PROPAGATION OF ANALYTICITY OF SOLUTIONS TO THE CAUCHY PROBLEM FOR WEAKLY HYPERBOLIC SEMI-LINEAR EQUATIONS

By
Yasuo Yuzawa

Abstract

We consider a weakly hyperbolic operator with constant coefficients. We shall derive a priori estimates for it and by applying the estimate we prove local existence of the solution of semi-linear Cauchy problem and investigate the propagation of analyticity of the solutions.

1. Introduction

We consider the linear partial differential operator of order m with constant coefficients

$$
P=P\left(D_{t}, D_{x}\right)=D_{t}^{m}+\sum_{j+|\alpha| \leq m, j<m} a_{j, \alpha} D_{t}^{j} D_{x}^{\alpha}
$$

in the $n+1$ variables (t, x), where $D_{t}=-i \partial / \partial t, D_{x_{k}}=-i \partial / \partial x_{k}$ and $D_{x}=$ $\left(D_{x_{1}}, \ldots, D_{x_{n}}\right)$. Let $\tau_{m, j}(\xi)$ be the roots of the characteristic polynomial $P(\tau, \xi)=$ $\tau^{m}+\sum_{j+|\alpha| \leq m, j<m} a_{j, \alpha} \tau^{j} \xi^{\alpha}$ for $j=1, \ldots, m$.

Definition 1.1. Let $s \geq 1$. A differential operator P with a symbol $P(\tau, \xi)$ is said to be s-hyperbolic with respect to $(1,0,0, \ldots, 0)$ if there exists a non-negative constant C such that

$$
\left|\operatorname{Im} \tau_{m, j}(\xi)\right| \leq C\langle\xi\rangle^{1 / s} \quad \text { for all } \xi \in \mathbb{R}^{n}
$$

where $\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$. Especially, when $s=\infty$, that is $1 / s=0, P$ is said to be hyperbolic with respect to t.
E. Larsson introduced the s-hyperbolicity in [8] and solved the Cauchy problem for s-hyperbolic operators in Gevrey classes by using Laplace transformation. In this paper we shall obtain semi-group estimates of the solution to the Cauchy problem for s-hyperbolic operators and moreover by applying this estimates we can investigate propagation of analyticity of solutions to the Cauchy problem.

We consider the following $m+1$ polynomials $H_{m-k}(\tau, \xi), k=0, \ldots, m$, which result from m differentiation of $P(\tau, \xi)$ with respect to τ.

$$
H_{m-k}(\tau, \xi)=\frac{(m-k)!}{m!} \frac{\partial^{k}}{\partial \tau^{k}} P(\tau, \xi)=\prod_{j=1}^{m-k}\left(\tau-\tau_{m-k, j}(\xi)\right)
$$

for $k=0, \ldots, m$, where we number the roots $\tau_{m-k, j}(\xi)$ to be continuous and let each H_{m-k} be a pseudo-differential operator with a symbol $H_{m-k}(\tau, \xi)$. Put $H u=$ $\left(H_{0} u, H_{1} u, \ldots, H_{m-1} u\right)$. We note that H_{m-k} is s-hyperbolic if P is s-hyperbolic. From each polynomial $H_{m-k}(\tau, \xi)$ we now create $m-k$ new polynomials $P_{m-k-1}^{j}(\tau, \xi), j=1, \ldots, m-k$, of degree $m-k-1$, by crossing out one factor at a time.

$$
P_{m-k-1}^{j}(\tau, \xi)=\prod_{l=1, l \neq j}^{m-k}\left(\tau-\tau_{m-k, l}(\xi)\right)
$$

From elementary considerations it follows that

$$
H_{m-k}(\tau, \xi)=\frac{1}{m-k+1} \sum_{j=1}^{m-k+1} P_{m-k}^{j}(\tau, \xi)
$$

for $k=1, \ldots, m$.
We introduce some function spaces, called Gevrey classes, and their norms. For $\rho \geq 0, s>1$, and $m \in \boldsymbol{R}$, we define

$$
\boldsymbol{H}_{\rho, s}^{m}\left(\boldsymbol{R}^{n}\right)=\left\{u \in \boldsymbol{L}_{x}^{2}\left(\boldsymbol{R}^{n}\right) ;\langle\xi\rangle^{m} e^{\rho\langle\xi\rangle^{1 / s}} \hat{u}(\xi) \in \boldsymbol{L}_{\xi}^{2}\left(\boldsymbol{R}^{n}\right)\right\}
$$

where $\hat{u}(\xi)$ stands for a Fourier transform of $u(x)$ and for $\rho<0$ define $\boldsymbol{H}_{\rho, s}^{m}\left(\boldsymbol{R}^{n}\right)$ as the dual space of $\boldsymbol{H}_{-\rho, s}^{-m}\left(\boldsymbol{R}^{n}\right)$. If $\rho>0, \boldsymbol{H}_{\rho, s}^{m}\left(\boldsymbol{R}^{n}\right)$ is a Hilbert space with a norm $\|u\|_{\boldsymbol{H}_{\rho, s}^{m}}=\left\|\langle\xi\rangle^{m} e^{\rho\langle\xi\rangle^{1 / s}} \hat{u}(\xi)\right\|_{\boldsymbol{L}^{2}}$. Put $\boldsymbol{L}_{s}^{2}\left(\boldsymbol{R}^{n}\right)=\bigcap_{\rho>0} \boldsymbol{H}_{\rho, s}^{0}\left(\boldsymbol{R}^{n}\right)$.

For a topological space X we denote by $C^{k}([0, T] ; X)$ the set of functions which are k times differentiable in X with respect to t in $[0, T]$.

Theorem 1.1. Let $1<s<s_{0} \leq \infty$. Assume that P is s_{0}-hyperbolic of order m. Then for arbitrary $T>0$ there are $\rho_{0}>0, \rho_{1}<0$ and $C>0$ such that to any $t \in(0, T)$ and $l \geq 0$,

$$
\|H u(t, \cdot)\|_{H_{\rho(t), s}^{\prime}} \leq C\left\{\sum_{k=1}^{m} \sum_{j=1}^{m-k+1}\left\|P_{m-k}^{j} u(0, \cdot)\right\|_{H_{\rho_{0}, s}^{\prime}}+\int_{0}^{t}\left\|P u\left(t^{\prime}, \cdot\right)\right\|_{H_{\rho\left(t^{\prime}\right), s}^{\prime}} d t^{\prime}\right\}
$$

for any $u(t, x) \in C^{m}\left([0, T] ; \boldsymbol{L}_{s}^{2}\left(\boldsymbol{R}^{n}\right)\right)$, where $\rho(t)=\rho_{1} t+\rho_{0}$.
We remark that when P is ∞-hyperbolic, that is hyperbolic in the sense of Gårding, a priori estimate of P was derived by G. Peyser [10], [11]. Applying Theorem 1.1, we can solve the Cauchy problem for semi-linear equations and investigate the propagation of the analyticity of the solutions.

For $s>1$ and open set $B \subset \mathbb{R}^{n}$, we denote by $\gamma_{\rho}^{\{s\}}(B)$ the set of all functions satisfying the following condition: there exists a constant $C>0$ such that

$$
\left|D_{x}^{\alpha} u(x)\right| \leq C|\alpha|!^{s} p^{|\alpha|}
$$

for any $x \in B$ and $\alpha \in N^{n}$. Put $\gamma^{(s)}(B)=\bigcup_{\rho>0} \gamma_{\rho}^{(s)}(B)$ and $\gamma^{\{s\}}(B)=\bigcap_{p>0} \gamma_{\rho}^{(s)}(B)$.
For Ω, an open domain of C^{m}, we denote by $\mathcal{O}(\Omega)$ the set of all holomorphic functions in Ω.

For an open set B in \mathbb{R}^{n} and an open domain Ω in C^{n}, we denote by $\gamma_{\rho}^{(s)}(B ; \mathcal{O}(\Omega))$ the set of all functions which are in Gevrey class with respect to x-variables and uniformly holomorphic with respect to z-variables, in the following sense: for any $K \Subset \Omega$ there exists a constant $C_{K}>0$ such that

$$
\left|D_{x}^{\alpha} f(x, z)\right| \leq C_{K} \rho^{-|\alpha|}|\alpha|!^{s},
$$

for all $x \in B$ and $z \in K$.
We consider the following semi-linear Cauchy problem in $(0, T) \times \boldsymbol{R}^{n}$:

$$
\left\{\begin{array}{l}
P(D) u(t, x)=F(t, x, H u) \tag{1.1}\\
D_{t}^{j} u(0, x)=u_{j}(x) \quad j=0, \ldots, m-1
\end{array}\right.
$$

where $F(t, x, z)$ is complex-valued function. Set $u^{(0)}(t, x)=\sum_{j=0}^{m-1}(i t)^{j} u_{j}(x) / j$!.
The function

$$
F:[0, T] \times \boldsymbol{R}^{n} \times \Omega \rightarrow C
$$

where Ω is open in C^{m} and contains the origin, is assumed to satisfy the following conditions:
(A1) $)_{s}: F(t, x, z)$ is continuous in t, belongs to Gevrey class $\gamma_{\sigma_{1}^{(s)}}^{\left(\mathbb{R}^{n}\right)}$ with respect to x and belongs to $\mathcal{O}(\Omega)$ with respect to z.
$(\mathrm{A} 2)_{s}$: There exists a constant $\sigma_{2}>0$ such that

$$
F\left(t, \cdot, H u^{(0)}(t, \cdot)\right) \in \boldsymbol{H}_{\sigma_{2}, s}^{l}\left(\mathbb{R}^{n}\right)
$$

Then we get the following local existence theorem and investigate the propagation of analyticity of the solutions.

Theorem 1.2. Let $1<s \leq s_{0}$ and an integer $l>2 n+1$. Assume that P be $s_{0}{ }^{-}$ hyperbolic and $F(t, x, z)$ satisfying $(\mathrm{A} 1)_{s}$ and $(\mathrm{A} 2)_{s}$. If $u_{j}(x)$ belong to $\boldsymbol{H}_{\sigma_{1}, s}^{l}\left(\mathbb{R}^{n}\right)$ and $H u^{(0)}(t, x)$ runs in a compact set contained by Ω, then there exist $T_{2} \in(0, T)$ such that there exists a solution of the Cauchy problem (1.1) with $T=T_{2}$.

Theorem 1.3. Let $1<s \leq s_{0}$ and l be suffciently large. Assume that P is $s_{0}-$ hyperbolic and $F(t, x, z)$ satisfies $(\mathrm{A} 1)_{1}$ and $(\mathrm{A} 2)_{1}$, and besides assume that there exists $u(t, x) \in C^{m}\left([0, T] ; \boldsymbol{L}_{s}^{2}\left(\boldsymbol{R}^{n}\right)\right)$ a solution of Cauchy problem (1.1) with initial data $u_{j}(x) \in \boldsymbol{L}_{s}^{2}\left(\boldsymbol{R}^{n}\right)$. Then if all initial values $u_{j}(x)$ are analytic, that is there exists $r>0$ such that for $j=0,1, \ldots, m-1$,

$$
\begin{equation*}
\left|D_{x}^{\alpha} u_{j}(x)\right| \leq r^{-|\alpha|}|\alpha|! \tag{1.2}
\end{equation*}
$$

for all $x \in \boldsymbol{R}^{n}$ and $\alpha \in \boldsymbol{N}^{n}$, then there exists $r^{\prime}>0$ such that

$$
\begin{equation*}
\left|D_{x}^{\alpha} u(t, x)\right| \leq r^{\prime-|\alpha|}|\alpha|! \tag{1.3}
\end{equation*}
$$

for any $(t, x) \in[0, T] \times \mathbb{R}^{n}$ and $\alpha \in N^{n}$.

Several resluts of the propagation of analyticity are known for non-linear hyperbolic equations. S. Alinhac and G. Métivier [1] studied for strictly hyperbolic case. S. Spagnolo [12] treated a second order degenerate hyperbolic equations and M. Cicognani and L. Zanghirati treated a higher order hyperbolic equations with constant multiplicity. P. D'Ancona and S. Spagnolo [3] investigated the propagation of analyticity for non-uniformly symmetrizable systems and K. Kajitani and K . Yamaguti [7] treated uniformly symmetrizable systems.

2. Preliminaries

In this section, we mention the fundamental properties for Gevrey classes. Throughout the paper, we denote $\|\cdot\|=\|\cdot\|_{L^{2}\left(R^{n}\right)}$ and $\|\cdot\|_{(l)}=\|\cdot\|_{H^{\prime}}$, that is Sobolev's norm. For $v(x)=\left(v_{1}(x), \ldots, v_{m}(x)\right)$ we denote $\|v\|=\left\|v_{1}\right\|+\cdots+\left\|v_{m}\right\|$. We introduce the semi-norms for $\gamma_{\rho}^{(s)}(B)$ and $\gamma_{\rho}^{(s)}(B ; \mathcal{O}(\Omega))$ as follows: for $u \in \gamma_{\rho}^{(s)}(B)$,

$$
|u|_{\rho, s, B}=\sup _{x \in B, \alpha \in N^{n}} \frac{\left|D_{x}^{\alpha} u(x)\right| \rho^{|\alpha|}}{|\alpha|!^{s}}
$$

and for $f \in \gamma_{\rho}^{(s)}(B ; \mathcal{O}(\Omega))$,

$$
|f|_{\rho, s, B ; K}=\sup _{x \in B, z \in K, \alpha \in N^{n}} \frac{\left|D_{x}^{\alpha} f(x, z)\right| \rho^{|\alpha|}}{|\alpha|!^{s}}
$$

where K is a compact set of Ω. Now, we state some well-known facts of their classes.

Lemma 2.1. (i) Let $a(x) \in \gamma_{\rho}^{(s)}(B)$. Then for any $\rho^{\prime} \in(0, \rho)$ and $\alpha \in N^{n}$, $D_{x}^{\alpha} a(x)$ belongs to $\gamma_{\rho^{\prime}}^{(s)}(B)$ and there exists positive constants C and $\sigma=\sigma\left(\rho, \rho^{\prime}, s\right)$ such that

$$
\left|D_{x}^{\alpha} a\right|_{\rho^{\prime}, s, B} \leq C|a|_{\rho, s, B}|\alpha|!^{s} \sigma^{-|\alpha|},
$$

where C is independent of ρ, ρ^{\prime} and a.
(ii) Let $f(x, z)$ be in $\gamma_{\sigma_{1}}^{(s)}(B ; \mathcal{O}(\Omega)), v_{j}(x)$ in $\gamma_{\sigma_{2}}^{(s)}(B)$ for $j=1, \ldots, m$. Set $v(x)=\left(v_{1}(x), \ldots, v_{m}(x)\right)$ and $|v|_{\sigma_{2}, s, B}=\sum_{j=1}^{m}|v|_{\sigma_{2}, s, B}$. Assume that $v(x)$ runs in $K, ~ a ~ c o m p a c t ~ s e t ~ o f ~ \Omega, ~ f o r ~ a l l ~ x \in B$. Then, there exists a constant $\sigma_{3}=$ $\sigma_{3}\left(\sigma_{1}, \sigma_{2}, \rho_{K}, n,|v|_{\sigma_{2}, s, B}\right)$, where ρ_{K} is the convergence radius of $f(x, \cdot)$, such that $f(x, v(x)) \in \gamma_{\sigma_{3}}^{(s)}(B)$ and satisfies

$$
|f(\cdot, v(\cdot))|_{\sigma_{3}, s, B} \leq C_{n, m}|f|_{\sigma_{1}, s, B ; K},
$$

where $C_{n, m}$ depends only on the dimensions n and m.
For $m \in \mathbb{R}$ we denote by S^{m} the usual symbol class of order m, and introduce the semi-norms as follows: for $a \in S^{m}$

$$
|a|_{l}^{(m)}=\sup _{x, \xi \in R^{n},|\alpha+\beta| \leq l} \frac{\left|a_{(\beta)}^{(\alpha)}(x, \xi)\right|}{\langle\xi\rangle^{m-|\alpha|}},
$$

where $a_{(\beta)}^{(\alpha)}(x, \xi)$ means $D_{x}^{\beta} \partial_{\xi}^{\alpha} a(x, \xi)$. Next we define the symbols of Gevrey class in \mathbb{R}^{n}. For $s \geq 1$ and $A>0$, we denote by $\gamma_{A}^{s} S^{m}$ the set $\left\{a \in S^{m}\right.$; satisfying that for any $l \in N$,

$$
\left.|a|_{A, s, l}^{(m)}=\sup _{x, \xi \in \boldsymbol{R}^{n},|\alpha+\beta| \leq l} \frac{\left|a_{(\beta)}^{(\alpha)}(x, \xi)\right| A^{|\beta|}}{\langle\xi\rangle^{m-|\alpha|}|\beta|^{s}}<\infty\right\},
$$

and let $\gamma^{s} S^{m}=\bigcap_{A>0} \gamma_{A}^{s} S^{m}$. We note that $\gamma_{A}^{(s)}\left(\mathbb{R}^{n}\right)$ is contained in $\gamma_{A}^{s} S^{m}\left(\mathbb{R}^{n}\right)$.
For $\rho>0$ we define $e^{\rho\left\langle D_{x}\right\rangle^{1 / s}}$ by

$$
e^{\rho\left\langle D_{x}\right\rangle^{1 / s}} u(x)=(2 \pi)^{-n} \int_{\boldsymbol{R}_{x}^{n}} e^{i x \xi+\rho\langle\xi\rangle^{1 / s}} \hat{u}(\xi) d \xi
$$

for $u \in H_{\rho, s}^{m}$.

Let $\Lambda(t, \xi)=\rho(t)\langle\xi\rangle^{1 / s}$, where $\rho(t)$ is a positive decreasing function on $[0, T]$. We denote by $e^{\wedge} C^{k}\left([0, T] ; \boldsymbol{H}^{l}\right)$ the set of functions satisfying $e^{\rho(t)\left\langle D_{x}\right\rangle^{1 / s}} u(t, x) \in$ $C^{k}\left([0, T] ; \boldsymbol{H}^{l}\right)$.

Lemma 2.2. (i) Assume that l is large enough. Then there exisits a constant C_{l} such that

$$
\|u v\|_{H_{\rho, s}^{\prime}} \leq C_{l}\|u\|_{H_{p, s}^{\prime}}\|v\|_{H_{\rho, s}^{\prime}}
$$

for any $u, v \in \boldsymbol{H}_{\rho, s}^{l}$, where C_{l} is independent of u and v.
(ii) $e^{\rho\left\langle D_{x}\right\rangle^{1 / s}}$ maps from $\boldsymbol{H}_{\rho^{\prime}, s}^{l}$ to $\boldsymbol{H}_{\rho^{\prime}-\rho, s}^{l}$ continuously.
(iii) a pseudo-differential operator $a\left(x, D_{x}\right) \in \gamma^{s} S^{m}$ maps from $\boldsymbol{H}_{\rho, s}^{l}$ to $\boldsymbol{H}_{\rho, s}^{l-m}$ continuously.
(iv) Let $\quad a_{\rho}\left(x, D_{x}\right)=e^{-\rho\left\langle D_{x}\right\rangle^{1 / s}} a\left(x, D_{x}\right) e^{\rho\left\langle D_{x}\right\rangle^{1 / s}} \quad$ for $\quad a \in \gamma_{A}^{s} S^{m}$. If $\quad|\rho| \leq$ $\left(48 n^{2 / s}\right)^{-1} A^{1 / s}$, then $a_{\rho}\left(x, D_{x}\right)$ belongs to S^{m} and satisfies

$$
\left|a_{\rho}\right|_{l}^{(m)} \leq C_{l}|a|_{A, s, l}^{(m)},
$$

where C_{l} is independent of a.
(v) If $|\rho| \leq\left(48 n^{2 / s}\right)^{-1} A^{1 / s}$, then

$$
\|a u\|_{H_{\rho, s}^{\prime}} \leq C_{n}|a|_{A, s, R^{n}}\|u\|_{\boldsymbol{H}_{\rho, s}^{\prime}}
$$

for any $a(x) \in \gamma_{A}^{(s)}\left(\boldsymbol{R}^{n}\right)$ and $u \in \boldsymbol{H}_{p, s}^{l}\left(\boldsymbol{R}^{n}\right)$.
The proof of this lemma is given in Proposition 2.3 of [6].

3. A Priori Estimate

We shall derive a priori estimate in Gevrey class $\boldsymbol{H}_{\rho, s}^{l}\left(\mathbb{R}^{n}\right)$ for s-hyperbolic equation. Since all H_{m-k} are s-hyperbolic with respect to $(1,0,0, \ldots, 0)$, there is a $C>0$ such that

$$
\begin{equation*}
\left|\operatorname{Im} \tau_{m-k, j}(\xi)\right| \leq C\langle\xi\rangle^{1 / s} \quad \text { for all } \xi \in \mathbb{R}^{n} \tag{3.1}
\end{equation*}
$$

for $j=1, \ldots, m-k$, and $k=0, \ldots, m$.
Put $v(t, x)=e^{\rho(t)\left\langle D_{x}\right\rangle^{1 / s}} u(t, x)$, where $\rho(t)=\rho_{1} t+\rho_{0}$ and we define $\hat{u}(t, \xi)$ by the Fourier transform of $u(t, x)$ with respect to x. Then we have

$$
e^{\rho(t)\left\langle D_{x}\right\rangle^{1 / s}} P\left(D_{t}, D_{x}\right) u(t, x)=P\left(D_{t}+i \rho_{1}\left\langle D_{x}\right\rangle^{1 / s}, D_{x}\right) v(t, x) .
$$

So,

$$
\begin{align*}
\operatorname{Im}\{ & \left(H_{m-k}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi) \overline{H_{m-k-1}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi)}\right\} \\
= & \operatorname{Im}\left\{\left[\prod_{j=1}^{m-k}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}-\tau_{m-k, j}(\xi)\right)\right] \hat{v}(t, \xi)\right. \\
& \left.\times(m-k)^{-1} \sum_{l=1}^{m-k} \overline{\left[\prod_{j \neq l}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}-\tau_{m-k, j}(\xi)\right)\right] \hat{v}(t, \xi)}\right\} \\
= & -\frac{1}{2}(m-k)^{-1} \frac{\partial}{\partial t} \sum_{l=1}^{m-k}\left|\left[\prod_{j \neq l}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}-\tau_{m-k, j}(\xi)\right)\right] \hat{v}(t, \xi)\right|^{2} \\
& +(m-k)^{-1} \sum_{l=1}^{m-k}\left(\left(\rho_{1}\langle\xi\rangle^{1 / s}-\operatorname{Im} \tau_{m-k, l}(\xi)\right)\right. \\
& \times\left|\left[\prod_{j \neq l}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}-\tau_{m-k, j}(\xi)\right)\right] \hat{v}(t, \xi)\right|^{2} \tag{3.2}
\end{align*}
$$

Since (3.1), for any $C_{0}>0$ there exists a negative constant ρ_{1} such that to any $k=1, \ldots, m$ and $j=1, \ldots, m-k$,

$$
\begin{equation*}
\rho_{1}\langle\xi\rangle^{1 / s}-\operatorname{Im} \tau_{m-k, j}(\xi) \leq-C_{0}\langle\xi\rangle^{1 / s}, \tag{3.3}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$. Put

$$
\begin{aligned}
K_{m}(t, \xi) & =\left|P\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi)\right|^{2}, \\
K_{m-k}(t, \xi) & =(m-k+1)^{-1} \sum_{l=1}^{m-k+1} \mid\left[\left.\prod_{j \neq l}\left(D_{t}+i \rho_{1}\langle\xi\rangle-\tau_{m-k+1, j}(\xi)\right] \hat{v}(t, \xi)\right|^{2}\right.
\end{aligned}
$$

for $k=1, \ldots, m$.
We note that by virtue of Schwarz' inequality,

$$
\begin{equation*}
K_{m-k}(t, \xi) \geq\left|H_{m-k}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi)\right|^{2} \quad(0 \leq k \leq m) \tag{3.4}
\end{equation*}
$$

From (3.2) and (3.3), we have

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial}{\partial t} \sum_{k=1}^{m} K_{m-k}(t, \xi)+m C_{0}\langle\xi\rangle^{1 / s} \sum_{k=1}^{m} K_{m-k}(t, \xi) \\
& \quad \leq-\operatorname{Im}\left\{\left(H_{m-k}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi) \overline{H_{m-k-1}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi)}\right\}\right.
\end{aligned}
$$

Multiplying $\langle\xi\rangle^{2 l}$ and integrating with respect to ξ over \mathbb{R}^{n} both sides,

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial}{\partial t} \int_{R_{\xi}^{n}}\langle\xi\rangle^{2 l} \sum_{k=1}^{m} K_{m-k}(t, \xi) d \xi+m C_{0} \int_{R^{n}}\langle\xi\rangle^{2 l}\langle\xi\rangle^{1 / s} \sum_{k=1}^{m} K_{m-k}(t, \xi) d \xi \\
& \quad \leq-\sum_{k=1}^{m} \operatorname{Im} \int_{R^{n}}\left\{\langle\xi\rangle^{2 l}\left(H_{m-k+1} \hat{v}(t, \xi) \overline{H_{m-k} \hat{v}(t, \xi)}\right\} d \xi\right. \\
& \leq \\
& \quad \int_{R^{n}}\langle\xi\rangle^{2 l} \sum_{k=1}^{m} K_{m-k}(t, \xi) d \xi \\
& \quad-\operatorname{Im} \int_{\mathbb{R}^{n}}\left\{\langle\xi\rangle^{2 l} P\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi) \overline{H_{m-1}\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi)}\right\} d \xi
\end{aligned}
$$

Therefore, if C_{0} is sufficiently large,

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial}{\partial t} \int_{\mathbb{R}^{n}}\langle\xi\rangle^{2 l} \sum_{k=1}^{m} K_{m-k}(t, \xi) d \xi \\
& \quad \leq\left\|\langle\xi\rangle^{l} P\left(D_{t}+i \rho_{1}\langle\xi\rangle^{1 / s}, \xi\right) \hat{v}(t, \xi)\right\| \int_{R^{n}}\langle\xi\rangle^{2 l} \sum_{k=1}^{m} K_{m-k}(t, \xi) d \xi
\end{aligned}
$$

By virtue of Gronwall's inequality, we have Theorem 1.1.
We note that if $u_{j}(x) \equiv 0$, then $\sum_{k=1}^{m} \sum_{j=1}^{m-k+1}\left\|P_{m-k}^{j} u(0, \cdot)\right\|_{\boldsymbol{H}_{0, S}^{\prime}}=0$.
Corollary 3.1. Consider the following Cauchy problem in $[0, T] \times \boldsymbol{R}^{n}$:

$$
\left\{\begin{array}{l}
P(D) u(t, x)=f(t, x) \tag{3.5}\\
D_{t}^{j} u(0, x)=u_{j}(x) \quad j=0, \ldots, m-1
\end{array}\right.
$$

For any $T>0$ there exists $\Lambda(t, \xi)=\left(\rho_{1} t+\rho_{0}\right)\langle\xi\rangle^{1 / s}$ such that there exists a unique solution of this problem in $e^{\Lambda} C^{m}\left([0, T] ; \boldsymbol{H}^{l}\left(\mathbb{R}^{n}\right)\right)$ for any $f(t, x) \in$ $e^{\wedge} C\left([0, T] ; \boldsymbol{H}^{l}\left(\boldsymbol{R}^{n}\right)\right)$ and $u_{j}(x) \in \boldsymbol{H}_{\rho_{0}, s}^{l}\left(\mathbb{R}^{n}\right)$.

4. Local Existence Theorem

In this section, we shall prove Theorem 1.2 by using standard contraction mapping method.

At first, we shall prove this theorem in the case all $u_{j}(x) \equiv 0$:

$$
\left\{\begin{array}{l}
P(D) u(t, x)=G(t, x, H u) \tag{4.1}\\
D_{t}^{j} u(0, x)=0 \quad j=0, \ldots, m-1
\end{array}\right.
$$

We define for $T_{1} \in(0, T]$ and $M>0$,

$$
\begin{aligned}
& X_{T_{1}, M}=\left\{u(t, x) ; H u(t, x) \in e^{\Lambda} C\left(\left[0, T_{1}\right] ; \boldsymbol{H}^{\prime}\left(\boldsymbol{R}^{n}\right)\right. \text { and }\right. \\
&\left.\|u\|_{X_{T_{1}}}=\sup _{t \in\left[0, T_{1}\right]}\left\|e^{\rho(t)\left\langle D_{x}\right\rangle^{1 / s}} H u(t, x)\right\|_{(l)} \leq M\right\}
\end{aligned}
$$

where $\rho(t)$ is given by Theorem 1.1, depending on T_{1}.
Lemma 4.1. Let an integer l be large enough. Assume that $G(t, x, z)$ satisfies the following conditions:
$(\mathrm{B})_{s}$: there exsists a constant $\mu_{1}>0$ such that $G(t, x, z) \in$ $\boldsymbol{C}\left(\left[0, T_{1}\right] ; \gamma_{\mu_{1}}^{(s)}\left(\boldsymbol{R}^{n} ; \mathcal{O}(\Omega)\right)\right)$, where Ω is open neighborhood of the origin in \boldsymbol{C}^{m}.
$(\mathrm{B} 2)_{s}:$ there exists a constant $\mu_{2}>0$ such that $G(t, x, 0) \in C\left(\left[0, T_{1}\right] ; \boldsymbol{H}_{\mu_{2}, s}^{l}\left(\mathbb{R}^{n}\right)\right)$.
Then there exist constants $M>0$ and $T_{1}>0$ such that $G(t, x, w(t, x))$ belongs to $e^{\Lambda} C\left(\left[0, T_{1}\right] ; \boldsymbol{H}^{l}\left(\boldsymbol{R}^{n}\right)\right)$ for any $w(t, x)$ in $X_{T_{1}, M}$, where $\Lambda=\left(\rho_{1} t+\rho_{0}\right)\left\langle D_{x}\right\rangle^{1 / s}$ is given in Theorem 1.1.

Proof. Let K be a compact neighborhood of the origin contained in Ω. Since G satisfies the conditions $(\mathrm{B} 1)_{s}$, there exisits a constant ρ_{K} such that for any $|z|<\rho_{K}, G$ can expand into power series of z :

$$
G(t, x, z)=G(t, x, 0)+\sum_{\alpha>0} \frac{1}{\alpha!}\left(\partial_{z}^{\alpha} G\right)(t, x, 0) z^{\alpha} .
$$

By virtue of Sobolev's lemma, we pick $M>0$ small enough, hence that $|H w(t, x)|<\rho_{K}$ for any $(t, x) \in\left[0, T_{1}\right] \times \mathbb{R}^{n}$. Then,

$$
\begin{equation*}
\left\|e^{\Lambda} G(t, \cdot, H w(t, \cdot))\right\|_{(l)} \leq\left\|e^{\Lambda} G(t, \cdot, 0)\right\|_{(l)}+\sum_{\alpha>0} \frac{1}{\alpha!}\left\|e^{\Lambda}\left(\partial_{z}^{\alpha} G\right)(t, \cdot, 0) \cdot(H w(t, \cdot))^{\alpha}\right\|_{(l)} . \tag{4.2}
\end{equation*}
$$

From the assumption (B2) $)_{s}$ and Lemma 2.2, we pick $\rho_{0}>0$ and $T_{1}>0$ small enough, if necessary, hence that $\left\|e^{\Lambda} G(t, \cdot, 0)\right\|_{(l)}$ is bounded and moreover,

$$
\begin{aligned}
& \left\|e^{\Lambda}\left(\partial_{z}^{\alpha} G\right)(t, \cdot, 0) \cdot(H w(t, \cdot))^{\alpha}\right\|_{(l)} \leq C_{n}\left|\left(\partial_{z}^{\alpha} G\right)(t, \cdot, 0)\right|_{\sigma_{2}, s, R^{n}}\left\|e^{\Lambda}(H w(t, \cdot))^{\alpha}\right\|_{(l)} \\
& \quad \leq C_{n}|G(t, \cdot, \cdot)|_{\sigma_{2}, s, R^{n} ; K} \alpha!\rho_{K}^{-|\alpha|} \tilde{C}_{l}^{|\alpha|-1}\left\|e^{\Lambda} H w(t, \cdot)\right\|_{(l)}^{|\alpha|} \\
& \quad \leq C_{n, l}\left(\frac{\tilde{C}_{l} M}{\rho_{K}}\right)^{|\alpha|} \alpha!|G(t, \cdot, \cdot)|_{\sigma_{2}, s, R^{n} ; K}
\end{aligned}
$$

Therefore we pick M small enough again, if necessary, hence that the right hand side of (4.2) converges. Thus the proof of Lemma 4.1 is finished.

For $w \in X_{T_{1}, M}$ we denote an operator Φ from $X_{T_{1}, M}$ to $e^{\Lambda} C^{m}\left(\left[0, T_{1}\right] ; \boldsymbol{H}^{l}\left(\boldsymbol{R}^{n}\right)\right)$ by $\Phi(w)=u$ which is a solution of the following Cauchy problem,

$$
\left\{\begin{array}{l}
P(D) u(t, x)=G(t, x, H w) \tag{4.3}\\
D_{t}^{j} u(0, x)=0 \quad j=0, \ldots, m-1
\end{array}\right.
$$

From Corollary 3.1 and Lemma 4.1, we have a unique solution in $e^{\Lambda} C^{m}\left(\left[0, T_{1}\right] ; \boldsymbol{H}^{l}\left(\boldsymbol{R}^{n}\right)\right)$. Moreover,

Lemma 4.2. There exist $T_{2} \in\left(0, T_{1}\right]$ and $M>0$ such that
(i) Φ is a mapping from $X_{T_{2}, M}$ into itself.
(ii)

$$
\left\|\Phi(v)-\Phi\left(v^{\prime}\right)\right\|_{X_{T_{2}}} \leq \frac{1}{2}\left\|v-v^{\prime}\right\|_{X_{T_{2}}}
$$

for any $v, v^{\prime} \in X_{T_{2}, M}$.
Proof. Let v belong to $X_{T_{1}, M}$ and u be $\Phi(v)$. From Theorem 1.1 and Lemma 4.1,

$$
\begin{aligned}
\left\|e^{\Lambda} H u(t, \cdot)\right\|_{(l)} & \leq C_{n} \int_{0}^{t}\left\|e^{\Lambda} G\left(t^{\prime}, \cdot, H v\right)\right\|_{(l)} d t^{\prime} \\
& \leq C_{n, l} \int_{0}^{t}\left\{\left\|e^{\Lambda} G\left(t^{\prime}, \cdot, 0\right)\right\|_{(l)}+\left|G\left(t^{\prime}, \cdot, \cdot\right)\right|_{\sigma_{2}, s, \boldsymbol{R}^{n} ; K}\right\} d t^{\prime}
\end{aligned}
$$

for any $t \in\left[0, T_{1}\right]$. Therefore we pick $T_{2} \in\left(0, T_{1}\right]$ small enough, then $\left\|e^{\Lambda} G(t, x, H v)\right\|_{(l)} \leq M$ for all $v \in X_{T_{2}, M}$, so that (i) is proved. Similarly,

$$
\begin{aligned}
& \left\|e^{\Lambda}\left(\Phi(v)-\Phi\left(v^{\prime}\right)\right)\right\|_{(l)} \\
& \quad \leq \int_{0}^{T_{2}}\left\|e^{\Lambda} \int_{0}^{1} \nabla_{y} G\left(t^{\prime}, x, H v^{\prime}+\theta\left(H v-H v^{\prime}\right)\right) d \theta \cdot\left(H v-H v^{\prime}\right)\right\|_{(l)} d t^{\prime} \\
& \quad \leq C T_{2}\left\|v-v^{\prime}\right\|_{X_{T_{2}}}
\end{aligned}
$$

where C is independent of T_{2}. Then choose small T_{2} again, if necessary, $C T_{2}<1 / 2$. Thus the proof of (ii) is finished.

Hence, there exists a unique solution of Cauchy problem (4.1) in $X_{T_{2}, M}$ by virtue of the fixed point theorem. In order to solve the general case, the Cauchy problem (1.1), we change the unknown function $w(t, x)=u(t, x)-u^{(0)}(t, x)$. Then we can reduce the problem (1.1) to (4.3) by the next Lemma. Thus the proof of Theorem 1.2 is finished.

Lemma 4.3. Assume that $F(t, x, z)$ satisfies the conditions (A1)s and (A2)s. Then there exsist constants $T^{\prime}>0$ and $M>0$ such that for any $w(t, x) \in X_{T^{\prime}, M}$, $G(t, x, z)=F(t, x, z+w(t, x))$ satisfies the conditions $(\mathrm{B} 1)_{s}$ and $(\mathrm{B} 2)_{s}$ in Lemma 4.1.

In order to prove Lemma 4.3, we essentially use Lemma 2.1. We omit the proof of this lemma.

5. Propagation of Anallyticity

We introduce semi-norms in $C\left(\left[t_{0}, t_{1}\right] ; \boldsymbol{L}_{s}^{2}\left(\boldsymbol{R}^{n}\right)\right)$. Let an integer $N \geq 2$ and a real numbel $r \in(0,1]$. We denote

$$
|u|_{r, N}^{t_{0}, t_{1}}=\sup _{t^{\prime} \in\left(t_{0}, t_{1}\right], 2 \leq|\beta| \leq N} \frac{\left\|D_{x}^{\beta} u\right\|_{H_{p\left(t^{\prime}\right), s}^{\prime}, s}}{r_{2}|\beta|-2}
$$

for $u \in C\left(\left[t_{0}, t_{1}\right] ; \boldsymbol{L}_{s}^{2}\left(\boldsymbol{R}^{n}\right)\right)$, where $\rho(t)$ is a positive decreasing function, $\Gamma_{2}(k)=$ $\lambda_{0} k!k^{-2}$ for $k \geq 1$ and $\Gamma_{2}(0)=\lambda_{0}$. We can pick λ_{0} such that

$$
\sum_{\alpha^{\prime} \leq \alpha}\binom{\alpha}{\alpha^{\prime}} \Gamma_{2}\left(\left|\alpha^{\prime}\right|+k\right) \Gamma_{2}\left(\left|\alpha-\alpha^{\prime}\right|\right) \leq \Gamma_{2}(|\alpha|+k)
$$

for any $k \in N$ and $\alpha \in N^{n}$. In brief we write $|u|_{r, N}=|u|_{r, N}^{t_{0}, t_{1}}$ if there is no confusion.

Lemma 5.1. Let $v_{i} \in C\left(\left[t_{0}, t_{1}\right] ; \boldsymbol{L}_{s}^{2}\left(\mathbb{R}^{n}\right)\right), \quad i=1, \ldots, n$ and we denote $v^{\beta}=$ $v_{1}^{\beta_{1}} v_{2}^{\beta_{2}} \cdots v_{n}^{\beta_{n}}$ for $\beta \in N^{n}$. Then there is a constant $C_{0}>0$ such that
(i) for $2 \leq|\beta| \leq N$,

$$
\left|v^{\beta}\right|_{r, N} \leq C_{0}^{|\beta|-1}\left(\sup _{t_{0} \leq t^{\prime} \leq t_{1}}\left\|v\left(t^{\prime}, \cdot\right)\right\|_{\boldsymbol{H}_{\rho\left(t^{\prime}\right), s}^{t+1}}+r^{2}|v|_{r, N}\right)^{|\beta|-1}|v|_{r, N}
$$

and
(ii) for $|\beta|>N$,

$$
\begin{aligned}
\left|v^{\beta}\right|_{r, N} \leq & C_{0}^{|\beta|-1} \sup _{2 \leq j \leq N}\left(\sup _{t_{0} \leq t^{\prime} \leq t_{1}}\left\|v\left(t^{\prime}, \cdot\right)\right\|_{H_{\rho\left(t^{\prime}\right), s}^{\prime}}\right)^{|\beta|-j} \\
& \times\left\{\sum_{2 \leq|x| \leq N}\left(\sup _{t_{0} \leq t^{\prime} \leq t_{1}}\left\|v\left(t^{\prime}, \cdot\right)\right\|_{H_{\rho\left(t^{\prime}\right), s}^{\prime+1}}+r^{2}|v|_{r, N}\right)^{|\alpha|-1}|v|_{r, N}\right. \\
& \left.+\sup _{2 \leq j \leq N}\left(\sup _{t_{0} \leq t^{\prime} \leq t_{1}}\left\|v\left(t^{\prime}, \cdot\right)\right\|_{H_{\rho\left(t^{\prime}\right), s}^{\prime+1}}\right)^{j}\right\}
\end{aligned}
$$

where constant C_{0} depends only on the dimension n.
(iii) Let $a \in \gamma^{\{1\}}\left(\boldsymbol{R}^{n}\right)$, that is an entire function, and $v \in \mathbb{L}_{s}^{2}\left(\boldsymbol{R}^{n}\right)$, then for any $r \in(0,1]$ and $N \geq 2$,

$$
|a(x) v(x)|_{r, N} \leq C_{n}|a|_{\rho^{\prime}, 1, R^{n}}|v|_{r, N},
$$

where $\rho^{\prime}=\max \left\{5 r, n(\rho(0) / 24)^{s}\right\}$ and the constant C_{n} depends only on the dimension n.

The proof of this lemma can be seen K. Kajitani and K. Yamaguti [7]. The last term in the right hand side of (iii) of Lemma 5.1 is lacked in Lemma 3.1 in [7].

Now, we shall prove Theorem 1.3. From the assumption, for any $\varepsilon>0$ there is $\tau>0$ such that

$$
\|u(t, \cdot)-u(k \tau, \cdot)\|_{H_{p(t), s}^{l+1}}<\varepsilon
$$

for $t \in[k \tau,(k+1) \tau], k=0,1, \ldots,[T / \tau]-1$ and $t \in[[T / \tau], T]$, where $[x]$ stands for the greatest integer not greater than x. From the assumption (1.2), there exist constants $C>0$ and $r_{1}>0$ such that

$$
\left\|D_{x}^{\alpha} H u^{(0)}(k \tau, \cdot)\right\|_{H_{\rho(k \mid, s}^{\prime}} \leq C r_{1}^{-|\alpha|}|\alpha|!.
$$

Put $v(t, x)=u(t, x)-u^{(0)}(t, x)$. Then

$$
P v(t, x)=F(t, x, H u(t, x))-P u^{(0)}(t, x)=F\left(t, x, H v(t, x)+H u^{(0)}(t, x)\right)-P u^{(0)}(t, x) .
$$

We define $G(t, x, z)=F\left(t, x, z+H u^{(0)}(t, x)\right)-P u^{(0)}(t, x)$, and by Lemma 4.3, $G(t, x, z)$ satisfies $(\mathrm{B} 1)_{1}$ and (B2). To differentiate both sides, then we have

$$
P D_{x}^{\alpha} v(t, x)=D_{x}^{\alpha}\left(F\left(t, x, H v(t, x)+H u^{(0)}(t, x)\right)\right)-P D_{x}^{\alpha} u^{(0)}(t, x),
$$

and we denote G_{α} by the right hand side. Now $D_{t}^{j} v(0, x)=0$ for $j=0,1, \ldots, m-1$, therefore from Theorem 1.1 we obtain

$$
\begin{equation*}
\left\|e^{\Lambda} H D_{x}^{\alpha} v(t, \cdot)\right\|_{(l)} \leq \int_{0}^{t}\left\|e^{\Lambda} G_{\alpha}(t, x)\right\|_{(l)} d t^{\prime} \tag{5.1}
\end{equation*}
$$

for any $t \in[0, \tau]$, where $\Lambda=\rho(t)\left\langle D_{x}\right\rangle^{1 / s}$ is given by Theorem 1.1. For simplicity we write $\|u\|_{(\rho(t))}=\left\|e^{\wedge} u\right\|_{(l)}$. By virtue of Lemma 5.1, for any $2 \leq \alpha \leq N$,

$$
\begin{aligned}
&\left\|D_{x}^{\alpha} F\left(t, \cdot, H v(t, \cdot)+H u^{(0)}(t, \cdot)\right)\right\|_{(\rho(t))} \\
& \leq\left\|D_{x}^{\alpha} F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right\|_{(\rho(t))} \\
&+\sum_{\beta>0} \beta!^{-1}\left\|D_{x}^{\alpha}\left(\partial_{z}^{\beta} F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)(H v(t, \cdot))^{\beta}\right)\right\|_{(\rho(t))} \\
& \leq \Gamma_{2}(|\alpha|) r^{-|\alpha|+2}\left\{\left|F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{r, N}\right. \\
&\left.+\sum_{\beta>0} \beta!^{-1}\left|\left(\partial_{z}^{\beta} F\right)\left(t, \cdot, H u^{(0)}(t, \cdot)\right)(H v(t, \cdot))^{\beta}\right|_{r, N}\right\} \\
& \leq \Gamma_{2}(|\alpha|) r^{-|\alpha|+2}\left\{\left|F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{r, N}\right. \\
&\left.+\sum_{\beta>0} \beta!^{-1}\left|\partial_{z}^{\beta} F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{v_{1}, 1, R^{n} \mid}\left|(H v)^{\beta}\right|_{r, N}\right\} \\
&= \Gamma_{2}(|\alpha|) r^{-|\alpha|+2}\left\{\left|F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{r, N}\right. \\
&\left.+C\left\{\sum_{0<|\beta|<2}+\sum_{2 \leq|\beta| \leq N}+\sum_{|\beta|>N}\right\} \beta!^{-1}\left|\partial_{z}^{\beta} F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{v_{1}, 1, R^{n}}\left|(H v)^{\beta}\right|_{r, N}\right\}
\end{aligned}
$$

where $v_{1} \geq \max \left\{5 r, n(\rho(0) / 24)^{s}\right\}$. From the assumption, for fixed t, there exists a compact set $K \subset \Omega$ such that $\left\{H u^{(0)}(t, x) ; x \in \mathbb{R}^{n}\right\} \subset K$. Then by Lemma 4.3, there exists a constant $v_{2}>0$ such that

$$
\left|\partial_{z}^{\beta} F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{v_{1}, 1, R^{n}} \leq C_{n}|F(t, \cdot, \cdot)|_{v_{2}, 1, R^{n} ; K} \beta!v_{1}^{-|\beta|}
$$

for any $\beta \in N^{m}$. For sufficiently small ε, we have

$$
\begin{aligned}
& \left\|D_{x}^{\alpha} F\left(t, \cdot, H v(t, \cdot)+H u^{(0)}(t, \cdot)\right)\right\|_{(\rho(t))} \\
& \leq \Gamma_{2}(|\alpha|) r^{-|\alpha|+2}\left\{\left|F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{r, N}\right. \\
& \left.\left.+C\left\{\sum_{|\beta|=1}+\sum_{2 \leq|\beta| \leq N}+\sum_{|\beta|>N}\right\}\right\}_{1}^{-|\beta|}|F(t, \cdot, \cdot)|_{v_{2}, 1, R^{n} ; K}\left|(H v)^{\beta}\right|_{r, N}\right\} \\
& \leq \Gamma_{2}(|\alpha|) r^{-|\alpha|+2}\left\{\left|F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{r, N}+C_{n}|F(t, \cdot, \cdot)|_{v_{2}, 1, R^{n} ; K}\right. \\
& \left\{|H v|_{r, N}+\sum_{2 \leq|\beta| \leq N} v_{1}^{-|\beta|} C_{0}^{|\beta|-1}\left(\varepsilon+r^{2}|H v|_{r, N}\right)^{|\beta|-1}|H v|_{r, N}\right. \\
& \left.+\sum_{|\beta|>N} v_{1}^{-|\beta|} C_{0}^{|\beta|-1} \varepsilon^{|\beta|-2}\left\{\sum_{2 \leq|v| \leq N}\left(\varepsilon+r^{2}|H v|_{r, N}\right)^{|v|-1}|H v|_{r, N}+\varepsilon^{2}\right\}\right\} \\
& \leq \Gamma_{2}(|\alpha|) r^{-|x|+2}\left\{\left|F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{r, N}+C_{n}^{\prime}|F(t, \cdot \cdot \cdot)|_{v_{2}, 1, R^{n}: K}\right. \\
& \left.\times \sum_{j=0}^{N-1}\left(\varepsilon+r^{2}|H v|_{r, N}\right)^{j}|H v|_{r, N}\right\} .
\end{aligned}
$$

Here we choose $r=r(t)=r_{0} e^{-t}$, where $0<r_{0} \leq 1$. Denote

$$
y_{N}(t)=\sup _{0 \leq t^{\prime} \leq t} r\left(t^{\prime}\right)|H v|_{r\left(t^{\prime}\right), N},
$$

where

$$
|v|_{r(t), N}=\sup _{0 \leq t^{\prime} \leq \tau, 2 \leq|\beta| \leq N}\left\{\left\|D_{x}^{\beta} v\right\|_{H_{\rho\left(t^{\prime}\right), s}^{\prime}} r\left(t^{\prime}\right)^{|\beta|-2} \Gamma_{2}(|\beta|)^{-1}\right\} .
$$

Then,

$$
\begin{aligned}
\| D_{x}^{\alpha} F & \left(t, \cdot, H v(t, \cdot)+H u^{(0)}(t, \cdot)\right) \|_{(\rho(t))} \\
& \leq \Gamma_{2}(|\alpha|) r^{-|\alpha|+2}\left\{C_{1}\left(1+\sum_{j=0}^{N-1}\left(\varepsilon+y_{N}(t)\right)^{j}|H v|_{r(t), N}\right)\right\},
\end{aligned}
$$

where $C_{1}=\left|F\left(t, \cdot, H u^{(0)}(t, \cdot)\right)\right|_{r, N}+C_{n}^{\prime}|F(t, \cdot, \cdot)|_{v_{2}, 1, R^{n} ; K}$. Thus from (5.1),

$$
|H v|_{r(t), N} \leq C \int_{0}^{t}\left(1+\sum_{j=0}^{N-1}\left(\varepsilon+y_{N}\left(t^{\prime}\right)\right)^{j}|H v|_{r\left(t^{\prime}\right), N}\right) d t^{\prime}
$$

then

$$
y_{N}(t) \leq C \int_{0}^{t}\left(r\left(t^{\prime}\right)+\sum_{j=0}^{N-1}\left(\varepsilon+y_{N}\left(t^{\prime}\right)\right)^{j} y_{N}\left(t^{\prime}\right)\right) d t^{\prime}
$$

From this inequality, we have $y_{N}(t)<\varepsilon$ for $t \in[0, \tau]$, if we choose $r_{0}>0$ small enough. In fact, assume that there is $t_{1} \in[0, \tau]$ such that $y_{N}\left(t_{1}\right)=\varepsilon$ and $y_{N}(t)<\varepsilon$ for $t \in\left(0, t_{1}\right)$. Since $y_{N}(0)=0$, we have $t_{1}>0$. It follows from (5.1) that

$$
y_{N}(t) \leq C\left(r_{0}+\int_{0}^{t} \frac{1}{1-2 \varepsilon} y_{N}\left(t^{\prime}\right)\right) d t^{\prime} .
$$

for $t \in\left[0, t_{1}\right)$. We note that the constants C, ε and r_{0} can be chosen independent of N. Therefore we obtain $y_{N}(t) \leq C r_{0} \exp (C t /(1-2 \varepsilon))$ for $t \in\left[0, t_{1}\right)$. This contradicts $y_{N}\left(t_{1}\right)=\varepsilon$, if we choose $r_{0}>0$ small enough.

Thus we can get $y_{N}(t) \leq \varepsilon$ for $t \in[0, \tau]$. By induction, there is a constant $r^{\prime}>0$ such that $\left|D_{x}^{\alpha} v(t, x)\right| \leq C r^{||\alpha|}|\alpha|$! for $(t, x) \in[0, T] \times \mathbb{R}^{n}$ and consequently Theorem 1.3 is proved.

References

[1] S. Alinhac-G. Métivier, Propagation de l'analyticité des solutions de systèmes hyperboliques nonlinéaires, Inv. Math 75 (1984), pp. 189-203.
[2] M. Cicognani-L. Zanghirati, Analytic regularity for solutions of nonlinear weakly hyperbolic equations, Boll. Un. Mat. Ital. B(7) 11 (1997), pp. 643-679.
[3] P. D'Ancona-S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), pp. 169185.
[4] L. Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta. Math. 85 (1950), pp. 1-62.
[5] L. Hörmander, Linear partial differential operators, Academic Press, New York/London (1963).
[6] K. Kajitani, Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto. Univ. 23-3 (1983), pp. 599-616.
[7] K. Kajitani-K. Yamaguti, Propagation of analyticity of the solutions to the Cauchy problem for nonlinear symmetrizable systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), pp. 471-487.
[8] E. Larsson, Generalized hyperbolicity, Ark. Mat. 7 (1967), pp. 11-32.
[9] S. Mizohata, The theory of partial differential equations, Iwanami Shoten, Tokyo (1965).
[10] G. Peyser, Energy inequalities for hyperbolic equations in several variables with multiple characteristics and constant coefficients, Trans. Amer. Math. Soc. 108 (1963), pp. 478490.
[11] -, Hyperbolic systems with multiple characteristics, J. Differential Equations. 9 (1971), pp. 509-520.
[12] S. Spagnolo, Some results of analytic regularity for the semi-linear weakly hyperbolic equations of the second order, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo speciale (1988), pp. 203-229.
[13] L. Svensson, Necessary and sufficient conditions for the hyperbolicity of polynomials with hyperbolic principal part, Ark. Mat. 8 (1968), pp. 145-162.

