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INDUCED MAPPINGS ON HYPERSPACES

By

HiroshiHosokawa

Abstract. Let / : X ―>Y be a mapping between continua. Then /

induces two mappings C(f) : C(X) -≫C(7) and 2/ : 2X -≫･2y in the

natural way. In this paper, we shall study about the following

question: Dose the correspondences / ― C(f) and / -> 2-f preserve

or reverse what classes of mappings? When Y is locally connected,

many classes of mappings are preserved by these correspondences.

We shall consider the classes of monotone, open, OM, confluent,

quasi-monotone and weakly monotone mappings.

1. Introduction

In this paper, continua are compact connected metric spaces, mappings are

continuous functions. Throughout this paper, the letters X and Y will always

denote nondegenerate continua and a mapping / : X ―> Y is always onto. We

shall use the letter d for the metric function for both spaces X and Y. The

hyperspaces of X are the metric spaces 2X = {K c X : K is nonempty and

compact} and C(X) = {K e 2X : K is connected} with the Hausdorff metric Hd

(see [8] for the definition of the Hausdorff metric and basic properties of

hyperspaces). A mapping / : X ― Y induces mappings C{f) : C(X) ―>C(Y)

and 2- :̂ 2X -* 2y naturally. If $ : F ―>■Z is an another mapping, then

C(g of) = C(g) o C(f) and 2≫°-/'= 2g o 2/ hold. Clearly 2^ is onto (since we

always assume that / : X -^ Y is onto) but C(/) is onto if and only if / is

weakly confluent.

The following three statements for a mapping / : X ―>Y are equivalent:

(1) / is a homeomorphism;

(2) C{f) is a homeomorphism;

(3) 2-^is a homeomorBhism.
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We shallstudy in the sectionsbelow the relationsabout the above type

between the mappings /, C(f) and 2?.

Some of the resultsareimprovement of those partiallyappeared in [2] and

[3].But for completeness, we shalldescribe theirproofs.

2. Definitions and Notations

We shall give the list of definitions for mappings treated hereafter. A

mapping / : X ―≫･Y is said to be

(1) monotone if for each y e Y, f~1(y) is connected; equivalently, if for each

subcontinuum L of Y, f~l(L) is connected;

(2) open if / maps every open set in X onto an open set in Y;

(3) an OM-mapping (resp. an MO-mapping) if there are mappings g and h,

where g is open and h is monotone, such that / = goh (resp. f = hog);

(4) confluent if for each subcontinuum L of Y, each component of f~l(L) is

mapped by / onto L;

(5) quasi-monotone if for each subcontinuum L of Y with a nonempty

interior, the set/"1^) has a finitenumber of components and/maps each of

them onto L;

(6) weakly monotone if for each subcontinuum L of Y with a nonempty

interior, each component of the set f~x{L) is mapped by / onto L.

For the implications between these classes of mappings, see p28 in [7].

Let tf denote either C(X) or 2X. A Whitney map /i:Jt -> [0,1] is a

mapping such that fi({x}) = 0 for each xe X, pi(X) = 1 and if A,B e Jf with

A <^ B ^ A, then /i(^4)< /i(5). Such a mapping always exists ([9] or [8]). Let

Aq,A＼ e ^f. A mapping <r: [0,1]―≫Jf is said to be a segment with respect to the

Whitney map /i from A$ to A＼ provided that a(0) = Ao, a(l)=Ai,

n[a(t)]= (l-t)n(Ao) + tn(Ai) for each f e [0,1] and if 0 < t＼< t2 < 1, then

a(t＼)a a{ti). When we use a segment, we will consider it with respect to some

fixed Whitney map. A condition of the existence of a segment is as follows:

Lemma 2.1 ([4]or [8]). Let Aq, A＼ Jt, where Jf denotes eitherC(X) or

2X. Then thereexistsa segment from Aq to A＼if and only if

(2.1.1)A0<=Ai if Jf = C(X),

(2.1.2)Aq c A＼ and each component of A＼intersectsAq if Jf = 2X.

Let A＼, A2,... be a sequence of nonempty subsets of X. Then Mm inf An and

lim sup An are defined by lim inf An ―{x e X: if U is a neighborhood of x in X,
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then U PIAn # $ for allmost all≪},lim sup An = {x e X: if 1/ is a neighborhood

of x in X, then C/D A # ^ for infinitelymany ≪}.If lim inf An = lim sup
^4W =
A,

then we say that {^4≪}^=1converges to ^ and wright it by lim An = A. Following

is known:

Lemma 2.2 [8]. Let A＼,Ai,... he a sequence in 2X (resp. C(X)). Then

lim An ― A in the sense above if and only if it converges to A with respect to the

Hausdorjf metric for 2X (resp. C(X)).

When we say a sequence {An}^=l converges in 2X or C(X), we will mean in

a convenient sense of one of the two senses. We shall wright A, intA for the

closure of A, the interior of A respectively.If s/ is a subset of a hyperspace Jf,

then we shall wright Intj/ for the interior of j/ in Jf.

For a subset A of a space, we say that A = A＼＼JA2 is a separation of A if

A＼i-Si- A2 and AinA2 = AinA2 = </>.

Lemma 2.3 [10]. If A and B are nonempty disjointclosed subsets of a

compact set K such thatno component of K intersectsboth A and B, then there

existsa separationK = Ka U Kb of K such that A czKa and B czKb.

Furthere we shall use the following notation. For any collectionjtf of

subsets of a space, stf*denotes the union of all members contained in s/.

3. Monotone Mappings

If jf is a subcontinuum of 2X and X n C(X) # ^, then X* is connected [8]

This is generalized as follows:

Lemma 3.1. Let X be a subcontinuum of 2X and KeJf. Then each

component of Jf* intersectsK.

Proof. On the contrary,suppose thereis a component C of Jf* such that

CC＼K = (j>.Then by lemma 2.3, thereis a separationJf* ―AUB of Jf* such

that K c=A and C a B. Put /0 = {ie^:i<=^} and jfi = {L e Jf :

L D B # ^}. Then we have a separationJf = Jfb U Jfi of X. This contradictsto

the connectedness of Jf.

Theorem 3.2. Let f': X ―> Y be a mapping. Then, the following three

statements are equivalent:
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(3.2.1) / is a monotone mapping;

(3.2.2) C(f) is a monotone mapping;

(3.2.3) 2? is a monotone mapping.

Proof. (3.2.1) => (3.2.2): Suppose that / is monotone and let L be an

arbitrary element of C(Y). Put M =/~1(L) and let K be an arbitrary element of

[C(f)]~l(L). Then, since/is monotone, M is a subcontinuum of X and contains

K. Therefore, by lemma 2.1, there is a segment a from K to M in C{X). It is

evident that the image of a is contained in [C(/)]~ (L). Thus, in particular,

[C(f)]~l(L) is arcwise connected.

(3.2.2) => (3.2.3): Suppose that C(f) is monotone and let B be an arbitrary

element of 2Y. Put A =f~l(B). Then A e [2f]~l(B).Let K be a component of

A considered as a subset of X. Since C(f) is monotone, [C(f)]~~(f(K))* is

connected and contained in/-1(/(^)) and hence is equal to K. Therefore every

component of A intersects each element of ＼2/}~(B). It follows by lemma 2.1

that [2^]~!(1?)is arcwise connected.

(3.2.3) => (3.2.1): Suppose that 2? is monotone and let yeY. Then by

lemma 3.1, P^"1^})* =/"1(y) is connected.

Remark. If/is monotone and M is an arcwise connected subcontinuum of

2Y (resp. C(Y)), then ＼2^]~l(a)(resp.[C(f)]~l(&))is arcwise connected.

4. Open Mappings

The following lemma is a characterization of open mappings. The equiv-

alence (4.1.1.)<^>(4.1.2) is appeared in [7], p.14 without proof (see also [5],

pp. 67-68).

Lemma 4.1. Let f : X ―> Y be a mapping. Then the following three

statements are equivalent:

(4.1.1) / is an open mapping',

(4.1.2) for each sequence {j≪}^=i in Y such that ＼imyn=y,

＼kn supf-＼yn)=rl(y);

{4.13) for each sequence {yn}
=i
in Y such that limyn=y, {f~l(yn)}Zzi

converges to f~x{y).

Proof. The implication (4.1.3) => (4.1.2) is evident.

(4.1.1) => (4.1.3): Suppose/is open and let {y≪}^=1 be a sequence in Y such

that lim yn=y. Since the continuity of/implies lim sup f~l(yn) c/~10;)j it is
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sufficientto show that/ l(y) a lim inf / l(yn). Let xef 1(y) and U an open

neighborhood of x in X. Since /(£/)is a neighborhood of y, there is an integer

^o such that yn ef(U) and hence f~l(yn)f)U =£<f>for each n > ≪0. Therefore

x e lim inff~l{yn) and hence we have f~l(y) c=lim inf/"1 (}>,).

For any collection U＼,U2,...,Un of open setsin X, let (Ui,U2,...,Un} =

{Ae2x :A^ (J"=1£/;and ^ n C/,-# ^ for each z = 1,2,..., n}. It is known

that-

Lemma 4.2 [8]. The collection of all subsets of 2X of the form

(U＼, Uo,..
■,
C/≫>is a base for the Hausdorff metric topology for 2X.

Theorem 4.3. Let f : X ―>Y he a mapping. Consider the following three

statements'.

(4.3.1)/ is an open mapping;

(4.3.2) C(f) is an open mapping;

(4.3.3)2? is an open mapping.

Then (4.3.1)and (4.3.3)are equivalentand (4.3.2)implies(4.3.1).

Proof. (4.3.1) =>(4.3.3): Suppose/is open and let {Bn}
=l
be a sequence

in 2Y such that limBn = B. Since 2^ is continuous, limsup[2-^]~ (Bn) is con-

tained in [2f]~l{B). Let A be an arbitrary element of [2f]~l(B) and let

U＼,U2,...,Ur be open sets in X such that A e <C/i,C/2,.･.,£//■>･Since
^4
is

compact, there are open sets V＼,F2,..., Fr of X such that F; <= {/,-for each

i=l,2,...,r and A e <VhV2,... ,Vr}. Since / is open, </(Ki),/(K2),

･･･,f(K)y is an open neighborhood of f(A) ―B in 2r. Therefore there is an

integer ≪0 such that 5W e </(Fi),/(F2),... ,/(Fr)> for each n > n0. Put

^n =f~l(Bn)n[＼Jri=lVi]. Then it is easy to see that An e [2f]~＼Bn)n

[<C/i,f/2,.--,l/r>] and hence by lemma 4.2, we have
^4
eliminfp^]"1^). It

follows from lemma 4.1, that 2? is an open mapping.

(4.3.3) => (4.3.1): Suppose 2? is an open mapping. Let U be an open

set in X and let xe U. Since < U} is an open neighborhood of

{x}g2x,2^≪C/≫ = </([/)> is an open neighborhood of {f(x)}e2Y. There-

fore/(C/) is a neighborhood of/(x). Since x is an arbitrary element of U,f(U)

is open in Y.

The proof of the implication (4.3.2)=> (4.3.1) is similar.

Note that in general, C{f)([(Ui,U2,...,Un)]nC(X)) is not equal to

K/TO),/(#2), ...,/(£/,)>]n C(F) even though ≪= 1. Following is an example

where / is open, X and Y are locally connected but C(f) is not open.
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Example Let 1,7 be plane continua defined by

Y =

X =

Define / : X -> Y by

{(x,y) : 0 <x < 1 andO < y < 1},

{(x,y):(x,y)eYor(-x,-y)eY}

f{*,y) =
(x,y)

{-x, -y)

X(x,y)eY

if (x,y) * Y

for each (x,y) e X. Let K = {(x,y) e X : x = 0 or y ―0}. Then / is open but

C{f) is not open at K e C(X).

5. GM-mappings

In [6],A. Lelek and D. R. Read had given a characterizationof OM-

mappings as follows:

Lemma 5.1 [6]. A mapping f : X ―>Y is an

for each y e Y and each sequence {yn} =i in

lim supf~l(yn)meets each component of f~l(y).

OM-mapping if and only if

Y, limyn = y implies that

We always saw that the correspondence / ―>C{f) does not preserve the

class of open mappings. Neverthelessit preservesthe classof OM-mappings.

Theorem 5.2. For a mapping f : X ―>F, the following three statements are

equivalent:

(5.2.1) / is an OM-mapping;

(5.2.2) C(f) is an OM-mapping;

(5.2.3) 7? is an OM-mappinq.

Proof. The implication (5.2.1)=> (5.2.3) follows from Theorems 3.2 and

4.3.

(5.2.1)=> (5.2.2): Suppose/is an OM-mapping and {Ln} =l is a sequence in

C(Y) which converges to L e C(Y). Let X be a component of [C{f)]~l(L). We

must show that lim swp[C(f)]~l(Ln) PUT # (f>.Choose a point xejf* and put

y =f{x). There is a point yn e Ln for each n= 1,2,... such that ＼＼myn= y. Let

C be the component of f~l(y) containing x. Since/is an OM-mapping, there is

a point xn ef~l(yn) such that some subsequence of {xn} =l converges to some

point of C. We may assume lim xn = xo e C Let Kn be the component of
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f~x(Ln) containing xn for each n = 1,2, Since OM-mappings are confluent,

we have Kn e [C(f)]~l(Ln). We may assume that {Kn} =l converges to Kq for

some Kq g C(X). It is easy to see that Kq and KqUC are elements of C(X)

contained in the same component of [C(f)]~l(L). Let K be an element of sf

such that x e K. Then K and Kq U C are in the same component of [C(f)]~l(L).

Thus Kq e Jf and hence we have Mm svp[C(f)]~l(Ln) D Jf # ^. Therefore by

lemma 5.1, C(/) is an OM-mapping.

(5.2.2) =>(5.2.1): Suppose C{f) is an OM-mapping and {yn} =[ is a

sequence in Y which converges to y e Y. Clearly the sequence {{.y≪}}^Li

considered as a sequence in C(Y), converges to {y}eC(Y). Let K be a

component of f~l{y). Then C{K), considered as a subset of C{X), is a

component of [C(f)]~l({y}). By the assumption and lemma 5.1, there is

Kne[C(f)]~l({yn}) for each n such that some subsequence of {Kn} =l con-

verges to an element of C(K). Since Kn czf~l(yn), this implies that

lim sup f~l(yn)C＼K ^ </>.Therefore applying lemma 5.1 again, we have that/is

an OM-mapping.

The implication (5.2.3)=> (5.2.1) is similarly proved.

Theorem 5.3. If f : X―> Y is an MO-mapping, then 2? is also an MO-

mapping.

This follows directlyfrom Theorems 3.2 and 4.3.

6. Confluent mappings

First we prove a special case.

Lemma 6.1. Let f : X ―≫Y he a confluent mapping.

(6.1.1) If S£ is an arc in C{Y), then each component of [C(f)]~＼&) is

mapped by C(f) onto !£'.

(6.1.2) If ££is an arc in 2Y, then each component of＼2f]~l(£?)is mapped by

2f onto Se.

Proof. We only prove (6.1.2) since (6.1.1) is more simple. Let $£be an arc

in 2Y and a : [0,1]―>S£ a homeomorphism. Let / be a component of

[2f]~l(&). Without loss of generality, we may assume a(0)e2/(jf). It is

sufficient to show that a(l) e 2^(jf). On the contrary, suppose that

<x(l)$2f(Jf). Then by lemma 2.3, there is a separation ＼2f]~l(£e)= JT0U X＼
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such that Jfcjfo and [2*]~l(<x(l)) cz jf1# Put t0 = sup{t: a(?) e 2'(jf0)}. Then

by compactness of Jfo, to < 1 and there is K g j£~qsuch that 2-^(A") = a(to). Let

Af be the union of all components C of/~!(a(?o)) such that CC＼K ^ <f>.Note

that M 6 JTo since X" and M are joind by a segment in [2^]~l(tx(to)).Let Mt be

the union of all components of f~l(a([to,t])*) intersecting M for each te [to,1].

Choose a sequence t＼,ti,... in [to,1] such that 1 > t＼> ?2 > ･■■,and limfn = to.

For each ≪=1,2,..., put X"n =/~1(a(?n)) flM,n. Since / is confluent, each

component of Mtn is mapped by / onto a component of ct([to,tn])*. Therefore,

by lemma 3.1, it is not so difficult to see that Kn e [2-f]~l(a(tn)) and each

component of Mtn intersects Kn. We may assume that ＼imKn = KQ for some

Kq g2j. Then Kq c f]^=lMtn = M and each component of M intersects Kq.

Therefore by lemma 2.1, there is a segment from Ko to M whose image is

clearly contained in [2^]~1(a(?o)). Therefore Kq e Xo. On the other hand,

Kn e Jf＼ for each n=l,2,... Hence we have a contradiction since

Hd(jro,jrl)>o.

Corollary 6.2. Let f : X -* Y be a confluentmapping.

(6.2.1)If ££is an arcwise connected subcontinuum of C(Y), then each

component of [C(f)]~l(J?)is mapped by C(f) onto 5£.

(6.2.2)If ££is an arcwise connected subcontinuum of 2Y, then each com-

ponent of [2-^1~{S£＼is mapped by 2? onto $£.

Proof. Let S£be an arcwise connected subcontinuum of C(Y) and let Jf

be a component of [C(f)]~l(Jif).Choose an element K e Jf. Then for any

Le & - {f(K)}} thereis an arc # in <£with the end pointsf(K) and L. Let j/

be the component of [C(f)]~l(@)containing K. Then clearlyst c jf, lemma

6.1 implies Le C(f)(jT). (6.2.2)is similarlyproved.

Theorem 6.3. Let f : X ―*■Y be a mapping. Consider the following three

statements:

(6.3.1) / is a confluent mapping;

(6.3.2) C(f) is a confluent mapping;

(6.3.3) 2^ is a confluent mapping.

Then the implications (6.3.2)=> (6.3.1) and (6.3.3) => (6.3.1) hold. If Y is locally

connected, then they are equivalent.

Proof. (6.3.3)=> (6.3.1): Let L be a subconthmum of Y and K & com-

ponent of f~x(L). Let S£ and Jf be subcontinua of 2Y and 2X respectively
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defined by & = {{y} :yeL}, Jf = {{x} :xeK}. Let M be

＼2f]~l(&)such that JfOJt^jf. Then it is clear that

2f{Ji) = 2, we have f(K) = L.

The implication (6.3.2)=>(6.3.1)is similarlyproved.
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a component of

M* = K. Since

Now suppose that / is confluent and Y is locally connected. We shall only

prove that 2^ is confluent and omit the proof for C(f) to be confluent. Let ££

be a subcontinuum of 2X and JT a component of ＼2f]~x{2£).Since 2Y is locally

connected ([1] or [8]), there are locally connected subcontinua JSfi,
=£?2,･･ ･ of 2Y

such that i?i => J§?2=> ･･･ and fXLi^" = & (see M> P-260)- Let tfn be the

component of [2f]~l(J?n) containing JT for each n = 1,2,.... It follows evi-

dently that jfi => Jf2 => ･■･ and fj^jf,, = Jf. Since by corollary 6.2 and

continuity of 2', 2/(jT) = 2/(0^^) = Oli2'^) = f]ti^ = ^-

The following example shows that there is a confluent mapping / such that

neither C( f) nor 2? is weaklv confluent.

Example. In the Euclidean plane with polar coordinates (r,9),let S be the

unite circle S ―{(r,6) : r = 1 and 0 < 0 < 27r} and let A＼,A2,B＼,Bi be spaces

each homeomorphic to the half open interval [0,1), defined by

*-{

...

-

B2 =

{

(r,0):6

(r,0):0

n

= -sm

■

K

1

1 -r

2 + sin

(r,9) : 6 = n sin

(r,0) :6 = n

1

1 <r<2

1 )

}

＼<r<

}･

■

<r< l|

1-r

1 <r<2

1

)i

1-r

1

Define X,Y and f:X^Y by I = 5U^Ui2) Y = SUBlUB1 and

/(r, 0) = (r,20) for all (r,0) e X. Then / Is cofluent and weakly monotone.

Let #, = {(r,0):r=land(rc/2)(f-l)<0<(rc/2)(2f-l)} for f e [0,1] and

Lt = {(r,0):r=land(n/2)(t+＼)<0<(n/2)(2t+l)} for re [0,1] The sets

Jf = {Kt : t e [0,1]} and if = {L, : f e [0,1]} are disjoint arcs in C(X) such that

C(/)(Jf) = C(f){&). There exist subsets Jt, JT of C(JST) such that Ji and
^T

are both homeomorphic to the half open interval, each element of M (resp. Jf) is

contained in A＼ (resp. Aj), Ji ―Jt = Jf and yT - J^ = if. To see this,let

g : SUA＼ -> 5 be the retraction defined by gf(r,0) = (1,9) for each (r,0) e SUA{.

We consider C(X) and C(SUAi) as subsets of C(X). Put ^0 = [CCfl)]"1^).
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Note that [C(g)]~l(Ki) ―{K＼} is a disjoint union of countably many arcs in

C(SDAi) and [C(g)]~l(Kt) is a countable set with one limits element Kt for

0 < t < 1. Define Ji ― Jl§―Jf. Similarly we can fined a described set Jf. Put

ii-lUI, s41 = jr＼}<£ and & = C(/)(j/i U^2)- Then i is a sub-

continuum of C(F) and ＼C{f)~x{0) has just two components &ti＼and ^2- But

neither of them is mapped by C(f) onto ^.

7, Quasi-monotone and Weakly monotone mappings

Lemma 7.1. If f : X ―> Y w weakly monotone and Y is locally connected,

then f is confluent.

Proof. Let L be a subcontinuum of Y and K a component of f~l(L).

Since Y is locally connected, there are subcontinua Ln(n = 1,2,...) of Y such

that Li => L2 => L3 D ..., f＼
=lLn
= L and intLn # ^ for each n ― 1,2,...(see [5]

or [10]). Let Kn be a component of f~l{Ln) containing K for each n = 1,2,

Then clearly K = flti*" and hence /(^) = 0"=i/(^) = 0"=i^ = L-

By Theorem 6.3, we have:

Corollary 7.2. If f : X―> Y is weakly monotone and Y is locallycon-

nected, then both of the mappings C(f) and 2? are confluent.

Theorem 7.3. Let f : X ―> Y he a mapping. Consider the following three

statements:

(7.3.1) / is a quasi-monotone {resp. a weakly monotone) mapping;

(7.3.2) C(f) is a quasi-monotone {resp. a weakly monotone) mapping;

(7.3.3) 2-f is a quasi-monotone (resp. a weakly monotone) mapping.

Then one of (7.3.2) and (7.3.3)implies (7.3.1).If Y is locally connected, then they

are equivalent.

Proof. We shall only prove for the class of quasi-monotone mappings.

The proof of the implication that (7.3.2) or (7.3.3) implies (7.3.1) is similar as

the proof of Theorem 4.3.

Now suppose / is quasi-monotone and Y is locally connected. Let Z£ be a

subcontinuum of C(Y) such that Intif #^. Choose LqeIhIS^ and y e Lq.

Since Lq e Int <£and Y is locally connected, there is a small closed connected

neighborhood V of y in Y such that L= V U Lq e 2?. Since / is quasi-monotone

and intL # (j>,f~l{L) has a finite number of components, say Ki,K2,...,Kr,
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each of them is mapped by / onto L. Since quasi-monotone mappings are

weakly monotone, corollary 7.2 implies that C(/) is confluent. Let Jfo be a

component of [C(f)]~l(&). Then C(/)(Jf0) = if. Thus there is K e Jf0 such

that C(f)(K) = L. Therefore K a Kt for some i e {1,2,..., r}. Then by lemma

2.1, it is easy to see that Isf,-e Jfo. Therefore the number of components of

[C^/)]"1^) is at most r. This and corollary 7.2 implies that C(/) is quasi-

monotone.

Next, suppose that / : X ―> F is quasi-monotone and 7 is locally connected

(the case for weakly monotone mappings are follows from corollary 7.2). By

Theorem 6.3, 2? is confluent. Let M be a subcontinuum of 2Y with a nonempty

interior and Belntffl. There is a positive number e such that if Le2Y and

Hd(B,L) < e, then LeM. Since F is uniformly locally connected, there are

3 > 0 and M e2Y such that F,$(2?)c M cz Ve(B) and each component of M

intersects B, where VV(B) is the y-neighborhood of B in Y for each y > 0 (see

[10], pp. 20-22). The number of components of M is finite because let

{Mg, : ae Q} be the set of components of M, choose a point y^E MaP＼B for

each cce Q, then the set {yx : a £co} is discrete and hence a finite set. Let

Mi,M2,...,Mr be the components of M. Since / is quasi-monotone and

intAf,-#^, f~l(Mj) has finitely many, say ≪(?), components for each i =

1,2,...,r. Then, as the proof of (7.3.1) =>(7.3.2), the number of components of

＼2f＼~H&)is at most nil) ■n(2).. .n(r).

8. Problems

There is an open mapping / such that C{f) is not open (the example in

section 4).

1. Is there an open mapping/ : X ― Y such that C(f) is open but C(C{f))

is not open?

2. Does the correspondence / ―>C(/) preserve or reverse the class of MO-

mappings? If/ is open, then is C(f) an MO-mapping? If 2? is an MO-mapping,

then is / an MO-mapping?

3. For a cofluent mapping/ : X ― Y, is it true that if 2-^is confluent, then

C(/) is confluent?

A continuum X is said to have property [K] if for any e > 0, there exists

3 ― 3(s) > 0 such that if a,b e X, d(a,b) < 3 and a e A e C(X), then there exists

B e C(X) such that beB and Hd{A,B) < e.

It is easy to see that if j/ is a subcontinuum of 2X and Int s& # ^, then

intj/* 9^. If A" has property [K], then for a subcontinuum X of C(X),
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Int Jf # <j>implies int Jf * ^ ^. But if X does not have property [K], int Jf * may

be empty.

Example. In the Euclidean plan, let us denote xy the straightline segment

with the end points x,y. Let p = (1,0), q ―(―1,0) and an = (0, ＼/ri)for each

n = 1,2, ― Let An ― U2np, Bn = ain+iq for n = 1,2,... and C ―pq. Let

X=CU＼＼X=lAn]＼J[{fn=lBn] and jf = {psPt: s-t = ＼ and 1/3 < t < 2/3},

where ps = (5,0) e X, then Jf is a subcontinuum of C(X) such that Int X ^ ^

but intJf* =(j>.

4. In Theorem 6.3, can the condition " Y is locally connected" be weakend?

Added in proof H. Kato announced me that by adding countably many

disjoint half open lines on the continua of the example in section 6 of this

paper, it is possible to construct continua having property [K] and a confluent

mapping between them whose induced mappings are not weakly confluent.

Recently A. Illames answered Problem 1 affirmatively.He showed that if

C(C(f)) is open, then / is a homeomorphism.
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