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Introduction

Let q and a be Indeterminates over a field K of characteristic 0, and let

K(a,q) denote the field of rational functions. We define the algebra Hm^n{a,q)

over K(a,q) by generators and relations.(See the Definition 2.1.)If we replace

the indeterminate a with q~rin the definition,we have a q-analogue of rational

Brauer algebra Hrmn{q), which we have introduced in the previous paper with J.

Murakami [8].(In the paper [8], we called the algebra Hrmn{q) the generalized

Hecke algebra.) The algebra Hrmn{q) is semisimple in case r>m + n, as we

already observed in [8]. This observation is extended to the algebra Hm>n(a,q).

That is to say, Hmjn(a,q) is also semisimple.

In this paper, we construct new representations of the algebras Hmjn(a,q)

and Hrmn(q). These representations are irreducible and they are obtained from

the left regular representations of Hmjn(a,q) and Hrmn{q) respectively.

Our previous paper was written originally to investigate the centralizer

algebra of mixed tensor representations of quantum algebra ^q{gln{C)), which

was ^-analogue version of the work of Benkart et al. [1].(The existence of their

preliminary version of the paper [1] was informed to the author by Professor

Okada.) Their original situation was as follows. Let G denote the general linear

group GL(r, C) of r x r invertible complex matrices and let V be the vector space

on which G acts naturally. Let V* be the dual space of V. The mixed tensor T

of m copies of V and n copies of V* is defined by T = ((x)wF) (x)(0nV*). In

this situation, they constructed the irreducible representations of the centralizer

algebra End^T), by locating the maximal vectors in the mixed tensor T.

Replacing G with %q{gln{C)) and extending the underlying field C to C(q), we
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have the
ig-analogue

of their centralize!algebras which we called the generalized

Hecke algebra Hrmn(q). Instead of locating the maximal vectors in T, we used

the Bratteli diagram of the inclusions, C(q) <= H[ 0 <=H＼ 0 c ･･･ <= Wm 0 c=

WmX a ･･･ czHrmn, to construct the irreducible representations of Hrmn{q).

However, the use of Brattelidiagram forced us to use ^-rational functions as the

matrix elements.

It turns out that if we define Hrmn{q) over Q(q), the trace of the representing

matrix of each generator is in Z[q, q~x].So it is natural to conjecture that if we

take a suitable basis in each irreducible representation, the matrix elements are

in Z[q,q-1}.

Let us recall that as for the (classical)Hecke algebra Hn(q) of type A, all

the irreducible representations are afforded by cellrepresentations [6].For these

irreducible representations the integrality holds. Namely, each generator of

Hn(q) maps to the matrix over Z[q, q~l]on these representations.

The main purpose of this paper is to show that the conjecture for the

integrality of irreducible representations of Hrmn(q) holds true. For this purpose,

we will define a new basis of Hm^n{a,q). This paper is organized as follows.

Section 1 presents the general results about the Hecke algebra of type A and W-

graphs. In Section 2, we define the algebra Hm>n(a,q) and define (leftand right)

^-contractions in Hm,n(a,q). Then we show some properties of ^-contractions.

These ^-contractions are originally defined in their paper [1] in the case q=＼.

They help us to construct all the irreducible representations of the algebra

Hmtn(a,q) by taking subquotients of the leftregular representation. In Section 3

we give the new basis of Hmjn(a,q). Taking suitable subquotients of the regular

representation of Hm}H(a, q) with respect to the new basis,we obtain the irreducible

representations of Hm;n(a, q). If we define Hrmn{q) by replacing the indeterminate

a with q'r in the definition of Hm,n(a,q) and construct the corresponding

representations of Hrmn(q) replacing a with q~rin the procedure, then we obtain

the desired representations of Hrmn(q).

The author would like to thank J. Murakami and A. Gyoja for enlightening

conversations. He also would like to thank S. Okada for communicating the

results of [1, 31. He also thanks T. Kohno for the kind encouragement.

1. Hecke algebras ani W-graplis

First we review general results about Iwahori-Hecke algebra (of type A) and

theirirreducible representations without proofs. The following results are from

Kazhdan-Lusztig [6] or Shi's book [91.
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Let (W,S) be a Coxeter system and let A be the ring Z[q,q *] of Laurent

polynomials over Z in the indeterminate q. The Hecke algebra Jf is by definition

the associative .4-algebra with a free A -basis {Tw}weW over the ring A, obeying

the relations:

TWTW, = 7W, if A^) = <W + Z(w'),

(Ts-q)(Ts + q-l)=0 if 5 e 5.

Here <f(w) denotes the length of w.

In this paper we consider only the case W is the symmetric group. So,

Jf = Hn(q) can also be defined by

generators:

7],72,..., 7^_i

and

relations:

(r/-^)(7i + ^-1)=0 (!</<≪-!),

TtTj = ry7} (i < i,y <≫- i,|;-j＼ > 2),

TiTi+lTi = Ti+lTiTi+l (＼<i<n- 2).

As they showed [6],a complete set of irreduciblerepresentationsfor the

Hecke algebra Hn(q) can be afforded with some multiplicitiesby dividing W-

graphs into left cells.We shallconstruct some FF-graphs for HJq) as in [6].

Definition 1.1. A W-graph Is, by definition,a set of vertices X, with a set

Y of edges (each edge consists of two elements of X) together with two

additional data: for each vertex x e X, we are given a subset Ix of 5" and, for

each ordered pair of vertices y, x such that {y, x} e Y, we are given an integer

fi(y,x) # 0. These data are subject to the following requirements: Let E be the

free
^4-module

with basis X. Then for any s e S,

TS(X) =

{

qx + V" p(z,x)z

selx

definesan endomorphism of E and thereis a unique representation$: Jf ―

End(E) such that $(TS)―zs for each s e S.

To construct W-graphs, we shall firstintroduce Kazhdan-Lusztig poly

nomials and define the relation -<.
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Let a ―>a be the involution of the ring A ― Z[q,q l] defined by q = q l.

This extends to an involution of h ― h of the ring Jf, defined by ^2,awTw ―

YlowT~＼. (Note that Tw is an invertible element of jf for any w e W). Let <

be the Bnihat order relation on W. The following basic theorem of Kazhdan-

Lusztig [61 provides a basis of the algebra Jf.

Theorem 1.2. For any w e W, there is a unique element Cw e Jf, such that

(I ) Cw = LsW,

(2) Cw = Yl Sy£wqwqy lPyAy2)Ty>

where Py^{q) e A is a polynomial in q of degree less than or equal to

(l/2W(w) - S(v) - 1) for y<w, and i* = 1.

The polynomials PytWin the above theorem are called Kazhdan-Lusztig

polynomials. The proof of the theorem is in theiroriginalpaper [6].

Next, we define the relation -<.

Definition 1.3. Given y,weW we say that y<w if the following con-

ditions are satisfied:y < w, sw = ―ey and Py,w{q)is a polynomial in q of degree

exactly (l/2)(/(w) - /(y) - 1). In this case, the leading coefficientof Py,w{q) is

denoted by fi(y,w). It is a non-zero integer. If w-<y, we set /i(w,y) =/x(y,w).

Proposition 1.4. Let se S,w e W.

(1) If sw < w, then TSCW = -q~lCw.

(2) If w < sw, then TSCW = qCw + Csw + E/i(z, w)Cz,

where the sum is taken over all z -< w for which sz < z.

Let Tl be the graph whose vertices are the elements of W and whose edges

are the subsets of W of the form {y, w} with y -< w. For each w e W, let Iw =

<£(w)= {s e S＼sw < w}. Then Proposition 1.4 implies that Tl, together with the

assignment w ―>Iw and with the function ft defined in 1.3 is a JF-graph.

We will next decompose JF-graphs into 'cells'which will give irreducible

representations of 3tfin case W ― Sn (accordingly Jt = Hn(q)). We shall define,

following Kazhdan and Lusztig [6], cells of any Coxeter group (W,S).

For x,y W, we denote x ―y if either x -< y or y -< x holds. We define a

preorder relation w <l w' on W if there exist elements w ―x＼,X2,...,xt ― w' in

W such that for each i we have x,_i ―xr-and J§?(x,-_i)^ J5f(a;,-).We may then

define an equivalence relation w ^^w' to be w <lw' and w' <^w. The equiv-

alence classes with respect to the relation ~z, are called left cells.With the
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language of cells, we shall consider formulas in the above proposition. In case

(2) of the proposition, we have w < sw, so that w -< sw with S^{sw) <££P{w),

implying sw < L w. On the other hand, any element z ■< w in the sum satisfies

sz < z for the given s, so S£{z) <£l£(w) (because sw > w). Thus z <Lw. In either

case of the proposition, it follows that left multiplication by Ts takes Cw into the

^f-span of itself and various Cx for which x<lw.

Now fix a left cell k a W, and define Jx to be the .4-span of all Cw(w e k)

together with all Cx for which x<lw (we k). The preceding discussion shows

that Jx is a left ideal in ffi.Let J[ be the span of those Cx for which x <
l w
for

some wek but x $ k. Since <L is transitive, the definition of left cells implies

that J[ is also a left ideal in J<f, so the quotient Jix := J'x/J'x affords a rep-

resentation of 2tf.In other words, for each left cell, regarded as a full subgraph

of Tl with the same sets Ix and the same function [i is itself a fF-graph. One

can similarly define right cells by replacing /,, = ££{w) and J^(x,-_i) <£^(^/)

with /w = M[w) and ^(x,-_i) s^ ^(x,) respectively, where 0l{w) = {se $＼ws <w}.

One can also define two-sided cells of W by replacing J^(x/_i) gt 3?{xi) with the

condition that <£(xi-＼)<££?{xi) or 0l{xi-＼) <£M(xi) and replacing Iw = £?(w)

with /,,=
≪Sf(w)
U ffi(w). The notation x ~^j (resp. x ~ry) means that x,y are

in the same right (resp. two-sided) cell of W.

Let W be the symmetric group Sn. Then the cells of W can be classified by

the Robinson-Schensted map.

Let P(n) be the set of partitions k = (ki, kj, ■･■,kr), where k＼> k% > ■■･ >

kr > 0 and Y?i=i k = n- Standard Young tableau of shape k is by definition

numbering of cells of k in such a way that it is increasing from left to right in

each row and from top to bottom in each column. The following is an example

of a standard Young tableau of shape ^, = (3,2,2,1).

1

3 4

2 5

6 8

7

In this paper, we adopt the bijection between W and permutations in the

following way. Let i＼■■･in be a permutation of 1,...,≪. Each generator st e W

acts from the right as the transposition of letters i and / + 1, which we denote

i＼･･ ･ in ■si. Then the bijection is given by w＼―>12 ･ ･ ･ n ■w. For example (1, 2)(2, 3)

corresponds to 312. The Robinson-Schensted map 0: w ―>■(P(w),Q(w)) gives a
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bijection from W to the pairs of standard Young tableaux on {1,2,...,≪} having

the same shape (cf. [7]).

The following result is due to [21.

Theorem 1.5. For y,weSn, we have

(1) y ~Lw & P{y) = P(w),

(2) y ~Rw & Q(y) = Q(w),

(3) y ~rw ■&P(y) and P(w) have the same shape.

Kazhdan and Lusztig[6] showed the followingresulton the representations

of Sn afforded by the leftcellsof Sn.

Theorem 1.6. Let X be a left cell of W - Sn, let T he the W-graph

associated to X and let (j>be the representation of Hn{q) {over the quotientfield of

A) corresponding to T. Then (f>is irreducible and the isomorphism classes of the

W-graph T depends only on the isomorphism class of d> and not on X.

The above theorem shows that two distinct left cells of W = Sn may

produce the same irreducible representations (up to isomorphism). The proof of

the theorem, however, shows that if y and / are distinctelements of X~l, then

the
~L equivalence classes

Xy and Xy which contain y and / respectively

produce the isomorphic left cells.Here the isomorphism between two left cells

means the isomorphism between corresponding graphs which preserves ftand Iw.

(See [6]).Combining the results of Theorem 1.5, we can see that the set of non-

isomorphic irreducible representations of Hn(q) are given by non-isomorphic left

cells of Sn. Moreover each non-isomorphic left cellis indexed by the partition

X e P(n).

2. Algebra Hm^{a,q) and ^-contractions In Hmttt(a,q)

In this section we define the ^(a,^)-algebras Hm>n(a,q). Then we define the

^-contractions in Hm,n(a,q). These ^-contractions correspond to the ^-analogue

version of the ones which they defined in their paper [11.

Definition 2.1. Let K be a fieldof characteristic0. Let q and a be

indeterminates over K. For integers m,≪>0, we define Hm:n(a,q) to be the

associativeK(a,q) -algebra with the unit generated by

m-l->Im-2i･..,±2*IX +E* 1＼Jo,..., iM_o î≪_i
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subject to the relations:

(Bl) TiTj = TjTi (l<i,j<m-l, ＼i- j＼> 2),

(B2) TiTi+lTi = Ti+lTiTi+l (l</<m-2),

(IH) (Ti-q)(Ti + q-1)=R (l<i<m-l),

(Bi*) t*t; = t;t; (i <ij<n-1, ＼t-j＼> 2),

(B2*) T*T^T* = 1?+l1?1?+l {＼<i<n- 2),

(IH*) (7?-q)(7?+q-l)=0 (1 < i < n - 1),

(HH) TiTj = T}Tt (1 <?<w-l,l <y<n-l),

(Kl) ETi = TiE (2<i<w-l),

(Kl*) ET* = T*E (2<j<≪-1),

(K2) ETi^ = fl-1^,

(K2*) .er; = a-1^,

(K3) £2 = _^^£>

(K4) ETf! 7^*^71 = ETf1 T{ET{,

(K4;) 71.ETf! 7]*£= 7|*^7;-!T^.

In the previous paper with J. Murakami [8], we defined the generalized

Hecke algebra Hrmn{q) which was K(q)-algebra obtained by being replaced one

of the indeterminate a by q~rin the above definition.Here we take a positive

integer r.In the case of the ^(^)-algebra Hrmn{q), the relation (K3) is presented

as follows: E2 = [r]E, where [r]= qr~l+ qr~2H + ql~r.

The following theorem is one of the main results of [8]. (See loc. cit.

Theorem 4.11, Corollary 4.13 and Proposition 2.2)

Theorem 2.2. If r>m + n, the K(q)-algebra Hrmn(q) is semisimple and

whose dimension is (m + n)＼.

The above theorem will be extended to the K(a, q)-algebra Hm>n(a,q).

Theorem 2.3. The K(a,q)-algebra Hmjn(a,q) is semisimple and whose

dimension is (m + n)l.
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For the proof of the above theorem, we have only to follow Section 1-4 of

[8] replacing q~rwith a.

Remark 2.4. If we take ^o e JT＼{0}, instead of taking the indeterminate q

and put a = qrQin Definition 2.1, then we can define the ^-algebra Hrmn(qo).

Furthermore if we take ≪q e ^T＼{0} instead of a and assume qo ― q§l ^ 0, the K-

algebra Hm,n(ao->^) can ^e defined. If [i]qô 0 for / = 1,2,..., m + n + r, then

Hm,nM is semisimple. Here [i＼qois defined by qfr1 +qj0~3 + ■■■+ ql~l.If [i＼qo# 0

for i = 1,2,..., max(m, n) and [a0; y]go # 0 for; = 1,2,..., m + n, then Hmjn(a0, q0)

is also semisimple. Here [ao;j]qo is defined by (flg1^ ~ ao%J)/{^Q ― %1)-

We introduce the k-contract sets (m,n), which is defined by

(m,n) = {(mi,ni),...,(mk,nk)}.

Here m = (mi,..., ≪?&) and ≪ = (≪i,..., nk) are ordered subsets of {1,2,..., m}

and {1,2,...,≪} respectively. We further assume m＼,rri2,■■■,mk are in increasing

order (i.e. m＼ < m.2 < ･■■< mk).

There are two standard ways in indexing (w, n). One is to index them by the

two line array L, which is 2 x k matrix whose firstrow is assigned by m and the

second row is by n. The other is to index them by the triple (A,B,cr) with

A c {l,2,...,m},Bcz {1,2,...,≪} (＼A＼= ＼B＼=k) and a e Sk, where Sk is the

group of permutations of k letters {1,2 ...,k}. We label the elements of A and

B with ai,≪2,･･ ･, 0/t and b＼,b2,--.,bk respectively in increasing order. The

correspondence (m/,≪,)<-^ {ai,ba^) defines the bijection between L and {A,B,o).

Let A = {≪i < 02 ･･･<%}<= {1,2, ･･･ ,m} and 1? = {6i < 62 < ･･ ･&/t} <=

{1,2, ･･･,≪}. Define

X4 = (Ta,-iTa.-2 ･■■T＼)(Ta.-＼Ta.-2･･ ･ T2) ■･■(Tak-＼Ta,-2 ･ ･･ Tk)

and

T* (K
1

1
7-≫*―1 T1*―1 N/T1*"! T"*~l T1*""^ /rp*―1T""*―1 T->*―1＼

We understand Ta,-＼Tai-i ･■■Ti = 1 if / = a＼.Note that if there exists an / such

that ai ― l and a/+i > / + 1, then a＼= 1, ≪2 = 2, ･･ ･, a/ = /. In this case we have

Ta = {Tai+.-＼TaM-2--- Ti+＼)(Tai+1-＼Tai+2-2■■■Ti+2) ■■･(Ta.-i Ta.-2 ･･･ ^)-

Similarly we define

TAop = (TkTk+l ■■■Tak-,){Tk-XTk ■■■V,-i) ･ ･ ･ [T＼T2 ■■■
rfll_i)
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and

7->*0p /"t-t*
―1rj-i*―1 T*~1＼/T*~1t*~1 t->*―1 ＼ /

iji*―lrp* ―l HP* ―1＼
^ - Ufc ^vt+1 ' " " ^^t-lA^^-l -≪A: ･■■Vi-l'11^l 2 "'Ib1-＼J-

The following lemma follows from the relation (Bl), (B2), (IH) and (Bl*),

(B2*)5 (IH*) in Definition 2.1.

Lemma 2.5. Let A be as above. Take 7} e Hm{q) c Hmjn(a,q). Let A^+i ―

(^＼{i})U{i+1} (if ie A) and let Ai+u = (A＼{i+＼})U{i} (ifi+leA). Then

we have the following formulas.

(1) If i ― ai e A and i + 1 = ≪/+i e A for some I < k ― 1, then T{Ta ― TaT＼.

(2) IfieA and i+＼$A, then T{TA = TA..+l.

(3) If it A and i + 1 e A, then T(TA = {q- q-l)TA + TAi+l..

(4) If i $ A and i+＼ $ A, then there exists an I > k such that T{TA ― TAT＼.

Proof. (1) This follows from the following calculation.

Ti(Tai_iTai-2Tai-3
■■■
Ti+＼Ti)(Tai+i-iTai+i-2Tai+l-3 ･ ･ ･ 7}+i)

= (7})(7}_17-_27i_3 ■･･ Ti+iTiMTMTi^Ti-zTi-s ･ ･ ･ Tl+l)}

= (TlTi.lTi)(Ti.2Ti-3 ■■■Ti+iTfiiTi-iTi-iTi-i ･ ･ ･ Tl+l)

= (Ti.l){(TiTi-l)(Ti.2Ti-3 ■■■77+17/)}{(7}_,)(7}_27/_3 ･ ･ ･ Tl+l)}

= (r,_1r/_2){(7}r,_,7/_2)(7}_3 ･■■r/+1r/)}{(i;-_2)(j;-_3 ･ ･ ･ t,+1)＼

(Ti-xTi-2 ■■■7/+i){(r/7}_i7}_27}_3 ･ ■■7/+,)(7/)}{(77+i)}

(ii-iTt-2 ■■■TMTtTi-iT^Ti-j ･ ■･ TmTA

= {Tai-＼Tai-2･■■Ti)(TaM-＼TaM-i-･･ 77+i)7/.

(2) (3) These are obvious.

(4) Let p be an index such that p<ap<i―l<i<i + 2< ap+＼.Since

ap+＼―1 > i + 1 and /?+!</, we have

Ti{Tap+x-＼Tap+{-2■■■Tp+i)= (3^+,_i3^+1_2---rjH.i)7}+i.

Hence we have T{TA = TATk_p+i.

Similarlv.we have the followinglemmas.
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Lemma 2.6. Let A, Ai>i+iand Ai+ij be as in thepreviouslemma. Then we

have the followingformulas.

(1) If i = aieA and i + 1 = aM e A, then 7jp7} = TtT^.

(2) IfieA and i+＼$A, then T°vTt = T^M.

(3) If i^ A and i+leA, then T°*Tt = (q - q-1)!? + T^ ..

(4) If i$ A and i+＼ t A, then there exists an I > k such that T%pTj = TiT%p.

Lemma 2.7. Let B be the one defined before Lemma 2.5. Take T* e

Hm,n{a, q). Let Biji+l= (B＼{i})U{i+1} (if i e B) and let Bi+U - (*＼{i + 1}) U

{i} (if i-＼-1 B). Then we have the following formulas.

(1) Ifi = bteB and i+l= bl+x e B, then T*f] - 7j7]＼

(2) IfieB and i + 1 t B, then T*T* = (q - q~lm + fj~r

(3) Ifi$B and i+leB, then T?Tj = 3J+u.

(4) Ifi$Bandi+＼$B, then thereexistsan I > k such that T*Ti = TJJTT1.

Lemma 2.8. Let B, Bu+{ and Bi+ifibe as in the previouslemma. Then we

have the followingformulas.

{l)Ifi = bieBandi+l= b,+le B, then T;opT* = T}*T*^_

(2)IfieB and i+l$B, then

(3)If i$B and i+leB, then

T*0pr* _ / K j.*Op , j-*op

TT*Op<-r>* T-'*Op
h Ai ~ JBi+lr

(4) If i$B and i+＼ $B, then there exists an

TT*rj--*Op
/ AB ･

/ > k such that T*opT*

The i-trivialcontraction Ej (i ―0,1,..., k) is defined by:

-DO― I,

Ei=E,

Et = E{TXT2 ■■■T^)(T*-lT*-1 ■･･ T^1)^ (i = 2, 3,■･･,/:).

These trivialcontractions {£,･}(i = 2,3,...,/:) are also defined by

Et = E,-_i(7;_i7}_2･･･ HX^r/T^1 ･･･ T*~l)E.

It is proved by induction on i. Note that this element is of the form

E(Ti7^-l)E(T2TiT£-1 T*~l)E■■■E(7/_iTt_2 ･･･ 7i^l1 Tp2l ■■･ T^E.

If we move T2,T2~l in the second parenthesis to the first,T3,r3*-1 in the third

parenthesis to the firstand iterate this procedure, we have that it coincides with

E(TiT2---Ti_lT{-1T2*-1 ･■■T£＼)Et-＼by the induction hypothesis.
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As for the trivial̂ -contraction, the following lemma generalizes the relation

KA and KA! in n^fitiitirm1 1

Lemma 2.9. Let a e Sk. Then Ta is defined as in Section 1. Similarly

T*^ ealgjl]*,^*,...,^!} is defined. For these Ta and T*^, we have

(1) TaEk = T*_,Ek,

(2) EkTa = EkT*.

Proof. (1) If k―l,2, it is easy to see. We assume TaEk-＼ = T*_xEk_＼

holds for any aeSk-＼. In particular we have Tt_＼Ek^＼= T*_xEk-＼. Hence for

any i > 2 we have

TiEk = TiE{TiT2 ■■■Tk-MT?-1!?-1 ■･･T^zl)Ek-X

= E{TXT2 ■■■Tk^T^T*-1!*-1 ■■■T^})Ek^

= E{TXT2 ■■■Tk^){T*-lT*-x ■■■TJUDTi-xEk-x

= E(TXT2 ■■■Tk_x){T*-lT*-1 ■■■1^zl)1txEk.x

= E{TXT2 ■■■Tk^)T*{T*-lT*-x ■■■T*:^^

= T*E{TXT2 ■■■Tk^){T*-lT^1 ■■■T^zl)Ek-x

= T*Ek.

If we write a = a's (/(a) > S(o'),se S), then

TaEk = TjTsEk = T&T*sEk = T*sT&Ek = TsT$_xEk = Ta.xEk.

Hence (1) holds by induction on £{a). Similarly, we can show that (2) holds.

Let L = (A,B, a) be a ^-contract set and let Ek be the ^-trivialcontraction.

A left k-contraction El is defined by:

El ― TATgTfjEk.

As for Tff,we review the monomials in normal form in Hecke algebra, Hk(q).

(See for example [4].) Consider the following sets of monomials.

Ui = {1, 7i, T2TU ...,Tk-iTk-2 ■■■Ti},

U2 = {1, T2, T2T2,..., Tk-iTk-2 ■■■T2],
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Ui = {＼,ThTt+lTi,...,Tk-lTk-2'-'Tt},

Uk-2 = {1, Tk-i, Tk-iTk-i},

Uk-i = {＼,Tk-{＼.

We shall say that V＼Vi ･･･ V^-i is a monomial in normal form in Hk(q), if Pi e £/,-

for i = 1,2,...,& ― 1. We assume that Ta is written in normal form. If cr(l) = 1

then V＼ = ＼.On the other hand, if <r(l) ＼=1 then V＼ # 1. Similarly, we shall say that

V＼iq-" Vt_x is a monomial in normal form in H*k{q) = alg{l, T?, T2*,..., T^},

if F* g I/; for i = 1,2,..., k - 1, where £7*is the one defined by taking {T^} for

{7/} in the definition of £/,-.We also assume that 7^* is written in normal form.

Then we have the following lemma.

Lemma 2.10. Let L = (A,B,o) be a k-contract set and let EL be a left k-

contraction defined by L. For a finite set X ― {x＼ < X2 < ･■･ < x^} of positive

integers, let Ri(X) denote the set {1, x＼+ 1, X2 + 1,..., x/-i + 1, x/+i, X/+2, ･ ･･, *&}

and let Rj{X) denote the set {1,2,...,/, x/+i,x/+2,... ,Xk}. Then we have the

following formulas.

(1) If leA and leB and a(＼) = 1 then

EEL = -
a- a

q-(T

1

I EL

(2) If 1 eA, leB and a(l) # 1, then for the I such that oil)

EEr -

a
X Ta,-＼ Tai-2

■■･
72^(/?,(y4))S,(/,/-l,...,l)ff)

a~l E(R,{A),B,(l,l-l,...,＼)(j)

(3) If I 4 A and 1 £B, then for the I such that ail)

EEL =

1 Ta,-l Ta,-2
■･ ･
72^(*,(y<)A(/,/-l,...,l)ff)

if ai > 2,

if ai = 2.

= 1

I

we have

(4) If I e A and 1 &B, then putting a(l) = I, we have

EEt ―

n/T*"'T*"l 7^*―1＼/t>*―1 t>*―1 T*~ 1^

*･ ･ (^-1 ^-2 ' ･ * T^＼)E(A,R*{B),<7{＼,2,.-,1))

aE(A,R*(B),a(l,2,...,l))

if ai > 2,

if ai = 2.

if

if

bi

hi

>
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Proof. (I) This is obvious.
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(2) Since TA does not involve 7] and T£ does not involve 7]* * either, they

commute with E. In addition, we note that i; = (7)_i7/_2 ･･･ 7i)r(/)/_lv.j)fffor

the / such that a(l) = 1 and T^i_it_i)a does not involve T＼.So we have

EEL - TAJ^EiTi.xTi.2 ■■■Tl)T{u_K.A)aETlT?-lE.- ■

= a

― a

'TaT^t^t^
■■■
r2)r(/;/_li...1)^r17]*-1^.

･.

lTA(Tl_1Tl^2...T2)T*T{u_ln(rEk.

Here we have

TA{Ti-lTi-2---T2)

= {(V,-T,)-(rflH.-r;)

･
(ra;+1_! ･ ･ ･ Tl+l)

■■■
{Tak.x

■■■
TMiTi-xTi-2

■■■T2)
(ap>p> 1)

=
(Vi ･ ･ ･ Tp)

■■■
(Vi ･ ･ ･ 7/)(7/-i7)-2

■･･
T2)

■(Tai^---Tl+l)---(Ta^---Tk).

Since for ai - 1 > j > 2

Tj(Ta,-i
■■･ TjTi-i T1-2 ■■■Ti) ― (Tai-＼ ･■■T/T/_i T/_2 ･ ･ ･ Ti)Tj+＼,

we obtain

Ta(Ti-＼Ti-i ･■･ T2) = {Tai-＼Tai-2 ■･■T2)TRl(Ay

Hence we obtain the formula.

(3) In this case TA involves T＼. So we have

EEL = 7SE(Tai-i
■■■
T2)(Tt)

■■■
(2^_i ･ ･ ･ Tk+i)(Tk)(Ti-iTi-2 ･

■■7])%/-i,..i)^

=
5(rfll_,

･ ･ ･ T2) ■■■(T^-i ■■■Tk+i)E(Ti ■■■Tk){Ti.iTi^2
■･ ■
T^T^^Ei

=
fl{Tax^

■■■
T2)
■■■(3^-i ･ ･ ･ Tk+l)E(TiTi-i ･ ■■T2){H ･ ■･ Tk)T{U_^A)aEk

= a -!7^(ra
i_i ･ ･ ･ T2) ■■■(31_i ･ ･ ･

r4+i)(7>7/_,
■･ ･ T2)(T2 ■■･ Tk)T(l,,A)(7Ek
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Here we have

(£,-i ･ ･ ･ T2) ■■■(Tat_! ･ ･ ■7*+1)(rzr/_i ･ ･ ･ T2)(T2 ■■■Tk)

= (rfll_! ･ ･ ■t2) ■■■(v.-i ･ ･ ･ Ti)(Tai_{ ■■■
r/+1)(r,r,-i ･ ･

･ (Tai+l-i ■■■Tl+2) ■■■(Tak_{ ■■■Tk+l)(T2 ■■･
Tk)

= (Ta,-＼ ■･ ･ Ti+iTiTi-i ■･ ･ T2){Tax ■･ ■Ti) ■■･
(Tai_x ･ ･ ･ Ti+i)

■(r^,_! ･ ･ ･ Tl+2) ■■･ (11 ! ･ ･ ･ Tk+l)(T2 ■■■Tk)

T2)

= (Vi ･･ ･ 7/+i7/7/_i ･･･ T2){Tax ･■･ T3T2) ■■■(1^ ･■■TMTi)

■{Tai+i-＼■■■Ti+2Ti+i) ･ ･･{Tak-＼ ■･ ･ Tk+iTjc)

= {Ta,-i ･ ･･ Ti+＼TiTi_＼ ■･ ･ T2)TRl(Ay

Hence we obtain the formula.

(4) We note that T^ = (T^T*_y ■■T^T^^ and 7^...^, does

not involve 7]*. Hence we have

ETAT*TaEk = TAETlT^Ek

= taeT*(t,* r/_2 ･･ ･r)r* , n .£7ir-1^･ ･･

= TAEmr;_ju ■■■tx*)et* iw-^r1^

Here we have

ET*{1ll1l2...1?)E

= E(Tb]z＼
■■■
Trl)(Trl)(Tb*2z＼ ■■■t;-1)(t2*-1) ■･･ (^zj ･ ･ ･ TTTi^C^"1)

= E(T*z＼---T2*-l)(T*-＼... Tr')---(Tb'-＼---T;+-h

.(ir1^-1 ･･･ Trl){TUTu ■■■Tmnrj-x ■■■n+D ■･■(K~-＼■■■Tt1)^

= E(Tb*-＼ ■■■T2*-l)(Tb*2z＼■■■r;-1) ･■･(Tb*-＼■■■77+11)

･ {jrn-x
■･ ･
n)w-ln-1

■■■Trl)(n:;!-i ■■■
^v/) ･ ･･ wt-l ･･■Tr1)^

= a{Tbx_x---T2 ){Tb2_r--T3 )---{ibl-i-' 2i+i )

■(TlT,_r--T2){T2 ･■■Tl ){Tb l---l{+i )-"Khk-i Ak )n
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-a＼Ibl-＼ Ai )＼1b2-＼'"h )'"＼Ib,-＼'" 1i+＼)

mj-i-Tti)--^-

= a(Tb*z＼---Ttl)(Tb*-_＼

Hence we obtain the formula.

[■■■rrl)E

■■■n-l)---{Tbr-＼---T^)TR]{B)E
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Remark 2.11. If ＼$A and I $ B, then TA involves 7] and 7£involves

j;*"1.This case willbe treatedin Lemma 3.1.

Remark 2.12. Let L' = (A'.B',^) be a fc-contractset and let E^ be the

£>trivlalcontraction.If we define the rightk-contractionby

E°L?= EkT&T;vfp

and write T<? in suitableform, then we have the similar formulas for is£f

corresDondins to Lemma 2.10.

3. Irreducible representations of Hmjn(a,q)

As we mentioned before, the main purpose of this paper is to construct

irreducible representations of Hrmn{q) so that they keep the integrality.To make

use of the resultsin Section 1, we take the field of rational functions Q(a, q)

(resp. Q{q)) for the underlying fieldof Hmjn(a,q) (resp. Hrmn(q)). First we define

two sided ideals J^t of Hm,n{a, q). Then we define irreducible representations of

Hm:n(a,q) by taking quotients of M%- If we define Hrmn{q) by replacing one of

the parameter a with q~rin the definition of Hm^n{a,q) and define the corre-

sponding quotients, we obtain the desired irreducible representations of Hrmn{q).

These representations are also irreducible in case r > m + n. Similar arguments

are also valid for the ^-algebra ifm,M(ao,go) and Hrmn(qQ), if qQ,aoe Q＼{0}

satisfy the conditions in Remark 2.4.

In the following, we identify alg{7^_i, Tm-2,... Tk+i} with the Hecke

algebra Hm-k(q). The isomorphism is given by 7}h-≫7^_,. It follows from

Section 1 that we can define the basis {Cx}xeWi of alg{7^_i, Tm-2, ･･･ 7/t+i},

where W＼ = Sm_k. Similarly, we identify alg{7^_1, T*_2,... T%+1} with the Hecke

algebra Hn-k{q) by Tt^T*^. The basis is given by {C*w}weWi, where W2 =

Sn_k. (We added asterisks to indicate that they are in a.lg{T*_vT*_2,.. .T£}.)

Let W＼ = $m-k, W2 ― Sn-k be symmetric groups and let L = (A,B,a) and

L' = (A',B',o') be a pair of A>contract sets,(k < min(m,n).) Let M'k be the
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vector space over Q(a,q) spanned by

Ck ={C(£,jx,/)JCj;)= TATgT<TEicTal-iCxC*Tp°lpT%?

＼xg W＼, y e W2, L,L' : ^-contract set}

We note that 3% is also spanned by

^A: ={T(L,L',x,y) = TA^T^EkT^-iTxTyT^T^

＼xe W＼, y e W2, L,L' : /c-contractset}.

Let R be the ring of polynomials Z[q, q~l,a,a~＼(a - a~l)/(q―q~1)} over the

rational integers Z. We denote JPr^ to be the R span of the elements of Bk. Take

a ^-contract set Lq = (Aq,Bq,(jq). If we fix the index U to be Lo in the above

definitions,then we have the subspace ≪^^(L0) of J^ spanned by

Cg,k{Lo) ={C(z,jLo)X;>,)= TAT^TfjEkT^CxCyT^T^

＼xe W＼, y W2, L : A:-contractset},

which is also spanned by

Bg+iLo) ={T{L:Lo,x,y)= TAT*TaEkT<TxT;T*%1%

＼xe W＼, w e W2, L : /:-contractset}.

Note that Tx and T* both commute with Ta,Ek and 1> in the definition of Bk.

Hence, Cx and C* both commute with Ta,Eh and J>.

We denote ^r^{L^) to be the R span of the elements of By^{L^) as before.

By Lemma 2.5 and Lemma 2.7, we find Tt and Tj* act on ^^{Lq) and ^Rjg!k(Lo)

from the left.The following lemma shows that we can construct left Hm^{a,q)-

modules.

Lemma 3.1. Take T{L)LoyXj)e Bd}k{LQ). Then ET{L^^y) is in Jf^(L0) or in

M'k+i-

Proof. If A or B involves 1, then ET(LtLojXty)e Jfg^Lo) by Lemma 2.10,

Lemma 2.5 and Lemma 2.7.In these cases, Ta does not involve 71 or T£ does

not involve T*~l. We assume that ＼$ A and ＼$ B. In this case Ta involves T＼
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Representation of o-analogue

as we mentioned in Remark 2.11. Then we have

ET{L^y) = ETA72ToEkT<TxT;TZ"l%
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= TA+T^E{TiT2 ■■■nXT^T*-1 ■■■T^l)TaEkTa^TxT;T;^^

= TA+J%E{TXT2 ■■■Tk)Ta(T*-lT*-1 ■■■Tk*-l)EkTa^TxT;f^T^

= TA+T^ET^{I[T2 ■■■Tk){T*-lT*-x ■■■T^l)EkT^TxT;i^T^

= T^T^T^EiTiTi ■■■Tk)(T*-lT2*-1 ■■■T^EkT^T^f^T^

= TA+T*B+Ta+Ek+l{T .Txt;t;°≫T°*)

where a+ = (k+ l,k, ■■･, 1)ct(1,2,･･･,k + 1) e Sk+l, A+=A＼J{1} and B+ =

Bl) {1}. Since the triple(^+, B+, a+) makesa (k + 1)-contractset,and by Lemma 2.5,

2.6, 2.7, 2.8, &k coincides with the (Hm(q) RHn(q),Hm(q) (g)i7n(^))-bimodule

generated by Ek, the last term is in &k+＼.

By Lemma 2.5 and Lemma 2.7 and the previous lemma we have the

following oroDOsition.

Proposition 3.2. For k (0 < k < min(m,≪)), /er

Jf^(Lo) = ^fc(Zo) + ^k+l + A+2 + ■■■+ ^min(m,n)

7%e/i Jfgtk(Lo) is a left ideal of Hmn(a,q).

If we fix a left A>contract set L to be Lq instead of L' In the definition of Bk

and Ck, then we have a subspace J>^(Lo) of J^k- Hence, we have the following

oroDOsition.

Proposition 3.3. For k (0 < k < min(/w,/i)), let

^d,k{Lo) ― ^d,k(Lo) + ^k+1 +
<&k+2
H 1"^Ciin(m,≪)-

Then Jf^,k is a right ideal of Hm,n(a,q).

If we denote Hmjn(R) to be the algebra over R defined by the generators and

relations in Definition 2.1, then the iMinear combination ^r^^{Lq) (resp.

^R,d,k{Lo)) Of Jffl^Lo) (resp. ^R^^iLo)), 3&R,k+l,3&'R,k+2> '" ^R,min{m,n) *s a

left (resp. right) ideal of HmJR).
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Since jffc= Y,L^d,k{L) = Yin ^gAL')^ we have further the following

proposition.

Proposition 3.4. For k (0 < k < min(m,≪)), let

Then Jtfkis a two sided ideal of Hm^n(a,q).

Corollary 3.5.

JVn = HmJa,q).

Proof. This follows from le/n and the previous proposition.

Similarly, if we define Jf7/^ to be the JMinear combination of 3^r^,

J^R,k+ii
■■■,<&R,min(m,n),

then we find JfRfk is a two sided ideal of Hm,n{R) and

Jf rq = Hmn(R).

We can see USf*''0 Bk fo 18 a basisof Hm^{a,q) as follows.Let Bk be the

one just defined.Then

£=0

)

1**1

min(m,n)
£

k=0

(:)"c" (k＼)2{m-k)＼(n-k)＼

which is equal to (m + n)＼.(See Lemma 1.7 in [8].) Hence dim Hm,n(a,q) <

(m + n)＼.On the other hand we already know that dimHm>n(a,q) = (m + n)＼

(Theorem 2.3). Since the above corollary implies LJ
=o
^ Rk generates Hm>n(a,q)

as vector space, we find U o ^k forms a basis of Hmjn(a,q). Similarly we can

see U/£lo Ck forms a basis of Hm>n(a,q).

Let Jk = J^k/J^k+i (& = 0,1,2, ･･･,min(w,≪) ―1) be quotient modules and

^min(m,n)= ^min(m,n)- Note that the modules JfR:k/^RMi are ^"free and the

same holds for all modules constructed below. This fact willbe used in the proof

of Theorem 3.9. Since we already know HmiK(a,q) is semisimple, the canonical

projection Jtfk^-Jk splits.Similarly, we define Jg}k{Lo) = ^g,k(Lo)/J^k+i (resp.

Jd,k(Lo) = ^d,k(Lo)/jfk+i) (k = 0,1,2,... ,min(m,≪) - 1) and Jg,rmn(m,n)(Lo)=

^g,min(m,n){Lo)(resp. Jd,mm(m:n){U) = ^,min(m,n)(^o))- Since it is easily checked

that the left (resp. right) module structures of J9:k(Lo) (resp. Jd,k{Lo)) do not

depend on the choice of Lq, we write J9tk= Jg,k(Lo) (resp. Jd,k= Jd,k{Lo)).

Although the quotients J9)k {k = 0,1,2,... ,min(m,≪)) define the represen-

tations of Hmn(a,q), they are stillvery large modules. So we divide them into
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smaller submodules or subquotients. Let L ―(A,B,a) be a ^-contract set and

let

[L,x,y] = TAT*TaEkCxCy + 3?k+x

be a representative of Jg^. We consider a subspace Jg>k(h,h) of Jg,kspanned by

{[L,x,y}eJg,k＼Cxeh,C;el2},

where I＼ and I2 are leftideals of Hm^k{q) and Hn^k{q) respectively.By Lemma

2.5, Lemma 2.7 and Lemma 2.10, we find Jg^{hJi) is a left Hm;n(a, ^)-module.

Let Jx and J^ be ideals of Hm_k{q) and Hn-k{q) indexed by left cells

k<^W＼ and fia W%. Let J[ and ^ be the maximal ideals. (Recall the defi-

nitions in Section 1.) We shall say the following theorem.

Theorem 3.6. Let Jx z> J'k and J^ => J' be as above. Let

Then Jqk{k,[i) is an irreducible Hmn(a,q)-module.

Before proving the above theorem, we prove the following lemma.

Lemma 3.7. If we take 0/tie/^(i,/i) then there exists a right k-

contraction Is?p such that E?pv ^ 0.

Proof. There exists a v e /^(J^,^) such that u (natural surjection of v)

eJgjc(k,n). Note that

v e /^(^i, 4<) cz J^ <= 4 = jf?k/jfrk+l

and hence jffc+i^^O- If we have E^v = 0 for all right ^-contractions, then

3&kV = 0. Hence ^y = 0. Since Hm,n{a,q) is semisimple, Jf& and J^+i are direct

sums of matrix algebras, and hence v e JPk/^k+x and J^y = 0 imply v = 0. (Note

that there is the canonical projection in 30%-) This contradicts v # 0.

Proof of the theorem. Suppose O^tJ£/^(^,//). We claim that

Hmtn(a,q)v = Jgtk{A,f/).For a v e Jg^ <= Jk such that veJg^k, fi),we can write

where ciL,x,ye Q{a,q). By the above lemma, there exists a right ^-contraction £"^
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so that E^pv # 0. Then we can write

Recall that E%Hmtn(a,q) is contained in the span of {Ef}, and {TAT*TaTxT*E°*}

is a basis of J^t- Hence aL^y = 0, unless EL = Ek. Since J^/J^' and J^/J^ are

irreducible, we have that Hm,n{a,q)v contains the span of {EkCxC*}. By mul-

tiplying TAT£Ta for various L= (A,B,a), we find Hm,n(a,q)v = Jg>k(X,fi).

Next, we prove that /^(A,^) and /^(A',//) are non-isomorphic for the

distinctpairs (A,//)and (A',//').Let A^, be a set of pairs of partitions defined by

A^ = {(A,^)|Aei>-*:),/ieP(W-£)}.

Theorem 3.8. Suppose (X,ju)e /^mn and (A',//)eAmn are pairs of partitions

for k, k' e {0,1,2, ･･･,min(m,≪)}. 17ie≪ JgMft) ^ Jg,k>{X,n') as Hmfl(a, q)-

modules if and only if X ― A',pi= {/ and k = k'.

Proof. Assume that J9^{^,/j) = Jgp{X,rf). Let ^: /^(A,//)!-^/^(A',//') be

an //W)W(a, ^)-module isomorphism. Suppose that A:'#/:. Without loss of gen-

erality,we can assume that k < k'. Then by the definition of /9)/t(A,yu),we have

0 = fl^J^AO) = E%t(JgMp)) = E$JgJs,{X',S),

for any /:'-contractset L'. By Lemma 3.7, however, there is a £:'-contractset L＼

such that E^Jg^'iA.',/!1)#0. This gives a contradiction.

Thus, we can reduce to the case where k' = k > 1. Let px,Px' (resp. i?*,i?*/)

be the central idempotents in Hm-k(q) (resp. H*_k(q)) corresponding to the

irreducible modules JkIJ[ and Jj>IJ[, (resp.
≪/*/X*'

and
<f*,/J*J).

If

(A,^) # (A',yu'),then p^p^pxp^ ― Q. We regard these central idempotents as

elements of Hm^n{a,q). We note that these elements stillcommute with the trivial

^-contraction is*. Since we have proved that E^J9tk(X,/i) is the span of

{EjCxC*} in the proof of Theorem 3.6, we find

PxPlEfJg,k(X,n)=E0*Jg,k{X^)

and

Hence we have

PxP*,E°*Jg,k{)!J)=E0*Jg,k{X^)

pxp*ti?w,p) =Px'p;'Pxp;E°Lpjg,k(x,^= o
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0 = ^^,^4,(1,//))

= PX>P*u>ti?t(W,l'))
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= PXP^Jg^k＼fi')

Again by Lemma 3.7 we have a contradiction. So we have X ―1' and fi= yt'.

Let fx and /*" be the dimensions of the irreducible characters xl anci X^ °f

the symmetric group Sm-k and Sn-k respectively. Then the degree of the

representation Jak{X,u) is

(;)(: ＼kl)ff≫

From this, we obtain the following conclusion.

Theorem 3.9. The set {Jg^k,n)＼{X,n) e A* ,fc= 0,1,2, ･･･,min(m,≪)} is a

complete set of representativesfor the isomorphism classes of irreducible modules

of Hm}n(a,q). Moreover the generators of Hmin(a,q) in Definition 2.1 will be

mapped to the matrices over R = Z[q,q~l,a,a~1,(a―a~l)/(q ―q~1)}by these

modulps

Proof. The first

min(m,n)
£

k=0

statement follows from the fact that

(DC ) (*!)V)2(/")2 = irn+ n)＼= dlmi^,^).

See (5.4)in [1] for details.By the comments below Proposition 3.3,3^r^^{Lq) is a

leftideal of Hm^n(R). If we define J?-modules JR7g}k(^,fi)in the course of our

construction of/^(A,//), then they are Hm^(R)-modules. This proves the second

statement.

We finally obtain the following theorem.

Theorem 3.10. If we construct /^(/1,/i) as Hrmn{q)-modules replacing one

of the indeterminate a with q~r(r>m-＼-n) in the course of the construction of

Hm,n{a, q)-modules /gjjt(/l,/i),then the set {JgjdKt*)} ^ a complete set of rep-

resentatives for the isomorphism classes of irreducible modules of Hrmn(q).

Moreover the generators of Hrmn{q) in Definition 2.1 will be mapped to the

matrices over Z[q,q~l] by these modules.



728 Masashi Kosuda

Proof. First we note that even if we replace a with q r in Lemma 2.5-

2.10, those identities are still valid for the (?(^)-algebra Hrmn{q). Similarly,

Proposition 3.2, 3.3 and 3.4 hold for Hrmn{q). Since we assume r>m + n,

Hrmn{q) is semisimple and its dimension is (m + n)＼. So we can construct

{Jgfiih/*)} as Hrmn{q)-modules. Lemma 3.7 also holds for Hrmn{q) since Hrmn{q)

is semisimple. Accordingly, even if we replace Hm^{a,q) with Hrmn{q) in

Theorem 3.6, 3.8 and 3.9, those theorems are still valid for g($)-algebra Hrmn{q)

and the proof completes.

Remark 3.11. As we mentioned in Remark 2.4, we can define the algebras

Hrmn(qo) and Hm,n(aQ,qo) over Q, taking special values ^o,≪o e CAW- For tnese

g-algebras, we can also construct Hr
n{qo)-modules

and Hm^(ao,qo)-modules in

the same way, In case Hrmn{qo) (resp. Hmjn(ao,qo)) is semisimple (see Remark

2.4), these modules are complete set of representatives for the isomorphism

classes of irreducible modules of Hrmn(qo) (resp. Hmtn(ao,qo)). If the algebra

is not semisimple, these modules are not necessarily irreducible nor mutually

non-isomorphic.
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