m(x)-1)=0$,
(4.8) $\quad 2 c(y-z)\left(\sum_{u} f_{u}^{2}-\sum_{a, r} J_{a r}^{2}\right)-(x-y)\left(x^{2}-z x+2 c\right)(m(x)-1)=0$,

$$
\begin{equation*}
2 c(z-x)\left(\sum_{u} f_{u}^{2}-\sum_{a, r} J_{a r}^{2}\right)-(x-y)\left(y^{2}-z y+2 c\right)(m(y)-1)=0 \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
2 c(z-x)\left(\sum_{a} f_{a}^{2}-\sum_{r, u} J_{r u}^{2}\right)-(y-z)\left(y^{2}-x y+2 c\right)(m(y)-1)=0 \tag{4.10}
\end{equation*}
$$

(4.11) $2 c(x-y)\left(\sum_{a} f_{a}^{2}-\sum_{r, u} J_{r u}^{2}\right)-(y-z)\left(z^{2}-x z+2 c\right)(m(z)-1)=0$,

$$
\begin{equation*}
2 c(x-y)\left(\sum_{r} f_{r}^{2}-\sum_{a, u} J_{a u}^{2}\right)-(z-x)\left(z^{2}-y z+2 c\right)(m(z)-1)=0 \tag{4.12}
\end{equation*}
$$

(cf. [5]).
Lemma 4.1. If $f_{a} f_{r} f_{u} \neq 0$ then $m(x), m(y), m(z) \geq 2$.
Proof. At first, we assume $m(x)=1$. Then from (4.7) and (4.8) we have

$$
\begin{equation*}
\sum_{r} f_{r}^{2}=\sum_{u} J_{a u}^{2}, \quad \sum_{u} f_{u}^{2}=\sum_{r} J_{a r}^{2}, \tag{4.13}
\end{equation*}
$$

which imply

$$
\begin{aligned}
m(y) & =\sum_{r} J_{a r}^{2}+\sum_{r, u} J_{r u}^{2}+\sum_{r} f_{r}^{2} \\
& =\sum_{u} f_{u}^{2}+\sum_{r, u} J_{r u}^{2}+\sum_{u} J_{a u}^{2} \\
& =m(z)
\end{aligned}
$$

Hence $m(y)=m(z) \geq 2$ since $\operatorname{dim} M \geq 5$. Then from (4.9) and (4.12) we have $y^{2}-z y+2 c=0$ and $z^{2}-y z+2 c=0$, and so

$$
\begin{equation*}
z=-y, \quad y^{2}=-c \tag{4.14}
\end{equation*}
$$

On the other hand, from (4.3), we have $\left(f_{r} J_{s a}-f_{s} J_{r a}\right) J_{a t}=0$. Multiply the
equation by $J_{t u}$ and sum over t. Then, since $\sum_{t} J_{a t} J_{t u}=f_{a} f_{u} \neq 0$, we have

$$
\begin{equation*}
f_{r} J_{s a}-f_{s} J_{r a}=0 . \tag{4.15}
\end{equation*}
$$

Similarly from (4.6), we have

$$
\begin{equation*}
f_{u} J_{v a}-f_{v} J_{u a}=0 \tag{4.16}
\end{equation*}
$$

Here we indicate a special index r^{\prime} (resp. u^{\prime}) and choose an orthonormal frame $\left\{e_{r}\right\}$ (resp. $\left\{e_{u}\right\}$) for the eigenspace belonging y (resp. z) so that $f_{s}=0$ if $s \neq r^{\prime}$ (resp. $f_{v}=0$ if $v \neq u^{\prime}$). Then $f_{r^{\prime}} f_{u^{\prime}} \neq 0$. Put $r=r^{\prime}, s \neq r^{\prime}$ in (4.15) and $u=u^{\prime}$, $v \neq u^{\prime}$ in (4.16) to get

$$
\begin{equation*}
J_{s a}=J_{v a}=0 \quad s \neq r^{\prime}, v \neq u^{\prime} . \tag{4.17}
\end{equation*}
$$

From (2.3) and (4.17) we have

$$
0=f_{a} J_{s a}=-f_{u^{\prime}} J_{s u^{\prime}},
$$

hence

$$
\begin{equation*}
J_{s u^{\prime}}=0 \quad s \neq r^{\prime} \tag{4.18}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
J_{r^{\prime} v}=0 \quad v \neq u^{\prime} . \tag{4.19}
\end{equation*}
$$

From (2.3) and (4.17), we have

$$
\begin{gather*}
\sum_{u} J_{s u} J_{u a}=f_{s} f_{a}=0, \quad \sum_{u} f_{u} J_{s u}=0 \tag{4.20}\\
\sum_{u} J_{s u} J_{u r}=f_{s} f_{r}-\delta_{s r}=-\delta_{s r}
\end{gather*}
$$

if $s \neq r^{\prime}$. We shall take the exterior derivative of $J_{s a}=0\left(s \neq r^{\prime}\right)$. From (4.17), (4.18), (4.19) and (4.20), we have

$$
\begin{equation*}
-J_{a r^{\prime}} \theta_{r^{\prime} s}+\sum_{u} J_{s u} \theta_{u a}-J_{a u^{\prime}} \theta_{u^{\prime} s}+y f_{a} \theta_{s}=0 \tag{4.21}
\end{equation*}
$$

We shall take the exterior derivative of $f_{s}=0\left(s \neq r^{\prime}\right)$. From (4.17), (4.18), (4.19) and (4.20), we have

$$
\begin{equation*}
f_{a} \theta_{a s}+f_{r^{\prime}} \theta_{r^{\prime} s}+f_{u^{\prime}} \theta_{u^{\prime} s}-\sum_{u} J_{u s} \phi_{u}=0 \tag{4.22}
\end{equation*}
$$

Canceling $\theta_{r^{\prime} s}$ from (4.21) and (4.22), we get

$$
\begin{aligned}
& J_{a r^{\prime}}\left\{\frac{c}{x-y} f_{a} \sum_{u}\left(A_{a s u}+f_{a} J_{s u}\right) \theta_{u}\right. \\
& \left.\quad+\frac{c}{z-y} f_{u^{\prime}}\left(A_{a s u^{\prime}} \theta_{a}-2 \sum_{u} f_{u^{\prime}} J_{u s} \theta_{u}\right)-z \sum_{u} J_{u s} \theta_{u}\right\} \\
& \quad+f_{r^{\prime}}\left\{\frac{c}{z-x} \sum_{r}\left(\sum_{u} J_{s u} A_{a r u}-f_{a} \delta_{s r}\right) \theta_{r}\right. \\
& \left.\quad-\frac{c}{z-y}\left(J_{a u^{\prime}} A_{a s u^{\prime}} \theta_{a}-2 \sum_{v} f_{u^{\prime}} J_{a u^{\prime}} J_{v s} \theta_{v}\right)+y \sum_{r} f_{a} \delta_{s r} \theta_{r}\right\}=0 .
\end{aligned}
$$

Taking account of the coefficients of θ_{a}, we have

$$
\left(f_{u^{\prime}} J_{a r^{\prime}}-f_{r^{\prime}} J_{a u^{\prime}}\right) A_{a s u^{\prime}}=0
$$

Here we assert $f_{u^{\prime}} J_{a r^{\prime}}-f_{r^{\prime}} J_{a u^{\prime}} \neq 0$. If not so, multiplying $\left(f_{u^{\prime}} J_{a r^{\prime}}-f_{r^{\prime}} J_{a u^{\prime}}\right)=0$ by $f_{u^{\prime}}$, we have

$$
0=f_{u^{\prime}}^{2} J_{a r^{\prime}}-f_{r^{\prime}} f_{u^{\prime}} J_{a u^{\prime}}=\left(f_{u^{\prime}}^{2}+f_{r^{\prime}}^{2}\right) J_{a r^{\prime}}
$$

Hence

$$
J_{a r^{\prime}}=0 .
$$

But (2.3) implies that

$$
0=J_{u^{\prime} a} J_{a r^{\prime}}=\sum_{k} J_{u^{\prime} k} J_{k r^{\prime}}=f_{u^{\prime}} f_{r^{\prime}},
$$

which contradicts $f_{r^{\prime}} f_{u^{\prime}} \neq 0$. Hence $A_{\text {asu }}=0$. Putting $i=s\left(\neq r^{\prime}\right)$ and $j=u^{\prime}$ in (3.4), we get

$$
\frac{2 c^{2}}{z-y} \sum_{u} f_{u^{\prime}}^{2} J_{u s}^{2}+3 c y f_{u^{\prime}}^{2}-(y-z)(c+y z)=0
$$

by (3.2) and (4.18). From this equation, (4.14) and $\sum_{u} J_{u s}^{2}=1$, we have

$$
8 c^{2}\left(f_{u^{\prime}}^{2}-1\right)=0
$$

Hence $f_{u^{\prime}}^{2}=1$, which contradicts (2.3) and $f_{r^{\prime}} \neq 0$.
We can prove similarly in the case where $m(y)=1$ or $m(z)=1$. Q.E.D.

Now multiply (4.1) (resp. (4.2)) by $J_{c r}$ (resp. $J_{c u}$) and sum over c. Then by Lemma 3.1 we have

$$
\begin{equation*}
\left(x^{2}-y x+2 c\right)\left(f_{a} J_{b r}-f_{b} J_{a r}\right)=0 . \tag{4.23}
\end{equation*}
$$

Similarly from (4.3), we have

$$
\begin{equation*}
\left(z^{2}-x z+2 c\right)\left(f_{u} J_{v a}-f_{v} J_{u a}\right)=0 . \tag{4.24}
\end{equation*}
$$

Since $x^{2}-y x+2 c \neq 0$ or $x^{2}-z x+2 c \neq 0$, we may assume $x^{2}-y x+2 c \neq 0$. Then (4.2) and (4.23) imply $x^{2}-z x+2 c=0$. Hence $z^{2}-x z+2 c \neq 0$. In fact, if $z^{2}-x z+2 c=0$, then $x=-z$ and it follows from (4.10) and (4.11) that $y^{2}-$ $x y+2 c=0$. Hence $y^{2}+z y+2 c=0$. From (4.8), (4.9) and $x^{2}-x z+2 c=0$ we have $y^{2}-z y+2 c=0$. Then we have $y z=0$, which contradicts $c \neq 0$. Hence (4.6) and (4.24) imply $z^{2}-y z+2 c=0$. Then (4.7) and (4.12) imply $x^{2}-$ $y x+2 c=0$. From $x^{2}-x z+2 c=0$ we have $x=0$, which contradicts $c \neq 0$. We can prove similarly if $x^{2}-z x+2 c \neq 0$.

Owing to the above result, we may set $f_{a}=0$.
Next, we prove $f_{r} f_{u}=0$. For this, we suppose that $f_{r} f_{u} \neq 0$.
We need to consider three cases.

Case 1: $m(y), m(z) \geq 2$. Then $J_{r s}=J_{u v}=0$. Here we indicate a special index r^{\prime} (resp. u^{\prime}) and choose an orthonormal frame $\left\{e_{r}\right\}$ (resp. $\left\{e_{u}\right\}$) so that $f_{s}=0$ if $s \neq r^{\prime}$ (resp. $f_{v}=0$ if $v \neq u^{\prime}$). Then, from (2.3), we have

$$
0=\sum_{i} f_{i} J_{i r}=f_{u^{\prime}} J_{u^{\prime} r}
$$

Hence

$$
\begin{equation*}
J_{r u^{\prime}}=0 \tag{4.25}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
J_{r^{\prime} u}=0 . \tag{4.26}
\end{equation*}
$$

If $m(x) \geq 2$, then we choose an orthonormal frame $\left\{e_{a}\right\}$ so that $J_{1 r^{\prime}} \neq 0$, $J_{a r^{\prime}}=0$ if $a \neq 1$. Then, from (2.3), we have

$$
0=\sum_{i} J_{a i} J_{i r^{\prime}}=J_{a 1} J_{1 r^{\prime}}
$$

Hence $J_{1 a}=0$ for any a. Similarly we get

$$
\begin{gather*}
J_{1 s}=J_{1 v}=0 \quad \text { if } s \neq r^{\prime}, v \neq u^{\prime} \tag{4.27}\\
J_{a u^{\prime}}=0 \quad \text { if } a \neq 1, \tag{4.28}
\end{gather*}
$$

from (2.3). Taking the exterior derivative of $J_{r^{\prime} u}=0$ and $f_{s}=0\left(s \neq r^{\prime}\right)$, we have

$$
\begin{gathered}
J_{r^{\prime} 1} \theta_{1 u}-\sum_{a} J_{u a} \theta_{a r^{\prime}}-\sum_{s} J_{u s} \theta_{s r^{\prime}}-f_{r^{\prime}} \phi_{u}+f_{u} \phi_{r^{\prime}}=0 \\
f_{r^{\prime}} \theta_{r^{\prime} s}+f_{u^{\prime}} \theta_{u^{\prime} s}-\sum_{b} J_{b s} \phi_{b}-\sum_{v} J_{v s} \phi_{v}=0
\end{gathered}
$$

Canceling $\theta_{r^{\prime}, s}$ from these equations, we get

$$
\begin{aligned}
& \frac{c}{x-z} f_{r^{\prime}} J_{r^{\prime} 1} \sum_{k}\left(A_{1 u k}+f_{u} J_{1 k}\right) \theta_{k} \\
& \quad-\frac{c}{x-y} f_{r^{\prime}} \sum_{a} J_{u a} \sum_{k}\left(A_{a r^{\prime} k}+f_{r^{\prime}} J_{a k}\right) \theta_{k} \\
& \quad+\frac{c}{y-z} f_{u^{\prime}} \sum_{s} J_{u s} \sum_{k}\left(A_{s u^{\prime} k}+f_{s} J_{u^{\prime} k}+f_{u^{\prime}} J_{s k}\right) \theta_{k} \\
& \quad+\sum_{b, s} J_{b s} J_{u s} \phi_{b}+\sum_{s, v} J_{u s} J_{u s} \phi_{v}-f_{r^{\prime}} \phi_{u}+f_{u} \phi_{r^{\prime}}=0 .
\end{aligned}
$$

Taking account of the coefficient of $\theta_{t}\left(t \neq r^{\prime}\right)$ and using (2.3), (4.26), (4.25), (4.27) and (4.28), we have

$$
J_{r^{\prime} 1} A_{1 t u}=0
$$

Hence

$$
\begin{equation*}
A_{1 s u}=0 \quad\left(s \neq r^{\prime}\right) \tag{4.29}
\end{equation*}
$$

Similarly, from $d J_{r u^{\prime}}=0$ and $d f_{v}=0\left(v \neq u^{\prime}\right)$, we have

$$
\begin{equation*}
A_{1 r v}=0 \quad\left(v \neq u^{\prime}\right) \tag{4.30}
\end{equation*}
$$

Now put $i=1, j=s\left(s \neq r^{\prime}\right)$ in (3.4). Then, using (3.2), (4.27), (4.28) and (4.29), we have

$$
-(x-y)(c+x y)=0 .
$$

Hence

$$
\begin{equation*}
c+x y=0 \tag{4.31}
\end{equation*}
$$

Moreover put $i=1, j=v\left(v \neq u^{\prime}\right)$ in (3.4). Then, using (3.2), (4.27), (4.28) and
(4.30), we get

$$
\begin{equation*}
c+x z=0 . \tag{4.32}
\end{equation*}
$$

Canceling c from (4.31) and (4.32), we get $x=0$, which contradicts $c \neq 0$.
If $m(x)=1$, then we can get same equations (4.27), (4.29), (4.30), (4.31) and (4.32) and prove similarly.

Case 2: $m(y)=1, m(z) \geq 2$. So we can indicate a special index u^{\prime} and choose an orthonormal frame $\left\{e_{u}\right\}$ so that $f_{v}=0$ if $v \neq u^{\prime}$. Moreover from (2.3) we have

$$
\begin{equation*}
J_{r u}=0 \tag{4.33}
\end{equation*}
$$

Then $\sum_{a} J_{a u} J_{a v}=\delta_{u v}-f_{u} f_{v}$. This implies that there are $m(z)$ linearly independent $m(x)$-dimensional vectors. Hence, $m(x) \geq m(z) \geq 2$.

Let us take the exterior derivative of $f_{a}=0$. Then, using (2.3), (2.4), (3.1) and (3.2), we have

$$
\begin{equation*}
\frac{c}{x-z} \sum_{u} f_{u} A_{a r u}=-\left(\frac{3 c}{x-y} f_{r}^{2}+\frac{c}{x-z} \sum_{v} f_{v}^{2}-y\right) J_{a r} \tag{4.34}
\end{equation*}
$$

$$
\begin{align*}
\frac{c}{x-y} f_{r} A_{a r u}= & -\left(\frac{c}{x-y} f_{r}^{2}+\frac{2 c}{x-z} \sum_{v} f_{v}^{2}-z\right) J_{a u} \tag{4.35}\\
& -\frac{c}{x-z} f_{u} \sum_{v} f_{v} J_{a v}
\end{align*}
$$

Canceling $A_{a r u}$ from (4.34) and (4.35), we get

$$
\begin{equation*}
f_{r} J_{a r}\left\{\frac{3 c(x-z)}{x-y} f_{r}^{2}+\frac{3 c(x-y)}{x-z} \sum_{u} f_{u}^{2}-y x-z x+2 y z+c\right\}=0 \tag{4.36}
\end{equation*}
$$

since $f_{r}^{2}+\sum_{u} f_{u}^{2}=1$. We assert $J_{a r} \neq 0$. In fact, we suppose that $J_{a r}=0$. Then by (2.3) we have

$$
0=\sum_{a} J_{a r}^{2}=1-f_{r}^{2}=f_{u^{\prime}}^{2}
$$

which contradicts $f_{r} f_{u} \neq 0$. Hence it follows from (4.36) and the relation $f_{r}^{2}+\sum_{u} f_{u}^{2}=1$ that

$$
\frac{3 c(y-z)(2 x-y-z)}{(x-y)(x-z)} f_{r}^{2}=y x+z x-2 y z-c-\frac{3 c(x-y)}{(x-z)}
$$

If $2 x-y-z \neq 0$, then f_{r}^{2} is constant. Taking account of the coefficient of θ_{a} in $d f_{r}=0$, we have

$$
\begin{equation*}
(x-y)(x-z)+x(x-y)+x(x-z)-c=0 \tag{4.37}
\end{equation*}
$$

This equation holds if $2 x-y-z=0$. From (4.37) and (4.36), we get

$$
\begin{equation*}
c(x-z)^{2} f_{r}^{2}+c(x-y)^{2} f_{u^{\prime}}^{2}+(x-y)^{2}(x-z)^{2}=0 \tag{4.38}
\end{equation*}
$$

Now we choose an orthonormal frame $\left\{e_{a}\right\}$ so that $J_{1 u^{\prime}} \neq 0, J_{a u^{\prime}}=0$ if $a \neq 1$ and then, for a special index $v^{\prime} \in[u] \backslash u^{\prime}, J_{2 v^{\prime}} \neq 0, J_{a v^{\prime}}=0$ if $a \neq 1,2$. Then, from (2.3), we have

$$
\begin{gather*}
J_{1 a}=J_{2 a}=J_{1 v^{\prime}}=0 \tag{4.39}\\
J_{a r}=0 \quad \text { if } a \neq 1 .
\end{gather*}
$$

Put $a=1$ and $u=v^{\prime}$ in (4.35) to get

$$
\begin{equation*}
A_{1 r v^{\prime}}=0 \tag{4.40}
\end{equation*}
$$

Then putting $i=1, j=v^{\prime}$ in (3.4), from (4.39) and (4.40), we have

$$
-(x-z)(c+x z)=0
$$

Hence

$$
\begin{equation*}
c+x z=0 \tag{4.41}
\end{equation*}
$$

Taking account of the coefficient of θ_{u} in $d J_{u v}=0$, we have $z^{2}-x z+2 c=0$. From this and (4.41), we get $z^{2}=-3 c, 3 x^{2}=-c, z=3 x$. Then, from (4.37), We have $y=0$. On the other hand, puting $a=2, u=v^{\prime}$ in (4.35), we have

$$
\begin{equation*}
c f_{r} A_{2 r v^{\prime}}=-2 c f_{u^{\prime}}^{2} J_{2 v^{\prime}} \tag{4.42}
\end{equation*}
$$

Put $i=2, j=v^{\prime}$ in (3.4). Then, from $z=3 x, 3 x^{2}=-c, y=0$ and (2.3), we have

$$
\frac{2 c^{2}}{3 x f_{r}^{2}}\left\{-3\left(-2 f_{u^{\prime}}^{2}+f_{r}^{2}\right)^{2}+6 f_{r}^{2} f_{u^{\prime}}^{2}+\left(-2 f_{u^{\prime}}^{2}-f_{r}^{2}\right)^{2}-6 f_{r}^{2}\right\}=0
$$

Hence

$$
-\left(2 f_{r}^{2}-1\right)^{2}=0 .
$$

Then $f_{r}^{2}=f_{u^{\prime}}^{2}=1 / 2$, which contradicts (4.38).
We can prove similarly for the case $m(y) \geq 2, m(z)=1$.

Case 3: $m(y)=m(z)=1$. Then $m(x) \geq 3$. Moreover $J_{r u}=0$. Hence $J_{a b} \neq 0$ since rank $J=2 n-2$. Let us take the exterior derivative of $f_{a}=0$, then, using (2.3), (2.4), (3.1) and (3.2), we have

$$
\begin{gather*}
\frac{c}{x-y} f_{r}^{2}+\frac{c}{x-z} f_{u}^{2}-x=0 \tag{4.43}\\
\frac{c}{x-z} f_{u} A_{a r u}=-\left(\frac{3 c}{x-y} f_{r}^{2}+\frac{c}{x-z} f_{u}^{2}-y\right) J_{a r} \tag{4.44}\\
\frac{c}{x-y} f_{r} A_{a r u}=-\left(\frac{c}{x-y} f_{r}^{2}+\frac{3 c}{x-z} f_{u}^{2}-z\right) J_{a u} \tag{4.45}
\end{gather*}
$$

It follows from (4.43) and the relation $f_{r}^{2}+f_{u}^{2}=1$ that f_{r}^{2} is constant. Taking account of the coefficient of θ_{a} in $d f_{r}=0$, from (4.44) and (4.45) we have

$$
\begin{equation*}
(x-y)(x-z)+x(x-y)+x(x-z)-c=0 \tag{4.46}
\end{equation*}
$$

Now we choose an orthonormal frame $\left\{e_{a}\right\}$ so that $J_{1 r} \neq 0, J_{a r}=0$ if $a \neq 1$. Then, from (2.3), we have

$$
\begin{gather*}
J_{1 r}^{2}=f_{u}^{2}, \quad J_{1 u}^{2}=f_{r}^{2} \tag{4.47}\\
J_{a u}=0, \quad J_{1 a}=0 \quad \text { if } a \neq 1 .
\end{gather*}
$$

Hence, from (4.44), we get

$$
\begin{equation*}
A_{\text {aru }}=0 \quad \text { if } a \neq 1 \tag{4.48}
\end{equation*}
$$

We put $i=2, j=r$ in (3.4). Then, from (4.47) and (4.48), we have

$$
\begin{equation*}
-\frac{2 c^{2}}{x-y} f_{r}^{2}+3 c x f_{r}^{2}-(x-y)(c+x y)=0 \tag{4.49}
\end{equation*}
$$

Similarly, putting $i=2, j=u$ in (3.4), we get

$$
\begin{equation*}
-\frac{2 c^{2}}{x-z} f_{u}^{2}+2 c x f_{u}^{2}-(x-z)(c+x z)=0 \tag{4.50}
\end{equation*}
$$

Canceling f_{r}^{2} and f_{u}^{2} from (4.49), (4.50) and (4.43), we have

$$
(x-y)(x-z)(y+z-3 x)=0
$$

by using (4.46). Hence we get

$$
\begin{equation*}
3 x-y-z=0 \tag{4.51}
\end{equation*}
$$

And from (4.51), (4.46), (4.43) and $f_{r}^{2}+f_{u}^{2}=1$, we get

$$
\begin{equation*}
c(y-z) f_{r}^{2}=(x-y)^{3}, \quad c(z-y) f_{u}^{2}=(x-z)^{3} . \tag{4.52}
\end{equation*}
$$

On the other hand, from (4.44) and (4.49), we have

$$
\begin{equation*}
\frac{c}{x-z} f_{u} A_{1 r u}=-\frac{1}{c}\left\{3 c x f_{r}^{2}-x y(x-y)\right\} J_{1 r} . \tag{4.53}
\end{equation*}
$$

Similarly, from (4.45) and (4.50), we have

$$
\begin{equation*}
\frac{c}{x-y} f_{r} A_{1 r u}=-\frac{1}{c}\left\{3 c x f_{u}^{2}-x z(x-z)\right\} J_{1 u} . \tag{4.54}
\end{equation*}
$$

Then, from these equations, (4.46) and (4.51), we have

$$
\begin{aligned}
\left(\frac{c}{x-z}\right. & \left.-\frac{c}{x-y}\right) f_{r} f_{u} A_{1 r u} \\
& =-\frac{1}{c}\{3 c x-x y(x-y)-x z(x-z)\} f_{r} J_{1 r} \\
& =-x f_{r} J_{1 r} .
\end{aligned}
$$

Here, we may set $J_{1 r}=f_{u}$ by (4.47). Then $J_{1 u}=-f_{r}$, and $c A_{1 r u}=x(x-y)$. $(x-z) /(y-z)$. Moreover we obtain

$$
\begin{equation*}
A_{1 r u}=\frac{(x-z) f_{r}^{2}+(x-y) f_{u}^{2}}{y-z} \tag{4.55}
\end{equation*}
$$

since $x(x-y)(x-z)=c(x-z) f_{r}^{2}+c(x-y) f_{u}^{2}$ by (4.43).
Let $a \neq 1$. We take the exterior derivative of $J_{a r}=0$. Then, using (2.3), (2.4), (4.47) and (4.48), we have

$$
\begin{equation*}
f_{u} \theta_{1 a}=\left(\frac{c}{x-y}-x\right) f_{r} \theta_{a} \tag{4.56}
\end{equation*}
$$

Similarly, from $d J_{a u}=0$, we have

$$
\begin{equation*}
-f_{r} \theta_{1 a}=\left(\frac{c}{x-z}-x\right) f_{u} \theta_{a} \tag{4.57}
\end{equation*}
$$

From above two equations and $f_{r}^{2}+f_{u}^{2}=1$ we get

$$
\begin{equation*}
\theta_{1 a}=\frac{c(y-z)}{(x-y)(x-z)} f_{r} f_{u} \theta_{a} . \tag{4.58}
\end{equation*}
$$

Let us take the exterior derivative of (4.58). First, using (2.1) and (4.58), we have

$$
\begin{aligned}
d \theta_{1 a}= & -\frac{c(y-z)}{(x-y)(x-z)} f_{r} f_{u}\left\{\sum_{b} \theta_{a b} \wedge \theta_{b}+\theta_{a r} \wedge \theta_{r}+\theta_{a u} \wedge \theta_{u}\right\} \\
= & -\frac{c(y-z)}{(x-y)(x-z)} f_{r} f_{u} \\
& \times\left\{\sum_{b} \theta_{a b} \wedge \theta_{b}+\frac{c}{(x-y)} \sum_{b} f_{r} J_{a b} \theta_{b} \wedge \theta_{r}+\frac{c}{(x-z)} \sum_{b} f_{u} J_{a b} \theta_{b} \wedge \theta_{u}\right\}
\end{aligned}
$$

because of (4.47) and (4.48). Next, using (2.6), we obtain

$$
\begin{aligned}
d \theta_{1 a}= & -\sum_{b} \theta_{1 b} \wedge \theta_{b a}+\theta_{1 r} \wedge \theta_{a r}+\theta_{1 u} \wedge \theta_{a u}+\Theta_{1 a} \\
= & -\frac{c(y-z)}{(x-y)(x-z)} f_{r} f_{u} \sum_{b} \theta_{a b} \wedge \theta_{b} \\
& -\sum_{b}\left\{\frac{3 c^{2}}{(x-y)^{2}} f_{r}^{2}+\frac{c^{2}}{(x-z)^{2}}\left(A_{1 r u}-f_{u}^{2}\right)+c\right\} f_{u} J_{a b} \theta_{b} \wedge \theta_{r} \\
& -\sum_{b}\left\{\frac{c^{2}}{(x-y)^{2}}\left(A_{1 r u}+f_{r}^{2}\right)-\frac{3 c^{2}}{(x-z)^{2}} f_{u}^{2}-c\right\} f_{r} J_{a b} \theta_{b} \wedge \theta_{u} \\
& +\left(c+x^{2}\right) \theta_{1} \wedge \theta_{a}
\end{aligned}
$$

because of (4.47), (4.48) and (4.58). Hence

$$
\begin{align*}
& c \sum_{b}\left\{\frac{c(3 x-y-2 z)}{(x-y)^{2}(x-z)} f_{r}^{2}+\frac{c+(x-z)(y-z)}{(x-z)(y-z)}\right\} f_{u} J_{a b} \theta_{b} \wedge \theta_{r} \tag{4.59}\\
& \quad+c \sum_{b}\left\{-\frac{c(3 x-2 y-z)}{(x-y)(x-z)^{2}} f_{u}^{2}+\frac{c-(x-y)(y-z)}{(x-y)(y-z)}\right\} f_{r} J_{a b} \theta_{b} \wedge \theta_{u} \\
& \quad-\left(c+x^{2}\right) \theta_{1} \wedge \theta_{a}=0 .
\end{align*}
$$

Taking account of the coefficient of $\theta_{1} \wedge \theta_{a}$ in (4.59), we have

$$
\begin{equation*}
c+x^{2}=0 \tag{4.60}
\end{equation*}
$$

We can get the same equation if $J_{1 r}=-f_{u}$. From the (4.60), (4.46) and (4.51), we get $\left(y^{2}, z^{2}\right)=(-c,-4 c),(-4 c,-c)$. Hence $x=-y$ or $x=-z$, which contradicts (4.46) and (4.51).

Owing to the above result, we get f_{r} or $f_{u}=0$. Hence the proof of Main Theorem is complete.

References

[1] Berndt, J., Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. reine. angew. Math. 395 (1989), 132-141.
[2] Berndt, J., Real hypersurfaces with constant principal curvatures in complex space forms, Geometry and Topology of Submanifolds II, Avignon, 1988, World Scientific, (1990), 10-19.
[3] Ki, U-H. and Takagi, R., Real hypersurfaces in $P_{n}(C)$ with constant principal curvatures, Math. J. Okayama Univ. 34 (1992), 233-240.
[4] Montiel, S., Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
[5] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-45, 507-516.

Department of Mathematics
Faculty of Science
Chiba University
Chiba-shi 260-8522, Japan

