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RIGID SPACES AND THE ^-PROPERTY
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Jan Jaworowski, Nguyen To Nhu, Paul Sisson,Nguyen Nhuy,

and Pham Quang Trinh

Abstract. A rigid space is a topological vector space whose endo-

morphisms are all simply scalar multiples of the identity. A rigid

space can be constructed so as to admit compact operators [14].This

paper proves that the rigid space admitting compact operators con-

structed in [14] can be modified to be an AR, and hence is homeo-

morphic to the Hilbert space h.

§1. Introduction

Rigid spaces, which appeared for the firsttime in [16] and then in [6][7] [14],

are among the most operator-poor of spaces in the class of linear metric spaces.

In fact, these spaces do not have any endomorphisms other than scalar multiples

of the identity map. Nevertheless, rigid spaces can share some nice topological

properties with the richest of spaces in functional analysis: Hilbert spaces. For

instance, in [11] it was shown that a rigid space can be constructed to be ho-

meomorphic to the Hilbert space £2.Thus, rigid spaces may look poor from the

point of view of functional analysis, yet look rather wealthy from the point of

view of topology.

In this paper, we continue our investigation on the
^4i?-property

for rigid

spaces. The yli?-propery for linear metric spaces is of special interest,since in-

finitedimensional separable complete linear metric spaces with the y4i?-property

are homeomorphic to Hilbert space, see [4].

Observe that Cauty [3] constructed a a-compact linear metric space which is

not an AR. By a theorem of Torunczyk [15],the completion of any non-v4i?-linear

metric space is stilla non-AR-space. Therefore the completion of Cauty's example

provides a separable complete linear metric space which is not an AR.
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It should also be observed that while Cauty showed the existence of non-

AR-linear metric spaces, it is difficultto use his argument to obtain an intuitive

picture of such a space. In fact, Cauty's example is based on some rather deep

facts from infinitedimensional topology and a more self-contained example of a

non-yiJ?-linear metric space would be much appreciated. Naturally, it is hoped

that such an example should be found among pathological objects in linear metric

spaces.

We also hope that our investigation on the ,4i?-property for rigid spaces will

shed light on the following question which is one of the most outstanding open

problems in infinitedimensional topology:

Question. Is every compact convex set in a linear metric space an AR1

Does every compact convex set have the fixed point property? The second part

of the above question, known as "Schauder's Conjecture", was posed by Schauder

in early 1930's, but is stillopen today.

The result obtained in this paper is much harder than the result obtained in

[111, where a similar theorem was established.

Notation and Conventions. In this paper, all maps are assumed to be

continuous. By a linear metric space we mean a topological space which is met-

rizable.The zero element of X is denoted by 0. The space X willbe equipped with

an F-norm ||-||(see [13]);that is, a function ||-||: X ― [0, oo) such that

(a) ||jc||= 0 if and only if x = 0,

(b) ||x + _y||< ||x||+ ||_y||for every x,yeX,

(c) ||/Lx||< ||x||for every xeX and X £R with ＼k＼< 1,

(d) ||ajc||―>■0 whenever |a| ―>0.

Let A be a subset of a linear metric space X. By span A we mean the linear

subspace of X spanned by A, and by conv A we mean the convex hull of A in X.

We also use the following notation:

＼＼x― A＼＼―inf{||x ―_y||: y e A] for x e I;

diam A ― sup{||x ―_y||: x,y e X}.

Let {(Xa, ||-||a)} be a collection of F-normed vector spaces, and let

X ― span{Xa}. For xeX, let

11*11 = inf

{

£KII

;=1

CCi

n
£

7=1

xa,.;xa;eX^ne N＼
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The F-norm ||-||defined as above willbe referred to as inf-norm {(X*, ||-||a)}and

will be used frequently throughout this paper.

For undefined notation, see [11 [21 and [131.

§2. A Rigid Space Admitting Compact Operators

In thissection, we describe the rigid space admitting compact operators con-

structed in [14]. This space is the main object of our investigation.

Let W be a finitedimensional linear space with a basis {wi, W2,..., wn}. For

/?,/?e (0,1) we define an F-norm |-|°,which willbe called the (/?,/?)-norm on W,

as follows: for x e W with x = y]f=i XjWj e W, let

(1)

(2)

(3)

＼x

n

n

x|2 _ o＼^i IP.

/■=1

＼x° = inf-norm{|x ＼ ＼x＼2}

Observe that the (/?,/?)-norm |-|°defined by (1) (2) (3) is an F-norm, not a norm.

Now we are going to describe the rigid space which was constructed in [14].

Let V denote the space of all finitelynon-zero valued sequences. Let

(4) A = {el+en}:=2＼J{el-en}Z2U{el}

where en is the sequence with a 1 in the ft-thslotand zeros elsewhere. Let {≪,} be

a sequence in A such that for each a e A, a = an for infinitelymany n. Let {pn}

be a sequence of positive numbers such that

(5)

(6)

0 < pi < P2 < ■■■< pn < ･ ･ ･ < 1 and

lim pn ― ＼.
n―rcc

Let {Vn} be a sequence of finitedimensional spaces of V, with dim Vn = /(≪)

such that

(7)

(8)

(9)

Each Vn has a basis of the form {e" <&>>

If ane A and an $ V＼+ h Vn-i, then Vn = J?aw.Otherwise
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For any neN, let ＼-＼ndenote the (/?,,/?,)-norm on Vn. Let

(10) EH=Vi+･■･+＼,

and define ||-||won En by

(11) ||-||w= inf-norm{(F1,|-|1),...,(F≪,HJ}-

Let

(12) E

oc

n=＼

and III-HU =
it iin

The space E will be equipped with the i^-norm

(13) |||-|||=inf-norm{(^,||HL)}.

Observe that in [14] the F-norm ＼＼-＼＼defined by (11) was chosen to satisfy

the condition

1
||-IL> ^INL-i on E"-＼-

Therefore from (12) we get

(14) IML>2|MIL1 on£B_i.

Let X denote the completion of (£",|||-|||).It was proved in [14] that for cer-

tain choice of sequences {pn}, {/?,} satisfyingconditions (5) (6) and {/(≪)} <= N,

the resulting space X will be a rigid space admitting compact operators. Our aim

is to demonstrate:

Theorfm 1. X is an AR.

From Theorem 1 and from Theorem A we obtain

Main Theorem. X is homeomorphic to the Hilbert space fa-

§3. Some Properties of the (/?,/?)-Norm

Let W be a finitedimensional linear space with a basis {h>i,...,wm} equipped

with a (p,fi)-norm defined by (l)-(3),where p e (0,1) and /?> 0. For every x e W,

x = HZl xiwh let

(15) I(x) = {i: |jc/|< Pl/{l-p)} and J(x) = {i: |x;-|> ^/(l~p)}.



Then I(x)＼JJ(x)= {1
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...,m＼. Let

x1 = V^ XjW( and x2 ― ＼~^x,w/

iel(x)

Then x1 + x2 = x. We claim that

ieJ(x)
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Lemma 1. |x|°= ＼xl＼l+ |x2|2, see (1) (2) (3).

For the proof of Lemma 1 we need the following simple fact.

Claim 1. If p e (0,1), fi > 0, and ＼a＼> p^~P＼ then

＼x＼+P＼a-x＼p>P＼a＼p.

Proof. We prove the claim for a > pl^l~p＼ The proof for the case a <

_yg1/(i-/))js similar. Consider the following cases:

Case 1. x > a. Then x > fil^l~P＼ Therefore x> fix? > pap and the claim

follows.

Case 2. x < 0. Then a - x > a. Therefore

x＼+ fi＼a- x＼p > fi＼a- x＼p > Pap

and the claim follows.

Case 3. xe[0,a]. Consider the function

(p{x) = x + p{a - x)p.

Then we have

(p'{x) = 1 ―Pp(a ― x)p~l for every x e (0,a).

Hence

tp'(x)=0 for x = a - (Pp)mi~p).

Observe that <p is increasing on [0,a ―(/?/>)] an<i ^s decreasing on

[a-(Pp)l/{l-p),a]. Hence

^(x) = x + p{a - x)p > <p(0) = Pap for every xe[0,a- (Pp)l/{1~p)＼,

and

<p(x) =x + p(a- x)p > (p(a) =a>Pap for every x e [a - {Pp)l/{1~p＼a}.
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It follows that
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<p(x) = x + fi(a - x)p > pap for every x e [0,a]

The claim is proved.

Proof of Lemma 1. By (3), |jc|°< [jc1|x + |jc2|2. We shall show that

Ix^lx^ + lx2!2.

Assume to the contrary that x＼°< ＼xl＼l+ x2＼2. Then there exist yj e W,

such that

(16)

Then we have

(17)

y

m
E<

;=1

m

i=＼

= 1,2, With yl+y2=x

＼yl＼l+ ＼y2＼2<＼xl＼l + ＼x2＼2

y}＼+fi＼yf＼p)<E W+ E
iel(x)

Therefore there exists at least one i, say i

ieJ(x)

P＼Xi＼P

1, such that

(18)

(19)

lyW+Plyjf <＼Xl＼ if M^fiW-ri,

＼y＼＼+fi＼yi＼p<fi＼xi＼p if ＼x1＼>filK1-p)

Observe that y＼ + yf = x{ for every / = 1,..., m. In particular, y＼ + y＼ = x＼

Consider the two cases:

Case 1 |*iI <j3l/{l-p).From (19) it follows that

＼yi＼<＼xl＼<fi1^-"K

Therefore ＼y＼＼< P＼y＼＼p.Since x＼ = y＼ +y＼, we get

＼M＼<＼y＼＼+ ＼yl＼<＼y＼＼+P＼y＼＼p

which contradicts (18).

Case 2. |xi| > px/{x~p).Then by Claim 1 we get

b! ＼+p＼xx-y＼＼p>p＼xl＼p



Since x＼ ― y＼
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― y＼, we have

which contradicts(19).Thus

From Lemma 1 we get

＼y{＼+P＼y2i＼p>PMp

the lemma is proved.

Corollary 1. For every x e W, x ―X^i xiwi>we have

iel(x)

where I(x) and J(x) were definedby (15)

§4. Some AlgebraicProperties

ieJ(x)
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Lemma 2. Let {Vn} denote a sequence of finite dimensional linear spaces of V

satisfying conditions (7)-(9). Then for every n e TV, {ani e", i = 1,..., *f(w)― 1} w a

linearly independent subset in V, hence is a basis for Vn.

Proof. Assume that Xan + Y^i=＼ l ^e? ― @- Then we have

It follows that

(20)

Since {ef

^≪+･･･+<■;,,) +

an)-＼

1=1

U
i +

X

7{n

i = 1,...,/(≪)} is a basis

W)
Therefore X

Let

(21) Sn

= 0 and

0 and h

= {e?,i =

// +

= 0 for i

i
)
"" +

X

V? = 0

of Vn, we get

X

W)

(22)

0 for i= !,...,/(≪)-1

1,..., /(≫)―1. The lemma is proved.

i,...y(*)-i,* = !,...,#!} and S
CO
[JSn

n=＼

Lemma 3. span S H span{an : n e N}

Proof. It sufficesto show that

= w

span Sn flspanja,-,/=!,...,≪} = {6} for every n e N.
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We prove (22) by induction. If n=＼, then /(1)= 1, see (8). Therefore /(1)-1

= 0 and so S＼= 0 and span S＼= {9} and the claim is true.

(23)

Assume that (22) has been proved up to n. Let

x ― x＼+ X2 = a + Aan+＼ e span Sn+＼ f＼spanjai,..., an+＼1

where

*i e span £,, x2espan{e"+＼...,e"^)_l} and a e span{a,-,i= 1,...,≪}

Observe that

(24) x2

From (23) we get

(25)

wri Rn+＼

x2 - Xan+＼ = a- x＼ e span(£w U {a＼,..., an＼)(1 Vn+＼

Then by (8) (9)

(26)

Hence

= (vx + --- + vn)nvn+l

X2 ― Aan+＼ = (xan+＼ for some a e R.

x2 - {X + u)an+＼ = 6

Since X2 e span{e"+1,..., e^l^j} and by Lemma 2, {≪,,e",i = 1,..., /(≪)― 1}

is linearly independent independent we have X2 ― 0 and x + a = 0. Therefore

(27) X + a = 0 and //,= 0 for / = 1,.../(≪+ 1) - 1

Hence from (23) and (24) we get x ― x＼e span Sn. Consider the two cases:

Case 1. an+＼e span{aj, ...,an}. Then from (23) we get

x = a + Aan+i e span Sn f＼spanj^i,... ,an}.

By the inductive assumption we get x = 6.

Case 2. an+＼$ span{≪i,...,an}.

Then by (8), Vn+l f)(V＼+ ･･･ + Vn) = {6}. Therefore from (25) (26) we get

a = 0 and so by (27), X = 0. Consequently from (23) we obtain

x e span Sn C＼spanjaj,..., an}.

By the inductive assumption, x = 6. The lemma is proved.
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Lemma 4. The set S defined by (21) is a linearly independent subset of V.

Proof. It sufficesto show that Sn is linearly independent for every n e N,

see (21). We will prove this by induction.

For n = 1, we get ^(1) = 1, see (8). Therefore Si = 0, see (21).

Assume that the claim has been proved up to n. Observe that

SH+l=SH＼J{e?+＼i=＼,...,S(n+l)-l}.

Let

(28) Ms＼ + ･･ ･ + Xmsm + Aw+i5w+i + ･･･ + XkSk = 0

where Sj = Sn for i = 1,..., m

i = m + 1,..., k. We may assume

Then

(29)

Let

(30)

and si e {e/+1, j = 1,...,/(≪+ 1) - 1} for

that

k-m = S{n+l)-l and sm+i = <??+1 for i= 1,.../(≪+ 1) - 1

hs＼ -＼ ＼-Amsm 2 ≪≪+l 2 />"+'― ―^m+l^i ― ･ ･ ･ ^m+/(ffl+l)-l%+i)_i

X ― ―Am+＼ex ―
... ― Am+f(n+＼)_ief,+x,_l

Then x e Vn+l fl(VY H + Vn). Therefore by (8) (9)

x ― Xan+＼ for some ke R.

Since by Lemma 2, {an+＼,e"+1,...,^+n_i} is linearly independent, from (30)

we get

2 = 0 and Xm+i = 0 for / = 1,...,/(≪+ 1) - 1.

Consequently from (28) we get A＼S＼+ ･■･ + Xmsm = 6. Since Sje Sn for / = 1,...,

m, and by the inductive assumption Sn is linearly independent, we get /i = ･･■=

Am = 0.

The lemma is proved.

§5. X Is a Quotient of an AR-Sface

In this section we shall show that the rigid space X constructed in Section 2

is a quotient of an
^4i?-linear

metric space.

Recall that V denotes the linear space of all finitellynon-zero valued se-

quences. Let

(31) {u≫i i,...y(#0,/i = i,2,...}
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be a linearlyindependent sequence in V. Let

(32) ^ = spanK,...,W;(n)}; Fn = Ux + ■･･ 4- Un; U=
Q

Fn

Using the sequences {pn} and {/?,}, see (5) (6), we define an jF-nomi |||-|||on

U in the same way as the definition of the F-norm on E. In fact, firstlet

|.|ndenote the (pn,ftn)-norm on Un and define ||.||won Fn by the formula (11).

Then define j||-|||on U by (12) (13). Observe that the spaces U and E are very

much similar. The only difference between U and E is that {u",i= !,...,/(≪),

n― 1,2,...} are linearly independent, while {e",i― 1,...,/(≪),≪= 1,2,...} are

not linearly independent. Let Z denote the completion of (U, |||-|||).We shall

prove

Theorem 2. Z is an AR.

The proof of Theorem 2 willbe givenin the last section.

Our aim is to show that the space X constructedin Section 2 is a quotient

space of Z. Firstwe prove

Lemma 5. If x e {JT=l Ek, say x e En, then

||x|||= inf

U=i

4k-[＼xk＼k:xk e Vk
n

£

k=＼

xk = x

}

Proof. First observe that for any xk e Vk, k = 1,... n, with xl -＼ ＼-xn =

x we have |||x|||< YHk=＼ ^k~l＼xk＼k.We shall prove that for every e > 0 there exists

an expression x ― x 1 H hxn such that |||x||| > V7, 4k~l xkL - e

111 IN / ■//(― 1 IA-

We need the following fact:

Claim 2. Let x e En, n>2. Then for every e > 0 there existxn~xe En-＼ and

xn e Vn such that xn~x+ xn = x and

INL>III^L-,+4"-VL -≪■

Proof. Let x e En, n > 2. By the definitionof inf-norm for every £> 0 there

exist X{ e Vj, i = 1,...,n, such that xi -＼ + xn = x and

IML = 4"~l＼＼x＼＼n> 4n~1(|xi＼{+ ･･･ + ＼xn＼n)- e.

Let xn~x― x＼H 1-xM_i and x" = xn. Then xn~l+ x" = x and

^lll H ＼-＼Xn-l,_i > ＼＼X Lj.



Therefore
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IIMII >4n-l(＼＼xn-l＼＼n__{+ ＼x＼)-e

= 4"-1||x"-1||n_1+4"-1|x"|n-£

> 4*-2!!*"-1 !!,_!+4≪-VL-£

423

= lll*"~1|IL-i+4'l~V|,I-e.

The claim is proved.

Claim 3. For every n e N and for every e > 0, there exist Xk e Ek,

k = 1,...,≪, such that xy + h xn = x, and

Wl > 111*1Illi+ IIMI2 + ･■･ + IKIL - 2-"e.

Proof. Observe that, given n e N, and a > 0, by the definition of |||.|||there

exist Xk e Ek, k = 1,..., m, such that x＼+ ■■■+ xm ― x, and

INII > IINIIi + IINL + ･･■+ IIML - 2-"e.

Therefore if m < n, then the claim is proved. Assume that m > n. Since x e En

and n < m - 1 we have xm = x - (x＼ H h xw_i) e .E^-i. Therefore, from (14)

we get

m

IIMII>£ 111**111*

k=＼

2-"e

>

>

>

l**IL + IIK-ilL-i + ll*JL-2 "£
k=l

m-2

^2＼＼＼xk＼＼＼k+ ＼＼＼xm-i＼＼＼m-i+ 2＼＼＼xm＼＼＼m_l
-2-"e

k=l

m-2

/ _,
III^IL + lllxw-i|lu_i + IIfwIL-i ― 2 £

/t=i

w-2

/

J

＼xk ＼k + H-Xtw-1 + xm＼ ＼m-l
~~

^ £

Eiiwii*-2""*

k=＼
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where yk=Xk for k = 1,..., m ―2 and ym-＼ = xm-＼+xm. Consequently, the claim

is proved by induction.

Now we are able to complete the proof of Lemma 5. By Claim 3,

(33) |||x|||> |||*ilid+ |||*2|||2+ ･･･ + |||*≪|||M- 2~ne.

By Claim 2 for every k = 2,... ,n there exist x| e Vk and yk~le Ek-＼ such that

yk~l+ xk = Xk and

INIL> MA1111^+4^^1,-2-^.

Applying Claim 2 again for j^"1 and for 2~2ne,so on, we obtain

III* > lll/-2IL_2+4*-2|**-Vi +4k-l＼xkk＼-2-2n+>e

>＼＼＼yl＼＼＼l+4＼x2k＼2+42＼xl＼3+ ---+4k-l＼xkk＼-2-n8

= kill +M4＼i +42|^|3 + ･■-4k-l＼xkk＼- 2-"e

(where x＼ = yx).

Therefore from (33) we get

IIWII > llkillli+ INIII2 + --- + III^IL-2"'Ie

> Ixid + (1^1! +4＼x＼＼-2'ns) + ---

+ (＼^＼x+4＼xn2＼2+ ---+4n-l＼xnn＼n-2-"s)

= (kill + kill+ --' + Wli)

+ 4(|x22|2+ k23|2 + --- + |x2"|2)+ ---

+ *"-2(K:l＼n-i + K-1L-1) + 4-1KL -ni-e.

Let

x1 =xi +x2 + ＼-x"e V＼＼

x2 = xl + xl + ---+x2le V2;

x"-1 = xnnll+ x"n_{e Vn^

xn = xnne Vn.



Then we have
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＼＼＼x＼＼＼>＼xl＼l+4＼x2＼2+ ---+4n-2＼xn-1＼n_l+4n-l＼xn＼n-e

The lemma is proved.

Corollary 2. For every x e Z, x

oc
IIWII

Proof.

every x e Z

follows.

= J2Z=ix"> x" E &n, we have

E4"~vl

425

Since {u", i = 1,...,/(≪),n ― 1,2,...} are linearly independent, for

the expresion x ― Y^t=＼x"' xn e Un, is unique and the assertion

From Corollaries1 and 2 we get

Corollary 3. For every xe Z, x = J2^=＼Y!-~i

IIMII

where

£ 4""1

j (x＼ ― fj . ＼xn < ol/(l

＼ieln(x)

■"■≫}

k"l +
E

ieJn(x)

and Jn(x)

Proof. For every x e Z, x ― Yl^Li

Observe that

11*11 =

)

xnij"
X: U: ,

R X"＼P≫Pn xi I

we have

)

= {/:K"|>/?y^)}

xn, xn e Un. From Corollary 2 we get

E4-VL

n=＼

t{n)

x" = ^^ x?ei e un for every n e TV.

;=1

Therefore the assertionfollows from Corollary 1

Now we define g : U ―>■E to be the "natural" projectionfrom U onto E

thatis

g(x) =
oc

E

≪=1

E*r*r
oc f{n)

for every x = ＼~"V^

(with only finitelymany x" are non-zero)

x>" e U,



426 Jan Jaworowski et al.

From Lemma 5 and from Corollary 2 we get

IIIS'WIII< 111*111for every xeU.

Therefore g can be extended to a continuous linear map, which is still

denoted by a, from Z into X. We claim that

Proposition 1. The quotient map q*: Zlq l(6)-+X is an isometric embeddinq.

The proof of Proposition 1 will be given in the next section.

By Proposition 1 g*(Z/g~~l(0))is complete. Since g*(Z/g~l(9)) =>is,and since

E is dense in X, we have g＼Z/g-＼0)) = X. It follows that g{Z) = g*{Z/g-＼0))

= X.

Consequently, X is a quotient space of Z and the assertion is established.

§6. The Kernel of g and Proof of Proposition 1

In main result of this section, Lemma 6, describes the kernel g"[{0) of the

map g defined in Section 5. This fact will be used in the proofs of Proposition 1

and Theorem 1.

First we define the sequence {bk)k=＼<={a≪}^Lias follows. Let b＼=a＼.Assume

that b＼,...,bk~＼have been selected.Let n e N denote the smallest number such

that an <£V＼-＼ + Vk-＼.We define bk = an.

For each k e N, denote

(34) N(k) = {n:an= bk}.

Then by the definition of {an}, N(k) is infinitefor every k e N, and

N(k) 0 N{k') = (f> for k # k' and (J N(k) = N.

n=＼

Let

Fk = span{≪w: n e N(k)}.

(35) Bk = {un:ne N{k)}, where un = ^(n)]"1^ + ■･･ + unm).

(36) Gk = {k＼unn)-＼ ＼-kpun{p)＼n{i)eN(k),i=＼,...,p and k＼-＼ ^kp = 0}.

(37)

Then we get

G

FkDFkl

00
cG* <= Z

£=1

{6} for every k # k'.



y>"

(38)

We prove

Lemma 6. g~~x{0)

Rigid Spaces and the ^i?-Property

= G

Proof. We first claim that

Gk <= g
x{9) for

every ^eA^

In fact if x e Gk, then

X

p

i=＼

Then we have

where unu＼e Bk, see (35), i = 1,... ,p and

g(x)
p

£

i=＼

han(i) = (f>) h = o bk = e

p
£

h = 0

427

Therefore x e g l(6) and the claim is proved.

From (37)(38) we get G c g~＼6).To prove g~l(0)cz G, let xeU such that

a(x) = 0. Then we have

(39) x =

Write

Let

(40)

00 /(≪)

EE*

≪=1 i=＼

"u" (with only finitelymany x" are non-zero)

V xnun

i=＼

/, = t(n)x?{n)

Then we get, see (35)

Therefore

i(n)

;=1

and y" =

(in)
£

＼Xi Xt{n))Ui

i=＼

･*2 -V(w)
I

({n)-＼

i=＼

oo e(n)

≪=1 i=＼

00

E

n=＼

KUn +

!,...,/(≪)-1

oc t(n)-＼

EE

≪=1 /=1
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(with only finitelymany x" and kn are non-zero).Hence

g(x)

00

£

n=＼

£

i=＼

x"an
CO

E

n=＼

Kan +
EE

n=＼ i=＼

v"en

(with only finitelymany x" and Xn are non-zero).Since g(x) = 6 from Lemma 3

we get

oo oo t{n)-＼
y^ xnan = - ^2 5Z y"e"e span s n sPanifl≪}={^}
71=1 n=＼ i=l

(with only finitelymany xf and Xn are non-zero).Thus

CO
£

n=＼

oo ({n)-＼

knOn = 0 and J2J2 y"e"

n=＼ i=l

= e

(with only finitelymany x" and Xn are non-zero).By Lemma 4 we get

yi = 0 for every /= 1,.../(≪+ 1) - 1,≪= 1,2,...

Consequently

Write

(41)

X

00

£

n=＼

X
00E E

k=＼ nsN{k)

Xk

Anun and g(x)

knun and g(x) =

^2 ^nUn and yk

nsN(k)

00

£

≪=1

Xnan

00
EE

k=＼ neN(k)

E

neN(k)

Anan

Xnan

We claim that yk = 0 for every k e N. In fact, if it is not the case, let K e N

denote the largest number such that yx ＼"0. (By (39) only finitely many yu

are non-zero.) From (34) (41) we get yK = iJ2neN{K) ^n)bx- Observe that

g{x) =yi-＼ h yK- Since g(x) = 9 we get yK e Vx -＼ h VK-＼. Since yK^0

we have YlneN{K)^n ＼=0. Therefore

bK=

(

neNlk)

This contradicts the definition

*n

＼-1

yK e V＼H h VK-＼

of bK, and the claim is proved.



Observe that

IIIjM
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inf
l E

[neN{k)

inf
l J2

I weW(A:)

>infi
Yl

[neN(k)

neN{k)

＼Unbk＼＼＼n: J2

neN{k)

＼Unbk＼＼＼k: J2

neN{k)

Kibk = yk＼

Kbk = yk

(since

>infi

≫>M|-||L>2||H||fc, see (14))

nsNlk)

Xn)bk

k
neN(k)

Kbk = yk＼

Since yk = 0 we get J2neN(k) ^≪= 0- Hence by (30)

Xk e Gk for every k e N.

Consequently

X

oc
£

A:=l

Xk E

CO

k=＼

Gk^G
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Hence g~＼9)n U c G. Since £/is dense in Z, it follows that g~l{9) c G. The

lemma is proved

Proof of Proposition 1. We have to prove that

|||g(x)|||= |||x+ G＼＼＼for every xeZ,

which is quivalent to

inf{＼＼＼x- j||| : y e G} = ＼＼＼g(x)＼＼＼for every x e Z.

It suffices to show that

mf{|||jc-j||| :yeGnU} = ＼＼＼g(x)＼＼＼for every xeU

Observe that for any x e U and y e G D U we have

oo (in)

X

y

= zL S x"u" (with only finitely

n=＼i=＼

00

E

w=l

i{n)
£

1=1

many x" are non-zero)

y?u" (with only finitelymany y" are non-zero)
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Since y e G n U,

Therefore

It follows that

Jan Jaworowski et al.

9(x - y)

III^WIII <

00

E

OC
E

n=＼

n=＼ i=＼

(*?-j?K

t(n)

Ew
i=＼

= g(x)

y-K =＼＼＼x-y＼＼＼

＼＼＼g(x)＼＼＼<＼＼＼x-y＼＼＼for every yeGCMJ.

Consequently

|||Sf(jc)|||< ＼＼＼x+GO U＼＼＼for every xeU.

To prove that the above inequality must be an equality, we assume on the

contrary that there exists x e U such that |||g(X)|||< |||x+ GD U＼＼＼.By Lemma 5

there exist x" e R, i ― 1,..., /(≪),n e N (with only finitelymany x" are non-zero)

such that g(x) = EZi E-Li^a" and

CO
E

/=1

<|||x+Gnc/|||.

n

Denote y = V°°=1Tf^ x"u" e U. Then we have yex+GHU, and

Ibll

00

77=1

E xw
00

£

n=＼ i=＼

a contradiction. Consequently Proposition 1

§7. Proof of the Main Result

Let

(42) Y X =

00

£

< |||x+Gnc/|||

n

is proved.

00
Xnun eZ : ]^|AnMw|B < oo

n=＼

where {un:ne N＼ was defined by (35)

}
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Observe that, see (35)

Kun＼n- wwr1 £

i=＼

u?

Since |-| is the (/>,/?)-norm on Un, from Corollary 1 we get

(43) ＼AnUn ―

＼K ifi4i<wy(i-^
[t{n)]x-p"fin＼kn＼p" if ＼Xn＼> t{n)W1-^

431

Proposition 2. For certain choice of {pn} satisfying condition (5), Y is a

locally convex linear sub space of Z.

For the proof of Proposition 2, we need the following fact establishedin [11].

Let {/>,} be a sequence of positive numbers satisfying condition (5). Let £({pn})

denote the space of all sequences x = {xn} such that

oc

|*|| = y ＼Xn < 00.
n=＼

Lemma 7. [11] There existsa sequence {pR} satisfyingcondition (5) such that

for any sequence {pn} satisfyingcondition (5) with pn >pR for n e N, the resulting

space /({/?,}) is locally convex.

In fact, it was proved in [11] that for any e > 0 and for any x' ―{x'n}

i ― 1,...,m, with

11*11 f>;r<£
for/

n=＼

and for any a, > 0, i = 1,...,m, with YmL＼ a'

mE

1 m

OLiX <3e.

1, we have

Let us observe that the proof given in [11] also shows that for any sequence {cn}

of positive numbers and for any x' = {x'j, i = 1,...,ra, with

(44) x' =
CO

£

n=＼

xij, . ＼＼xi＼＼_

00

£

Cn＼x'n＼Pn<£, i= l,...,m
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and for any a,-> 0, /

(45)

Jan Jaworowski et al.

1,...,m, with YmL＼a≪― I? we have

m
E

1=1

a.jXl <3e.

Now using the above observation we are able to complete the proof of

Proposition 2. We shall prove that, under the above situation, the space Y will

be a locally convex space. First observe that the F-norm on Y is given by (43).

Let xl Y with |||x'|||< e for i ― 1,...,m. Then we have

(46) IIIX'IH=J24"~l{＼VnK)＼+Cn＼U4)n ^

where cn = j3n[f(n)}l~p",see (43), and

(pn(x)

and

It follows that

(47)

for every i

(48)

1

=r

t≪(x)=
{:

if

if ＼x＼> S(n)fiW

■Pn).

1

Vn)

if |x| ^/Wy0^;

if ＼x＼>{(n)plj{l-p"].

fV^kWDliSe
and

n=＼

00

E

n=＼

4n-lcn＼^n(x'n)＼p"<8

,m. Hence from (44) (45) we get

CO
£

w=l

4"~lcn
mE °#h(*≪)

Pn

< 3e

for any a, > 0, z=l,...,m and YHtL＼a'= ^- Since a,-6[0,1] for z = l,...,m

from (47) we get

00
£

≪=1

Hence from (48) we obtain

00

£

1=1

OLiX1 <

00

£

77=1

4≪-i

4n~l

m£

mE

a≫P≫K)

*i<Pn(Xn)

< e.

+ cn
m

£

1=1

^･AhOk)

< s + 3s = 4s.

Consequently Y is locallyconvex and Proposition 2 is proved.
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Since G is a linear subspace of Y, see (35) (36) (37) (42), from Proposition 2

we get

Corollary 4. Under the assumption of Proposition 2, G is a locally convex

linear suhspace of Z.

Proof of Theorem 1. By Lemma 6, g l(0) = G. By Corollary 4, G is a

locally convex linear subspace of Z, by Michael's selection theorem, see for in-

stance, [1],Proposition 7-1, p. 87, there exists a continuous map h : X ―>■Z such

that /*(x)e gr^x) for every x e X. By Theorem 2, Z is an AR. Consequently X is

an AR and Theorem 1 is proved.

§8. Proof of Theorem 2

We use the following characterization of
^47Vi?-spaces

to be found in [8]:Let

{*%,} be a sequence of open covers of a metric space X. For a given cover °Un,let

mesh(^) = supjdiam U : U e °Un}.

We say that {<%,} is a zero sequence if mesh(^fw) ―>･0 as n ―>･oo.

For a given cover ^ of X, let J^(^) denote the nerve of %. Let

^=0

n=＼

and for a e 3f(<%), write

mn and jf(<%) =

00

u

≪=1

jV(VnUWn+l)

n(a) = maxjra e N : a e Jf{fUn U Wn+l)}.

The following characterization of ANR-sp&ces was established in [8],see also [9]

[10].

Theorem 3. A metric space with no isolatedpoints is an ANR if and only if

there exists a zero sequence {^/n} of open covers of X and a map g : Jf(<%) ―>･X

such that g＼% ―>･X is a selection;i.e.g(U) e U for every U e°tt,and for any se-

quence of simplices {o>} in Jf(<%) with n(pk) ―*oo and g(aR) ―>･xo e X, we have

g{ok) ―>-^o.here ct? represents the vertices of o>.

We are going to prove Theorem 2. Our aim is to verifythe conditionsof

Theorem 3.
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(49)

(50)
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First we define two functions

an(x) =

<(*)

where

{

X if ＼x

x＼p"5(x) if Ix＼

isft
>

/(I

al/(l
rn

Pn).

Pn)

x if |jc| <p＼l{x-pn)＼

＼x＼l/p"S(x) if＼x＼>plj{l-p"＼

5(x) =

Let {^k} be a sequence of

/o: f ^ Z be a selection.

We shall extend /o to

<j= (uu...,umyejrm,

For any x e a

we define

(51)

X =

where an and a*

Observe that

mE

{ 1 if x > 0;

-1 ifx<0.

open covers of Z. Let tfi= {jZlRk and

a map / : jV{°U)―>･Z as follows: For any simplex

Uj e<% for j = 1,...,m. Since /o(C//)e Z,

MUj) =

f) £*£≪?,

j = ＼,...,m.

Yi1
."―1

Xj Uj, Xj > 0, j ― 1,..., m and

oo t{n)

n=＼ i=＼

<(

were defined by (49)

for every U e <%,we

m

J2xJan

7=1

and

have

(**)
Vr

m£

(50) respectively.

00 /(≪)

n=＼ i=＼

oo tin)

n=＼ i=＼

h 1

Therefore f＼y=fo.

Now assume that {&k} be a sequence of simplices in Jf (tfl)with n{pk) ― oo

such that /(of) ―>xo e Z as A:―>oo. We need to show that

fipk) ―>xq as ^ ―≫oo.



Since xq e Z,

Let Ok
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XQ

00
/(≪)

<f/f,...,£/*(fc)>.Then we have

f(uf) =

For every x^euk,

Xk

we have

(52)

m{k)
£

7=1

Xj(k)U.k

oc
£

≪=1

£ *J(A:K, fory=l,...,/ii(fc)

L(k)>0, j =

/(**) =

n=＼ i=l

<(

＼,...,m(k) and

m(k)

7=1

m(k)

V?

We will show that given a > 0 there exists K e N such that

(53) Ill/te) ―xq I < 6e for any x& e a^ and k > K.

Since /o(o-J)-> xq,

max{|||/(C/;)-xo|||,y

It follows that, see

(54)

where

(55)

(56)

f
°°

max< V^

1 2-―'

Corollary 3

4≪-i

= 1

In(k) = {/

Uk) = {i

(

,m{k)

1,... ,m(k)} ― 0 as k ―>■oo

) ieJ≪(k)

―> 0 as k ―> oo

P≪＼xUk)-x?
,)

＼x$(k)- x?＼< ft^ for j = 1,...,m(k)}

!*£(*)- ^?l > Pll{l~PH)̂ 7=1,... ,/*(*)}

435
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Firstwe take No e N

(57) max

I ≫=1

Jan Jaworowski et al.

such that

4""1

＼ieln(k)

j= l,...,m(k)

}

for every k > Nq.

Observe that by Corollary 3

(58)

where

(59)

IINH =
OC

£

n=＼

An-l

< e

Pn＼4W)-XT

ieJn

/B = {i:k?|<^/(1-^} and /,

Take N＼e N so that

(60)

Let

(61)

(62)

00

E

n=N, + ＼

Atl-＼

(

*o(#i) =

*j{Ni) =

Then we have

and

Ni An)

Z ･ Z ^ ' K

/£/,

≪=1 7=1

TV, t{n)

EE*js(*k

≪=1 7=1

< oo

= {i--W＼>ti/{l-pn)}

£ai*,t

ieJn

and xo(N＼,co)

)

and xf(N＼,co)

xo(Ni)+x0(Nuco)

**(#!) +**(#!, 00)

From (57) we get

Xq

= f(Ujk) fOTJ

< 8

E E*w

≪=7V+1 /=1

= 1

n=Nl + ＼ i=＼

m{k)

WlxHNti-xomWKlWnufi-xoWlKe
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for every j = ＼,...,m(k) and k > No. Observe that

|||x*(tf,,oo) - xQ(Nu oo)|||= |||/(l//) - jc*(M) - x0 + xo(iVi)|||

<lll/(^)-^o||| + ||kf(^)-xo(M)||

< £+ s = 2e,

for every j ― 1,..., m(k) and k > No.

By (60), ||bco(JVi,oo)|||< £. Therefore

(63) ＼＼x}(Nuoo)|||< ＼＼＼xf(Nuto) - xo(Nu oo)|||+ Hlxo^i, oo)||

< 2e + £= 3s

for every j = 1,...,m{k) and k > No.

We claim that

437

Claim 4. There exists an 7V2 e N such that for every j ―l,...,m(k) and

k > N? we have

(i)

(ii)

x"＼Xi I

xn＼

<

>

pW-P≫) if and oniy if |^(^)| <pW-P>>)-

pw＼-pn) if and only if |x≪^)| >pmi-p≫)

Proof. From (58) we get

lim Vbcfl =0.

ieln

Therefore from (54) we get (i).Observe that (ii)also follows from (54) and the

claim is proved.

Let

(64) B?(k) = <

fm{k)

A,-(*K(*J(A:))

)

Then from Claim 4 we get, see (59)

(65) /, = {i : ＼B"(k)＼< Pll(l-pn)} and /, = {i : B"(k)＼ > Pl^}

for every k > Ni- Let

(66) xk{Nx) = Y.Y,B"(k>"

n=＼i=＼

xk(Nuco) = £ £*■"(

n=N,+l i=＼

k)u"



lj{k)x!(k)
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Then Xk(N＼)+ Xk(N＼,oo) =f(xk), see (52). We claim that

(67) ＼＼＼xk(Nuoo)HI< 3e, for every k > max{N0,N2}

In fact,from (62) (63) (65) we get

IK(tfi,°°)lll =

<

00
£

n=N,+l

CO
E

n=Ni + l

m(k)
£

m(k)
£

4≪-i

An-＼

( m(k)

)

m{k)

££wi≪Z(*)i+E£
ieln j=＼

Xj(k)
00

£

n=Ni + l

4≪-i

Ve/B

^j(k)＼＼＼xf(Nuco)＼＼＼<

The claim is proved. We show

ieJn 7=1

Xj{k)pnxnfi{k)＼

ieJn

m(k)
E

7=1

Xj(k)3s

Claim 5. For each n = l....,N＼, there exists

＼B?{k)-xl＼ <4-n+l[2-n{<f{n))

for every /= 1,...,/(≪) and k > Kn.

3e

)

'■

)

Kne N such that,see (64)

■l i＼ipn£ /v

Proof. Consider three cases:

Case 1. ＼xf＼<plJ{l'Pn). Then from (54) there exists Kx(n) eN such that

＼xj({k)＼< ^n/{l-pn) and ＼x£(k)- jcf|< 4-"+l[2-n(<?(n)yle}l/p"

for every j ― 1,...,m(k) and k > K＼(n). Therefore from (49) we get

finale)) = x≫(k) for y=l,.. .,m(k) and k > A:,(/i);

and

m(k)

Hence from (50) we

W*n(xl(k)) < Pln{x-p"] for k > tf,(/i)

have

/m(k)

< IE Xj(k)aH(x^(k))
)

=

m(k)
£
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for every k > K＼(n). Therefore

＼B?{k)-x?＼ =

<

<

for every K > K＼(n)

Case 2.

rn(k)

£

m(k)

E

7=1

m(k)
£

Xj{k)xUk)-x?

kj{k)＼x^k)-^＼

Aj(k)4-"+ll2-"(S(n))-lMP"

4-n+l[2-"(f(n)ylE]l/Pn
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x?＼> pxnl{l~Pn).Them from (54) there exists K2(n) eN such that

＼x£(k)＼>plnl{X~Pn) for j= I,...,m(k) and k>K2{n).

Then we get

xn(x"(k))＼= ＼x"(k)＼p">/]^1-^

for j = 1,...,m(k) and k > Kjin)

are of the same signs.Therefore

Consequently

fm{k)

< E

m{k)
£

7=1

Xj{kyn{x^k))

Aj(k)an(x^(k))

)

By the continuity of an

(67)

Observe that x" and Xj-(k),j =

> pPn/(l-Pn) for eyery k > Kl(n}

＼,...,m(k),

> (pPn/(l-p,)fPn = pm-Pn) foj- eyery £ > ^ (,)

and a*

＼B?{k)-x?＼ =

there exists S? > 0 such that

whenever

<

(mik)

＼7=1

Xjik^ix^k))

<4-≫+i[2-"(<f(≪))-1e]1^

)

-x?

max{＼x"(k)-x?＼J=l,...MQ}<S?
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Since, see (54)

max{＼x^(k) - x?＼:j=l,.. .,m(k)} -> 0 as k -> oo,

there exists A^ (≪)e TV such that

max{＼x^{k) - xf |: j = 1,..., m(£)} < <5f for any fc> K3{n).

Consequently (67) holds true for k > Ks{ri).

Case 3. |xf| =p]l^-pn). We shall prove the claim for jcf = plnl{l~Pn).The

case x" ― ―p]/^~Pn)is similar. From (54) we get

max{|aw(^(^))-xf| :j=＼,..., m{k)}

= max{|aM(x"(^) -^/(1-^| :>=!,.. ･,m(A:)} ^0 as k -> oo.

It follows that

m(k)
£

7=1

Aj(k)an(x?,(k))̂ frW-Pn) as k -* oo

Therefore there exists K4(n) e N such that

B?{k)-x?＼ =

(m{k)

Aj(k)an(x"(k))

)

_ /?1/(1-A.)
rn

<4-n+U2~≪(f(n))-ls}l/p"

for every k > K^{n). Finally,letting

Kn = max{Kl(n),K2(n),K3(n),K4(n)}

we get

＼B?(k)- x?＼< 4-"+1[2^(/(≪))-1e]1//)"

for every / = 1,...,/(≪)and k > Kn. The claim is proved.

Now we are alreadyin the positionto complete the proof of Theorem 2. Let

K = max{N0,N2,Kl,...,KN[}.

Then by Claim 5 we get

＼B"{k)- x"＼< 4'n+l[2-"^(n))~le]l/p"for every k > K.

Let

/,(*) = {i:＼B-{k)-x1＼<^1^} Jn(k) = {i:＼B"(k)-x?＼ >jsw-p.)]
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Then card(In{k)) < /(≪)and c&rd(Jn(k)) < f(n). Therefore, see (61) (66)

n=＼

(

Y,＼B?(k)-x?＼ + T>2llH＼B?{k)-x?＼p'

iS In ieJn

<

<

J2 4""1 (card(/w(^))4-"+1 [2-"(≪f(n))"1^1/P"

n=＼

+ card(/w(/c))^4-"+12-"(^(≪))"1fi)

TV,
£

≪=i

f(n)2-"U(n))-le+ f(n)2-nU(n))-le]

00
2-"(2e) <2e^2-" = 2£

)
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for every k > K. Consequently from (63) (67) we get

＼＼＼f(xk)- xo＼＼＼= HMM) +xk{Ni,co) -xo(iVi) -xo(iV,, oo)|||

< |||**(#i) - xolH + ＼＼＼xk(Nhoo)||| + |||xo(7Vi, oo)|||

< 2fi + 3e + £ = 6e,

for every k > K and x^ g o> and so (53) is proved.

Accordingly, /(o>) ―> xo as k -+ co. The proof of Theorem 2 is complete.
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