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Abstract. We will show the existence of a duality on CMC-l

surfaces in hyperbolic 3-space, and we will show an analogue of the

Osserman Inequality in terms of dual surfaces. Moreover, we will

show that equality holds (in this analogue) if and only if all the

ends of the surface are regular and embedded.

Introduction

The totalcurvature of a complete immersed minimal surfacex: M2 ―>R3

of finitetotalcurvature satisfiesthe Osserman Inequality([3]):

2tc JM2
KdA <{i{M2)-n)

where K is the Gaussian curvature of the surface and n is the number of ends.

Furthermore, equality holds if and only if all of the ends of the surface are

embedded ([2]).

CMC-l surfaces (i.e.surfaces of constant mean curvature 1) in hyperbolic

3-space H3(―1) of constant curvature ―1 have quite similar properties to

minimal surfaces in J?3. In fact, Bryant established an analogue of the

Weierstrass representation formula for the case of CMC-l surfaces in H3(―1).

However, for the total curvature of these CMC-l surfaces, an analogue of the

Osserman Inequality does not hold directly.In a previous paper [6],the authors

showed that complete immersed CMC-l surfaces in H3(―1) only satisfy the
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Cohn-Vossen Inequality

If

2n JM2
KdA < x(M2),

and equality never holds in thisinequality. Such a difference mainly comes from

the fact that the total curvature of CMC-I surfaces in H3(-l) is not necessarily

an integral multiple of An.

We will show the existence of a duality on CMC-l surfaces and an

analogue of the Osserman Inequality in terms of dual surfaces: Let M2 be

a Riemann surface and x: M2 ― H3(-l) a complete conformal CMC-l

immersion of finite total curvature. Then its dual CMC-l immersion

xs : M -≫H3(-l), defined on the universal cover M of M2, is obtained by

exchanging the hyperbolic Gauss map and the secondary Gauss map of the

original CMC-l immersion x. Though the dual CMC-l immersion x* may not

be single-valued on M2, its firstfundamental form ds^2 is defined on M2 itself.

Moreover, its total curvature on M2 is an integral multiple of An. In this paper,

we show the following

Theorem. Let M2 be a Riemann surfaceand x : M2 ―>H3(―1) a complete

conformal CMC-l immersion of finite total curvature. Then the following

inequalityholds:(dA^ is the volume element of the dual surface xK)

(1) -f K* dA* < MM2) - n)

where K$ is the Gaussian curvature of the dual surface x^ and n is the number of

ends of the original CMC-l surface x. Equality holds if and only if all the ends of

x are regular and embedded.

Other useful applications of the duality willbe found in a forthcoming

paper [4].The authors thank Wayne Rossman for informative conversations.

Preliminaries

Let M2 be a Riemann surfaceand x : M2 ―>■H3(―1) a complete conformal

CMC-l immersion of finitetotalcurvature.Then, thereis a null holomorphic

immersion F : M ―≫･PSL(2, C) defined on the universalcover M of M2 such

that x ―FF*. (Such an F is uniquely determined up to the ambiguity Fb for

beSU(2).) Here we use the identification(See [1,6])

H3(-l) = {XeHerm(2);det(X) = l,trace(Z) > 0}.
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We define a meromorphic function G by

(2) G
dFu

dF2l

dFn

dF22
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where F ―{Fij)i:=l2- Then G is single-valued on M2; that is, G can be con-

sidered to be a meromorphic function on M2. The function G is called the

hyperbolic Gauss map of x. ([1])

Since x induces a non-positively curved complete metric ds2 of finitetotal
2

curvature, there is a compact Riemann surface M and a finitenumber of points

{/?i,...,pn} g M such that M2 = M ＼{p＼,...,pn}. The hyperbolic Gauss map

G does not necessarily extend meromorphically on M . The end pj is called a

regular end if pj is at most a pole of G. If />/is not regular, it is called an

irregular end. We can set

(3) F~ldF = f th
~
2

where g is a meromorphic function defined on M , and w is a faolomorphic 1-

form defined on M . We call the pair (g, co) the Weierstrass data of the CMC-I

immersion x. g is called the secondary Gauss map of x. (g also has SU(2)-

ambiguity with respect to the choice of Fb (b e SU(2)).) In terms of the

Weierstrass data (g,co), the firstfundamental form ds2 and the second funda-

mental form > are written as

(4) ds2 = (1 + ＼g＼2)2co■co, <E>= -co ■dg - co■dg + ds2,

where "･" means the symmetric product. The holomorphic quadratic differential

Q = co･dg is called the Hopf differentialof x. By (4), Q is single-valued on M2.

Moreover, Q can be meromorphically extended on the compactification M of

M2 ([1]).The hyperbolic Gauss map G, the secondary Gauss map g and the Hopf

differentialQ satisfy the following identity ([6, 7]):

(5) S(g)-S(G)=2Q,

where S(g) = Sz(g) dz2 and Sz{g) is the Schwarzian derivative of g. The

Schwarzian derivative is defined as

Sg{g) = (' = d/dz).

Using this relation(5), the following lemma is obtained,(cf.[6; Lemma

2.31)
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Lemma 1 ([1; Prop.6]). The end pj is regular if and only if the order of Q at

Pj is greater than or equal to ―2.

Now we set da2 ―(-K)ds2, where K is the Gaussian curvature of ds2. Then

da2 is a pseudometric of constant curvature 1. (See [1] or [7].)It follows from

(4) that

(6) dJ
4dg ■dg

(i + ＼g＼2)2

Hence do2 is the pull back of the canonical Riemannian metric da＼ on the unit 2-

sphere induced by g : M2 ― CU{oo} ^ S2(l). By (4) and (6) we have

(7) ds2 ■da2 = AQ ■Q.

2
Definition ([5]). A conformal pseudometric da on a Riemann surface M

has a finite singularity of order /? (ft e R) at a point p e M if i/<r2 has a local

expression Jo-2 = e2cofifc･ dz around p such that co - /?log|z ―z(/?)| is continuous

at /?.We denote the value /? by Ordp(do2). When /? > ―1, we say that da2 has a

conical singularity at the point /?.

Using this terminology, da1 has a conical singularityat each end. ([1;

Prop.4])

For a meromorphic function/ on M , we denote by b/(p) the branching

number of/ at p e M . We set daj = 4^f ･ <///(l+ |/| ) . Then one can easily

check thatb/(p) = Ordp(daj). We denote by Ordp(Q) the order of the firstnon-

vanishing term of the Laurent expansion of the Hopf differentialQ at p e M2.

We prepare some lemmas.

Lemma 2 ([1; p346]). Let peM be a point such that Otdp{Q) > -2.

Suppose that the Hopf differential Q has the Laurent expansion

Q(z) = {q-i/{z ―p)2 + ･･ -)dz2.Then thefollowingidentityholds:

(8) (bG(p) + I)2 - (Ordp(da2) + I)2 = 4q-2.

Proof. By Proposition 4 in [1],there existsa coordinate z around p such

that the secondary Gauss map g is of the form

g = z≫ (u>0,ueR).
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On the other hand, G has the following expansion:

G{z) or ＼/G{z) = G(p) + (z-pY(G0 + Gi(z -p) + ■■･)

So we have

Sz(G) =
l-(l-/2)

Sz{g)=＼{l-n2)

1

(z-p)2

1

(z-p)2

+ ･･･,

J―
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(/>O,/eZ,Go#Q).

By (5), we get the identity /2 - fi2 = 4q_2- By (6), we have that

Otdp(da2) ― pt-＼. Since ba(p) = / - 1, this proves the lemma.

Lemma 3. Suppose that pj is a regular end of x. Then the following

inequality holds:

(9) bG{Pj)-OrdPj{Q)>2.

Equality holds if and only if the end pj is embedded.

Proof. Take a coordinate z around p = Pj as in the proof of Lemma 2. By

Theorem 5.2 in [6], the end pj is embedded if and only if m ― min{wi, W2} = 1,

where mi and mi are the positive integers given by

and

mi (v+l)2 + 4^_2 W2 (2/i+ v+l)2+4^_2,

v = OTdPj{w) = OYdPj(Q/dg) = OrdPj(Q) - n + 1.

Since pj is a regular end, we have that Ordp(Q) > -2, by Lemma 1. If

OrdPj(Q) = -2, then by Lemma 2,

1 < m＼―rri2― VV + 4a_2 = ^-

Since Ordp(Q) = -2 and bG(Pj) = f-l, thisimplies that (9) holds and that

equalityin (9) holds if and only if m = 1.

Next, we assume that Ord^.^) > ―2.In thiscase q-2 ―0, and by Lemma

2, u = /. Thus we have

mi = |QrcUeW + 2| my |OrcUG) + ^ + 2|.
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Since Ord^(g) + 2 > 0, m＼ < m2 holds. So

(10) m = ml = ＼OidPj(Q)-{ + 2＼.

On the other hand, by (7), we have

(11) Ord^ds2) + OrdPj.{d(i2)= OvdPj(Q).

Since ds2 is complete at pj,

(12) Oidp^ds2) < -1

holds, by Corollary 4.2 in [6].

Since OrdPj(da2) = /i―1=/―1 is an integer, (11) and (12) yield

(13) -3 + />OrdPj(Q).

This implies (9). Moreover, by (10) and (13), we have

l<m = /-2-Ord/,.(0.

So equality in (9) holds if and only if m = 1. This proves the lemma.

Duality on CMC-t surfaces

Let x : M2 ― i/3(-l) be a complete CMC-l surface of finite total cur-

vature, as in the previous section. Let G be the hyperbolic Gauss map, (g, co) the

Weierstrass data, and Q ― co-dg the Hopf differentialof x. The dual surface x*

of jcis obtained by exchanging the hyperbolic Gauss map and the secondary

Gauss map of the original CMC-l immersion x. We show this property from

the following definition of the dual surface. (The authors thank the referee of

the Bull. London Math. Soc. for suggesting the following definition.)

Definition. The dual CMC-l immersion x* : M2 ―>H3(―1) associated

with the Weierstrass data (g,co) of the CMC-l immersion x is defined by

j = (F-i)(F-ir,

where F is the liftof x with respect to (g,co) (namely, F satisfies(3)).

x" is not necessarily single-valued on M2. With [7; Cor. 2.4], one can easily

show that x* is single-valued if and only if g is single-valued on M2. Let (g^ojfi)

be a pair defined by

(14) (F^dF* =
(

i -fijy
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where F* = F~l. Then (g＼(o*)is the Weierstrass data of xK Let (x*f be a dual

CMC-X immersion associated with (gr^co*).Then by the definition,the relation

(jc*)*= x is obvious. It should also be remarked that the congruent class of

the dual x* is independent of the choice of the Weierstrass data (g, co) of x, but

it does depend on the position of the surface x. While x and axa* are congruent

if and only if a e SL(2, C), x^ and {axcfy are congruent if and only if

aeSU(2).

Proposition 4. Let x$ be the dual CMC-X immersion of x with respect to

the Weierstrass data (g,co). Then the hyperbolic Gauss map G＼ the Weierstrass

data {g＼e$), and the Hopf differentialQ^ of x^ are given by

&=g, J = G, at = -Q/dG, O≪ = -Q.

Proof. We set F = (Fy). Then by (2), we have

^11*22 ~ ^12*21 = °

where ' = d/dz. Using this, the following identity is easily obtained

(15)
=
F[x
=
F^Fji - F[2F2＼

F{x F^F22-F^2F2l-

Now we set F* = F~l. Since dF~l = -F-l(dF)F~l, we have

(16) {F*yldF* = -{dF)F~l =

(
F[XF22 - F[2F2l -F[xFn + F{2Fn

F'2lF21 - F[2F2i -F'2XFl2 + f;7Fu

)

Hence by (14), (15), and (16), we have

G = gK

Replacing F by F＼ we also have

&=g.

So by (5), we have Q* = -Q and hence (J = -Q/dG. This proves the

proposition.

(17)

By (4) and Proposition 4, the firstfundamental form of x* is given by

^2 = (l + |(7|2)2jL

Since G and O are single-valuedon M2, so is the metric ds^2



236 Masaaki Umehara and Kotaro Yamada

Lemma 5. Suppose that all the ends of x are regular. Then the induced

metric ds^2of the dual CMC-l immersion x* is a complete Riemannian metric on

M＼

Proof. We set

(18) d<r*2 =
AdG ■dG

(T7|gj＼'

By (7), we have that

(19) ds2■da2 = 4Q ■Q = 4(-g) ･P0 = dP ■da%1.

Since G is single valued on M2, so is da^2. By (18), we have bgipj) = OTdPj(d(j^2).

So (9) is equivalent to

(20) OrdPj(d^2)> OrdPj(Q) +2.

Since x^ is an immersion, ds^2 is positive definite.By (19), we have

OidPj{d^2) + Ordp/rffe*2)= Ordp.(0.

Combining this with (20), we have that OrdPj(ds^2)< ―2. In particular,we have

OfdPj{ds^2) < ―1, which implies that ds^2 is complete at pj.

Proof of the theorem. If x has irregular ends, G has essential singu-

laritiesat those ends. By (18) and the relation d<p- = (-K^)ds^2, we see that ds^2

has infinitetotal curvature on M2. So we may assume that all the ends of jc are

regular. We can directly apply (20), instead of (4.3) in [6], to the proof of

Theorem 4.3 in [6].Then we have the inequality (1). Equality in (1) holds if and

only if equality holds in (20); that is, if and only if

(21) OtdPj(d<P)=OrdPj(Q)+2

holds for each j ― 1,･･･,≪.On the other hand, OrdPj(dJ2) = bG{pj), by (18). So

by Lemma 3,(21) holds if and only if allthe ends of x are regular and embedded.

This proves the theorem.

2Remark. Let M be a compact Riemann surface and x:

M ＼{p＼,...,pn} ―>JJ3 a complete conformal minimal immersion of finitetotal

curvature. Then the Gauss map G and the Hopf differentialOof jc are given by

G =
dxj,

8x＼ ―idx2
Q = (dxx - idx2) ･ dG
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where x = (xi,X2,x^). It is well-known that G and Q' can both be mero-

morphically extended to M . By [2],it can be easily checked that an end pj of x

is embedded if and only if equality holds in (9). So the embedding criterion for

regular ends of CMC-l surfaces is the same as that for minimal surfaces. Finally,

by our numerical experiments, we would like to propose the following:

Problem. Are any irregularends of CMC-l surfacesnon-embedded?

Added in Proof. Recently, Zuhuan Yu proved Lemma 5 without

assuming regularityof ends ("Value distributionof hyperbolic Gauss maps", to

appear in Proceedings of the American Mathematical Society).Namely, the

dual of any complete CMC-l surfaceis also complete.
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