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Naohiro Kanesaka

Introduction

In thispaper, we give an explicitdescription of a certain class of singularities

of algebraic varietiesof dimension greater than or equal to two using toric geome-

try. Singularitiesappearing in an algebraic variety which is a closed subset in

an affine space Cn for some positiveinteger n defined by a regular function on

C" is called hypersurface singularities,which we will investigate in the follow-

ing sections. Especially, our subject is investigating so-called hypersurface purely

ellipticsingularities.

Watanabe [18] introduced the notion of purely ellipticsingularities.In two-

dimensional case, the notion of purely ellipticsingularitiesis equivalent to that of

cusps and simple ellipticsingularities.Cusps are characterized as normal two-

dimensional singularitiesthe exceptional sets of whose minimal resolutions are

circlesof rational curves and appears, for example, in Hilbert modular surfaces,

while simple ellipticsingularitiesare characterized as two-dimensional normal

singularitiesthe exceptional sets of whose minimal resolutions consist of non-

singular ellipticcurves. These two-dimensional purely ellipticsingularitiesare

much investigated by many researchers.

We already know due to Ishii, Watanabe and other researchers that in

three-dimensional Gorenstein purely ellipticsingularities,some analogies of two-

dimensional cases hold. For example, Ishii-Watanabe [9] defined a simple JO

singularityto be a normal Gorenstein isolated singularityof which the exceptional

set of ^-factorial terminal modification consists of a normal JO surface, of course

which is an analogy of simple ellipticsingularitiesin two-dimensional cases. And

simple JO singularitiesare three-dimensional purely ellipticsingularities.
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Furthermore, Ishii [6] classified n-dimensional purely elliptic singularities into

n classes, from type (0,0) to type (0, n ― 1), by means of the mixed Hodge structure

of the cohomology of the exceptional set of each singularity. For example, in

two-dimensional cases, purely elliptic singularities are classified into two classes,

one of which is said to be of type (0,0) and the other of type (0,1). The former

corresponds to the class of cusps and the latter corresponds to the class of simple

elliptic singularities. In three-dimensional cases, Ishii [6] unveiled structures of the

essential divisors of good resolutions of purely elliptic singularities. If a singularity

is Gorenstein and of type (0,2), it is a simple K3 singularity and its essential

divisor consists of a K3 surface. If a singularity is Gorenstein and of type (0,0), it

is a singularity whose essential divisor consists of rational surfaces and, roughly

speaking, forms a sphere. And if a singularity is Gorenstein and of type (0,1), the

essential divisor forms a chain of surfaces and the intersection of any pair of

surfaces adjacent to each other is an ellipticcurve. The last class is the one having

no analogue in two-dimensional cases. Here, we note that elliptic curves and K3

surfaces are so-called Calabi-Yau varieties of dimension one and of dimension

two, respectively.

Hypersurface singularities are Gorenstein singularities. Watanabe [18] found

conditions whether a singularity is a purely elliptic singularity or not by means

of a character of a diagram, called the Newton diagram, associated with its

defining equation. We start to investigate hypersurface purely elliptic singularities

with this criterion. Here we note that we restrict ourselves to nondegenerate

hypersurface isolated singularities, see §1.2 for the definition of nondegeneracy,

because Watanabe's criterion or toric method does not work well without the

nondegenerate condition.

Let us give the outline of this paper.

§ 1 is devoted to the review of resolution of singularities of nondegenerate

hypersurface isolated singularities using toric geometry, and to the review of

the definition and some properties of (hypersurface) purely elliptic singularities.

Especially, we recall Watanabe's criterion. This indicates a special face of the

Newton boundary of the defining polynomial of a purely elliptic singularity,

which we call the fundamental face, and the sum of the terms of the defining

polynomial on it, which we call the fundamental part of the defining polynomial.

In the following sections, we will see roles of the fundamental parts in the

structures of the essential divisors and their characters as algebraic varieties.

In §2, we try to describe the essential divisor of a resolution of an r-

dimensional nondegenerate hypersurface purely elliptic singularity by means of

a stratified diagram in the (r + 1)-dimensional Euclidean space Rr+l associated
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with the singularity,which we call the dual essentialdiagram of the singularity,

and of simplicialcomplexes, which gives simplicialsubdivision of the dual essential

diagram. This attempt succeeds in case the dimension of the fundamental face

is greater than or equal to two.

§3 is devoted to study the varietiesassociated with the fundamental parts in

case the dimensions of the fundamental faces are greater than or equal to two. Of

course, these varieties have direct relations with the structure of the essential

divisor.

Hypersurface simple ellipticsingularitiesare deeply related to ellipticcurves

in two-dimensional weighted projective spaces as well as hypersurface simple

K3 singularitiesare related to JO surfaces in three-dimensional weighted pro-

jectivespaces. Hypersurfaces which are Calabi-Yau varietiesin weighted projective

spaces, more generally in toric varieties,are spotlighted by many physicists and

mathematicians as candidates of examples of the mirror symmetry phenomena

after Batyrev's article[1]. Before those, in the study of fundamental faces of

hypersurface simple K3 singularities,Yonemura [19] listed up all possible weights

of which weighted projective spaces contain normal K3 surfaces as anticanonical

divisors.Here, we note that Fletcher [2]independently obtain the same result by a

different approach.

Then do the fundamental parts, or fundamental faces of hypersurface purely

ellipticsingularitieshave some relations to Calabi-Yau varieties? For this ques-

tion,we give partialanswers: (1) smooth models of the variety associated with the

fundamental part has the geometric genus one in general; (2) under a special

condition, it is birational to a Calabi-Yau variety.

In §4, we apply the results obtained in the former parts of this paper to

nondegenerate three-dimensional purely ellipticsingularitiesof type (0,1), which

are the simplest non-semi-quasi-homogeneous cases and have relations to Calabi-

Yau varieties,in fact, ellipticcurves. Here we note that Fujisawa [3] general-

ized the notion of the weight system of a semi-quasi-homogeneous singularityto

the cases of non-semi-quasi-homogeneous purely ellipticsingularitiesand, from

this point of view, gave a classificationof three-dimensional hypersurface purely

ellipticsingularitiesof type (0,1).

Although, as we mentioned above, many of the results contained in this

paper are already known in more general and abstract contexts, we believe in the

significance of reviewing from the point of view of the geometry of toric hyper-

surfaces because hypersurface cases are good examples for general theories and

there are many theories on toric hypersurfaces available to further investigations

of hypersurface singularities.
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Finally, we notes that this paper consists of resultsin the doctor's thesis of

the author submitted at the university of Tsukuba [101.
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1. Preliminaries

1.1. Notations and Terminologies In Tork Geometry

For guidance on toric geometry, we refer the reader to Oda [14] and Fulton

[4].

Let TV be a free module over the ring of the rational integers Z of finiterank

n and M = Momz(N, Z) be the dual Z-module. Denote by Nr (resp. Mr) the

scalar extension of N (resp. M) by the fieldof the real numbers R. Let <*,*> :

M x N ―>･Z be the canonical bilinear form. We use the same notation <*, *> for

the natural scalar extension of the bilinear form on Mr x Nr.

A strongly convex rational polyhedral cone, or cone for short, a in Mr,

denote by C^njtf] the semigroup algebra Rmedf]M C ■xm- For a fan £in N, we

denote by V% the toric variety associated with £.

A cone a is said to be nonsingular if it is generated by a part of a basis of

N. If a cone a e £ is nonsingular, then the corresponding affine toric variety

Spec C[d-flM] is a nonsingular variety. Moreover, if every cone in a fan £ is

nonsingular, we say that £ is nonsingular. In this case, the corresponding toric

variety V^ is a nonsingular variety.

We say that a fan £is complete if |£|:= UCT62(7 = ^R- When £is complete,

the corresponding toric varieties V% is a complete variety.

A toric variety V-z contains an algebraic torus TV '■=Spec C[M] as an open

dense subset. This TN acts on V-z which is compatible with the multiplication of

Tn as a group variety.We have a natural one-to-one correspondence between the

orbits of Vz by the action of TN and the cones in £.Denote by orb (a) the orbit
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corresponding to a cone a in E. The closure orb(cr),denoted by Via), of orb(c)

in Fx is a 7#-invariant closed subset of V%. In particular,if a cone p e E is of

dimension one, the corresponding (TV-)invariant closed subset V(p) is a Weil

divisor and is denoted by Dp. For a cone a (resp. a fan E), <r(l)(resp. E(l))

denotes the set of one-dimensional faces of a (resp. one-dimensional cones of E).

For each p e <r(l)(or E(l)), n(/?) denotes the primitive integral generator of p.

Finally, we note that Z>o, Q>o, ^>o denotes the set of non-negative

integers, the set of non-negative rational numbers, the set of non-negative real

numbers, respectively.

1.2. Resolution of Singularities by Means of Toric Geometry

Let

f = f(zo,zi Zr) =

triQ,m＼,...,mreZ>o

a . zmo~m＼ .. .zmr
um0,mi,...,mr ^Q ^＼ ^r

be a polynomial over the complex number field C in variables zo,zj,...,zr

such that /(0) = 0 and that the hypersurface X = V(/) c Cr+l defined by /

has an isolated singular point at the origin O ― 0 = (0,0,..., 0) of the (r + 1)-

dimensional affine space Cr+1.

Let TV ^ Zr+l. Put e,-:= (0,...,0,1,0,..., 0) (the entries equal to 0 other

than the z-th entry which equals to 1) for i = 0,l,...,r under the identifi-

cation of N with Zr+1. Then {e/};r=0 forms a basis of N. Let I be a fan

consisting of the faces of the cone Yli=o^>oei- Then the corresponding toric

variety V^ is the (r + 1)-dimensional affine space Cr+l and the affine coordinate

ring is

A<=o

R>o ･ e,- 0 C-xm = C[z0,zl,...,zr]

meMn(fi>o)'+l

where M = Hom.z(N,Z). For every m = (mo,mi,... ,mr) e (Z>0)r+1, denote

z °z 1■■■z r (resp. amo,mu...,mr)by zm (resp. am). Then the isomorphism just

above is given by

0 C -xm ^ C[zo,zu... ,zr], am-Xm^am- zm.

meMn{R>0)r+l

We define T+(f) to be the convex hull of the union of the subset m +

(J?>o)r+1 of J?r+1 for m such that am =£0 and call it the Newton diagram of

/. The Newton boundary T(f) of / is the union of the compact faces of
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r+(/). We associate a polynomial fy{z) = J2meynMam ･ %m with each face y

of F(/). We say that / is nondegenerate on y if dfy/dzQ = ･･･ = dfy/dzr = 0 has

no solution in (C*)r+ . We say that / is nondegenerate if fy is nondegenerate

on any face y of T{f). We also say that a hypersurface singularity is non-

degenerate if its defining polynomial is nondegenerate. In the following of

this paper, we always assume that the defining polynomials of singularitiesare

nondegenerate.

Since Mr and Nr are dual to each other as vector spaces over R, an element

n = (rto,n＼,...,nr)e Nr gives rise to a family of hyperplanes in Mr = Rr+l with

the common ratio (≪o,≪i,-･-,≪/■)･For n e ND (j?>o)r+1, define

/(n):= min{<m, n> |m e T+(f)}.

For a face y of F+(/), define

y* := {n e (i?>o)r+ <= Nr ＼<n, m> = /(n) for any mey}.

Then y* is a cone in iVj?.The set of cones

s(/):={y*|y-<r+(/)}

forms a fan, which we callthe dual fan of T+(f). Note that S(/) is a subdivision

of E, that is, |S(/)| = |H| and for every cone a' e £(/), there existsa cone a e X

such that a' <= cr.

Take a nonsingular subdivision S(/) of S(/), which is a finitesubdivision of

S(/) consisting of nonsingular cones. There exists at least one nonsingular sub-

division Z(/) of £(/)―see Kempf, et al [11].Then since £(/) is a subdivision of

E, £(/) is also a subdivision of S. Hence we have a map of fans

^:(iv,l:(/))^(7v,2:(/))-,(^,i:).

Let n : V^j-,―>Fj = Cr+l be the equivariant morphism associated with (p.This

is a proper, birational morphism since £(/) is a finite subdivision of E, and

sometimes called the equivariant blow-up associated with the subdivision E(/) of

E. The following is a well-known fact:

Proposition 1.1 (Varchenko [16]). If(X,O) is nondegenerate, the restriction

n:X―>XofUonXisa proper, birational morphism and a good resolution of the

singularity(X, O).

The fiberE :=n~l(0) = XC＼Tl~l(O)of the originOelis calledthe excep-

tinnnlKptof Y
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1.3. The Laurent Polynomial Associated with the Pair (fy,y)

In §1.2, we defined a polynomial fy ― Ylme(z>
)r+1ttm'

^ ^or eac^ ^*ace^ °^

the Newton boundary T(f) to define the notion of nondegeneracy of the defining

polynomial / of hypersurface isolated singularity (X,x) = (V(/),0).

To describe the exceptional sets,it is useful to define a slightlydifferentpair

(fL,My) from the pair (fv,y) as follows:

Definition 1.2. For a face y of T(f), define M7 to be the free Z-module

generated by the vectors y D M - m0 and define the Laurent polynomial /yL, that

is an element of C[My] = cmeAf C'Zm5 t0 be

V^ n
■vm~~m°/ ^ "m
･/

)
meyflM

where mo is an element of yf＼M.

Next, we recall a way to construct a complete hypersurface in a complete

toric variety from a Laurent polynomial canonically.

Let M be a lattice of rank n and let Mr be its scalar extension M Rz R

by the real number field R. Let A be an ^-dimensional integral polyhedron in

Mr. We associate a complete fan S(A) in N := ＼Lomz(M,Z) and a toric variety

^a := ^z(A) with A as follows:

For every /-dimensional face 0 c A, we define the convex ^-dimensional cone

<t(0) a Mr consisting all vectors A(p ―p'), where X e R>o, p e A, p'e0. Let

<t(0) a Nr = Homz(M, Z) RZR be the (n ―/)-dimensional cone dual to <r(0).

Then, the set E(A) of all cones <r(0), where 0 runs over all faces of A, forms a

complete fan. We represent Pa the toric variety V^/s) associated with E(A) (see

Batyrev [1],Proposition 2.1.1).

Let / = J2meMcm ･/m be a Laurent polynomial, i.e.,an element of C[M] =
c

meAf ^ 'Xm- Tn^s / defines a hypersurface V(/) in TN = Spec C[M], denoted

by Z{f,M).

On the other hand, if the Newton polyhedron A = A(/) of /, which is the

convex hull of the set of points m with cm # 0 in Mr, is of dimension n, we have

a complete toric variety Pa which contains TN as an open dense subset. Here,

denote by Z(f,M) the closure of Z(f,M) in IV

As a resultof the above discussion,to the pair(fyL,My), we can attach a

torichypersurfaceZ(/yL,My) in Spec C[My] and a complete torichypersurface

Z{fyL,My) in Py-mo, where the Newton polyhedron A(/L) is just y ―mo in

My.
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1.4. Purely Elliptic Singularitiesand the Essential Divisors

Here we recall the definition of purely ellipticsingularitiesand that of the

essential divisors of good resolutions of them.

Definition 1.3 (Watanabe [17]). Let (X,x) be a normal isolated Gorenstein

singularity of dimension r > 2. Let n : X ―≫X be a good resolution of (X,x).

Denote the reduced exceptional divisor n~l(x)Tedby E. Then, we define

Sm(X,x) := dime F(X＼{x},&(mK))/L2/m(X＼{x})

= dime T{X＼E, &{mK))/Y{X, (9{mK + (m - ＼)E))

for each m e N.

Definition 1.4 (Watanabe [18]). A normal isolated Gorenstein singularityis

called a purely ellipticsingularityif Sm(X,x) = 1 for all ne N.

Definition 1.5 (Ishii [6]). For a good resolution n : X ―>X of a normal

isolated Gorenstein singularity (X,x), we can write

Ky = n*Kx + ＼＼miEi ~
yZ

mJEJ
iel jeJ

where m,- > 0 for i e /, rrij> 0 for j e J and Et (i e I), Ej (j e /) are irreducible

components of E = n~l(x)red.

The divisor Ej := J2jejmjEj '1Scalled the essential divisor.

Proposition 1.6 (Ishii[6]). Under the assumption of Definition 1.5,(X,x) is

a purely ellipticsingularityif and only if Ej is a reduced divisor.

1.5. Hypersurface Purely EllipticSingularities;Watanabe's Criterion

Let (X, O) = (V(/),0) be ao isolated singularity of dimension r > 2 defined

by a nondegenerate polynomial / = J2me(z y+＼am- xm e C[zq,z＼,...,zr].

Let !+(/) be the Newton diagram of/, let T(/) be the Newton boundary,

let F|(/) be the dual decomposition of the positive quadrant (R>o)r+l and let

£(/) be the dual fan. Take a nonsingular subdivision £(/) of £(/). Let II :

^(/) "^ ^s = ^""+1 ^e tne equivariant blow-up associated with £(/),let X be the

proper transform of X with respect to O and let E = TL~l(O)Kd.

Proposition 1.7 (Ishii [7]). Under the assumption above,
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A> = n*{Kx) + J2 ≪1MP)>
~

1 - l(n(p)))*>p＼x>

pe±(f)(l)＼Z(l)

where 1 = (1,1,...,1)e M, l(n(p))= min{<m, n(^)>|m e T+(f)} and Dp is the

invariantdivisoron V^,^ associatedwith p.

We have the following criterion whether (X, O) ―(V(/),0) is a purely

ellipticsingularity.

Proposition 1.8 (Watanabe [18]). Under the condition that (X,O) =

(V(/),0) is nondegenerate, (X,O) is a purely ellipticsingularityif and only if

lerm.

By this proposition, there exists a unique face of T(/) containing 1 in its

relativeinterior if (X,O) = (V(/),0) is a purely ellipticsingularity.

Definition 1.9. Let T(f) to be the Newton boundary of a hypersurface

purely ellipticsingularity(X, O) = (V(/),0). We call the face of T(f) containing

1 e M in its relative interior the fundamental face of T(/) and express it as

yx{f), or simply yt. And then, we call the polynomial fMf) = Y,meyi(f)nMam ･ *m

the fundamental part of the defining polynomial /.

2 Description of the Essential Divisors of Hypersurface Purely Elliptic

Singularities

2.1. The Essential Cone

At the beginning of this section, we introduce a notion due to Ishii which is

useful to study hypersurface singularities.

Let (X, O) = (V(/),0) be a hypersurface isolated singularity defined by a

nondegenerate polynomial / and £(/) be a nonsingular subdivision for the dual

fan !(/).

Definition 2.1 (Ishii [7]). For a polynomial / e C[zo,zi,... ,zr],define

d(/) := {n e (R>Q)r+1 c JV* |/(n)- <l,n> > 0}.

CAf) is called the essential cone.

Remark 2.2. We note some properties of the essential cone C＼{f).If the

Newton diagram !"+(/) contains 1 e M in its interior, C＼{f) = {O}. If I~+(/)
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does not contain 1 in its interior, that is, the boundary of T+(/) or T+(f) itself

does not contain 1, then C＼(f) is the cone spanned by the one-dimensional cones

7]*,y|,･･･ ,y*, which are dual to r-dimensional faces of Y+(zqZ＼ ■･■zr + /) con-

taining 1. See [7], Remark 2.3.

The relation between the essentialcone C＼{f) and the essentialdivisor Ej of

a toric resolution of a hypersurface isolated singularityis given by the following

proposition, which follows directly Proposition 1.7:

Proposition 2.3. Let Ej be the essential divisor of the resolution of the

singularity(X, O) given by a nonsingular subdivision£(/). Then

Ej = /J dp＼x

holds, where the sum runs over all the one-dimensional cones of £(/) contained by

C＼(f), but not contained by S.

When (X,0) is a hypersurface purely ellipticsingularity, that is, T+(/)

contains 1 in its boundary, the essential cone C＼{f) has a nice relationship with

the diagram q*(/) := ＼JneCl{f)y(n), where y(n) = {m e T+(f) |<m,n> = /(n)}.

Including non-purely-elliptic cases, the sum of the monomials whose indices lie

in Cj*(/) with the same coefficientsas in the defining polynomial / only affect

the algebraic-geometric structure of the support of the essential divisor.In case

(X, O) is a purely ellipticsingularity,C＼{f) and Cf(f) enjoy "duality". We state

it here more precisely:

Lemma 2.4. If(X,O) is a nondegenerate purely ellipticsingularity,C＼(f) is

a cone in the dual fan £(/).

Proof. If (X, O) is a nondegenerate purely ellipticsingularity,1 e M is

on the boundary of F+(/) by Watanabe's criterion:Proposition 1.8.Then the

essentialcone C＼(f)is just {n e (R>o)r+l <=NR |/(n)= <l,n>}. Define

y(Ci(/)):= n Kn)= n {mer+(/)|<m,n> = /(n)}.

neCi(/) neC,(/)

Then y(Ci(/)) is a face of r+(/) and Ct{f) cy(Q(/))* holds- since '(n)=

<l,n> for each neQ(/) and leF+(/), y(Ci(/)) contains 1. Because yt(f)

is the minimum face of T+(f) containingleM, yAf) <=y(Ci(/)). Therefore,is the minimum face of T+(f) containing

Ci(/)<=yi(/y.
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Next, note that, by definition,

yi(/)* = {n e (J?>0)r+1 c NR | <m,n> = /(n) for any m e yt(f)}.

Since leyt(f), <l,n> = /(n) holds for any ney^f)*. Hence yY{f)* c Q(/).

Thus, C1(f)=y1(f)＼ D

The next corollary follows the lemma just above and the relationship between

the dual fan and the Newton diagram:

Corollary 2.5. There is a natural one-to-one, order reversing, dual corre-

spondence between the non-zero faces of C＼(/) and the faces of C^ (/) containing

of 1 as follows: A face a of C＼{f) corresponds to the face y(a) := f]mEGy(n).

Conversely, a face y of Cj*(/) containing 1 corresponds to the face a(y) := y*,

where dim a + dim y{a) = dim y + dim a(y) = r + 1 hold.

In particular, the essential cone C＼{f) itselfcorresponds to the fundamental

face yAf).

Consequently, for a nondegenerate hypersurface purely ellipticsingularity

(X,O), every nonsingular subdivision£(/) of the dual fan £(/) gives a non-

singularsubdivisionof Ci(f):

Definition 2.6. Let (X, O) = (V(/),0) be a nondegenerate purely elliptic

singularity. For a nonsingular subdivision £(/) of the dual fan £(/), define the fan

Cl{f):={ae±(f)＼o^Cl{f)}.

In the following part of this section, we will see that the "duality" between

C＼(/) and Cj*(/) simplifies algebraic-geometric description of the essential divisors

of purely elliptic singularities (Theorem 2.10). But, we will restrict ourselves to

nondegenerate hypersurface purely elliptic singularities of type (0,/) (/> 1). We

need nondegeneracy of singularities because toric method does not work well

without this assumption as we saw before. We also need the assumption that

the dimension of the fundamental face y＼{f) is greater than or equal to two to

keep the direct relation of the one-dimensional cones of C＼(/) and the irreducible

components of Ej (Proposition 2.7, Theorem 2.14).

2.2. The Stratiicatlon on the Essential Divisor and the Dual Essential

Diagram

Each toric variety is stratified by its orbits by the action of algebraic torus, so

that every closed subset of a toric variety is also stratified. Let (X, O) = (V(/),0)
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be a hypersurface isolated singularity and £(/) be a nonsingular subdivision of

£(/). Then, we can define a natural stratification on the exceptional set E or the

essential divisor Ej using the stratification of the toric variety V±,j-y

To every cone a in £(/), we can attach an orbit orb(<r) of V^,,,, which is the

orbit of the smallest dimension in the affine open subset Spec C[av DM]. Define

o
E(a) := £T!orb(<7). Recall that V(d) denotes the closure of orb(<r) in V±,n and

put E(a) :― EV＼ V{a). Note that E{a) is the closure of E(d) in E. A stratum E{a)

may be the empty set or may not be connected in general.

Let (X, O) be a nondegenerate hypersurface purely elliptic singularity. The

disjoint union of orbits for all the cones a in C＼{f) covers almost all Ej. Indeed,

define

Ej := U ^)'

<JeC,(/)＼{0}

where O is the origin of N. Then, the closure of Ej is just Ej and we have

Ej = U E(a).

aeCi(f)＼{0}

Therefore, it is sufficient for us to investigate the strata and their closures for the

~
o

cones in C＼(f). For a cone a in C＼(f), we will use the symbol Ej{6) (resp.

o
Ej{d)) for E(a) (resp. £{<&)).

For a cone <reS(/), we also define y{a) := C＼nedy(R), which is a face of

F+(/). Let a be a cone in C＼(f). Then the face y{a) contains the fundamental

face 7i(/). Hence, dim y(o) > dim yt(f) holds by Corollary 2.5. Then by Oka

[15], Lemma 4.7, we have the following in case dimy^/) > 2:

Proposition 2.7. If (X, O) is nondegenerate and the dimension of the fun-

damental face 7i(/) is greater than or equals to two, then for any cone a in C＼{f),
o

the closure Ej(a) of the stratum Ej(o) is an irreducible nonsingular variety of

complex dimension r ― dim a. Especially, it is non-empty.

In particular, for a one-dimensional cone p in C＼{f), the corresponding divisor

Dp＼x is irreducible.

Now, we introduce a diagram to describe the essential divisor Ej of a reso-

lution of a hypersurface purely elliptic singularity (X, O) = (V(/),0) defined by a

nondegenerate polynomial /.

Definition 2.8. Let C＼{f) be the essential cone. For leM, we call the

intersection of C＼(f) and the hyperplane H＼ := {n e Nr |<l,n> = 1} in Nr the

dual essential diagram of (X.O), which is denoted by B＼(f).
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Remark 2.9. Here, we note the reason why we call B＼(f) the "dual"

essential diagram. If necessary, we may call Cj*(/) the "essential diagram"

because the sum of the terms of / whose indices are in the subset C{ (/) of

the Newton diagram T+(f) determines the algebraic-geometric structure of the

support of the essentialdivisor Ej. In case (X, O) is a purely ellipticsingularity,

as we mentioned before, the essentialcone C＼{f) can be regarded as the "dual"

of Cf(f). Although B＼(f) has the same information as C＼{f), B＼(f) is a little

more convenient for us to visualize the essential divisor as we will see below.

o
For a cone a in NR, define d(o) to be the intersection of a and H＼ and S(a)

to be the relativeinterior of S(a).

The dual essential diagram B＼(f) has a natural stratification:

Bi(f) = I]
<$V),

ffeC,(/)＼{0}

which we call the primitive stratificationof B＼{f).

A nonsingular subdivision E(/) of £(/) gives the dual essential diagram

another stratification:

w) = II m-

deCt{f)＼{O)

This stratificationcan be considered as a "subdivision" of the primitive strati-

fication of B＼{f) in the following meaning: For each a e C＼{f), there is a cone
o o

a C＼{f) such that S(&) ad (a). If two strata of the stratificationassociated with

a nonsingular subdivision are contained by the same stratum of the primitive

stratificationof B＼(f), we say that these two strata are primitively equivalent.

Obviously, each stratum of a stratificationof B＼{f) as above is non-empty

and connected.

Theorem 2.10. (i) There is a one-to-one correspondence between the strata of

o

Mf) = Hxec,(/)<M) and the strataof E'j= Hdecl{f)Ej{a) given by

S(a) <->Ej{d)

for every cone a in C＼(f)＼{O}.
o

If dim 7i(/)> 2, then the stratum Ej{6) is non-empty and connectedin the

Zariski topologyfor every a e C＼(/) and

o o
dinij?d(a) + dime Ej(d) = r ―1

holds.
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o
(ii) The stratum 8(6) corresponds to the stratum isomorphic to

Z(fyL{a),My{a))xc(Cr.

° °(iii)The closure 8(a) of 8(6) corresponds to the closure Ej(6) of Ej(6)

birational to

Z(fvL{a),MY{a))xcP"c.

In (ii),(iii),n = r ―(dim 6 + dim y(6)) + 1.

(iv) Strata of E'j are isomorphic to each other and the closure of them

are birationally equivalent if the corresponding strata of B＼{f) are primitively

equivalent.

o
Proof, (i) The operator 8 gives the one-to-one correspondence between the

non-zero cones in C＼{f) and the strata of B＼(f). And the operator Ej(*) gives

the one-to-one correspondence between the nonzero cones in C＼(f) and the

stratum of E'j. These two operations give the correspondence in the theorem.
o

When dimy1(/)>2, the non-emptiness and connectedness of Ej(6) follow
o

Proposition 2.7. By the same proposition, we have dime EA6) = r - dimjf 6.
o o o

Since dim^ 8(6) = dimj? 6 ―1, we obtain dimj? 8(a) + dime Ej(6) = r ― 1.

(ii)Let 6 e C＼(f) be a cone and vel(/) be an (r+ 1)-dimensional cone

such that a is a face of v. Then, C/p:= Spec C[(v)v DM] contains orb(a).

On Uy, the proper, birational morphism n : Uy ―>Cr+l is defined by the

homomorphism C[(*>0)r+1 C＼M] -> C[(v)v fiM], xm^/m. The proper trans-

form X of X is defined by the element / := Eme(R^y+lf)Ma 'Xm~m' G ct(i>)V

HM], where m^ is the unique vertex of T+(f) such that {m^} = P|-e-(1){m e Mr

<m, n(/))> = /(n(^))}. Here we note that m-f e y(o-).

In this proof, we denote the intersection V{a) D Uy simply by V(o).

Then p(<r):=
c.ne^n^^vrn^nM C

'^ forms an ideal defining V{a) on Uh

where (a)"1 = {m e Mj? | <m, n> = 0 for any n e <r}.On the other hand, C[(v)v D

(v)±nM]:=cme{irri{a),nMC-xm forms a group-algebra of (v)v fl((r)1HM.

Then C[(v)v HM] is the direct sum of p(<r)and C[(v)v n (ct)1n Af]. The natural

projection C[(v)v OM] -≫■C[(v)v D (ct)1HM], which is defined to be identity on

(v)v D (a)1 flM and zero on the complement, is a homomorphism of group-

algebras and gives rise to an isomorphism C[(v)v f)M]/p(a) ^ C[(v)v fl(a)1

DM}. Hence we can identify C[(v)v n(o-)xriM] with the affine coordinate ring

of V{a) and the morphism associated with the above projection with the closed

immersion V(a) ^-> Uv. Thus we can omit the terms of/:= Time(R>0)r+lkm a '
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^m-mt whose indices m - m| are not in (v)v H (a)±H M when we consider the

intersection X and F((t).

Take m e r+(/) D M such that <m ―ni|,n> = 0 for any n e a. Then <m, n> =

<nij,n> = /(n)since m^ e y(<r),so that m e y{o).In particular,m ―mj is contained

by the sublattice My^ = R(y(a) - mt) H M of (a)L f)M. Therefore, we conclude

that Ej{&) = Xf] V(a) is defined by fy{a):= Eme7(a)nMam ■Xm~m' e C[(v)v n(a)x

HM] on F(a), so that Ej{a) is defined by /^} = £me),((,)rw≪m-Z1"^ con-

sidered as an element of C[(6)LV＼M]. Indeed, the affine coordinate ring of the

open subset orb(<r) of V(a) is just CKd)1 C＼M].

Now note that (a)1 C＼M can be expressed as a direct sum My^ c M'. Let n

be the rank of M'. Then we have rk((a)±H M) = rk My^ + ≪,and hence n = r ―

(dim <t+ dim y(o-))+ 1. Thus we obtain ^(ct) = Z(/^, Af^) xc Spec C[M'] =

z(/>fe)>MK*))xacT-

At the end of the proof of (ii),we note that Z(fy^,My^) is stable if we

change m-j-into any element of y(a) 0 M.

(iii)Ej{a) and Z(fyL{a),My(a))xcPnc contain Ej{6)q and Z{fyL{6),My{d))xc

(C*)n as open dense subsets, respectively. By (ii),Ej{a) is isomorphic to

Z(fyL{^My{d)) xc(C*)", so that £,(<j)and ZC/^.M^)) xcF^ are birational

to each other.

(iv) The claim of (iv) follows directly(ii),(iii)of the theorem and Corollary

2.5. □

Remark 2.11. In case (X, O) is a nondegenerate purely ellipticsingularityof

type (0,0), some strata of E'j are the empty set or consist of several connected

components (see [15]).

o
Corollary 2.12. In particular,if a stratum S(a) isin the interiorof the dual

o
essential diagram B＼(f), it corresponds to the stratum Ej(d) isomorphic to

rjirL -it ＼ /^*＼dimCi(/)-dim<x

and the closure 8{a) corresponds to the closure Ej(6) birational to

7( fL M W pdimCi(/)-dim<7zyJn(f)iMyi(fVXcFc

In the above, to define MVl and fL as in Definition 1.2, we can always use 1 as ihq.

2.3. The Dual Complex of the EssentialDivisor

Let Y be a nonsingular algebraicvarietyand let E = X)[=iEi ^e a simple

normal crossingdivisoron Y.
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For E, we define the dual complex Fe of E as follows (cf.Ishii [8],Definition

7.4.7):

(0) We associate a vertex ･ for each irreducible component E,-;

(1) If a pair of irreducible components Et, Ej intersect,then we associate a

line segment between the vertices corresponding to E{, Ej;

(2) If three irreducible components E,, Ej, E^ intersect, we associate a tri-

angle (two-dimensional simplex) with the vertices corresponding to Et, E,-,E^＼

(i― 1) If i irreducible components intersect, then we associate an (i ―1)

simplex with the vertices corresponding to Ev.,EV,,...,EV.＼

The dual complex of a simple normal crossing divisoris a simplicialcomplex.

Since the essential divisor Ej of a good resolution of the singularity(X, O)

is a simple normal crossing divisor,we can associate the dual complex TEj with

Ej.

Next, for the nonsingular subdivision C＼{f) of the essential cone C＼(f)

induced by the nonsingular subdivision £(/) of £(/), we define a simplicial

complex:

Definition 2.13. We define A4 (£(/)) to be the set of all 6(6), where a runs

over all cones in Ci(f)＼{0}.

Indeed, ATi(£(/)) is a simplicial complex whose support is just the dual

essential diagram B＼(f) since the set of all cones in C＼(f) forms a nonsingular

fan.

Theorem 2.14. If the dimension of thefundamental face yl is greater than or

equals to two, there exists a natural isomorphism of simplicial complexes between

Kt(t(f)) and TEj.

Proof. By Proposition 2.7,if dim y＼{f)> 2, then there exists a one-to-one

correspondence between the set of all one-dimensional cones p in C＼(/) and the

set of all irreducible components of the essential divisor Ej as follows:

Hence we can define a bijection from the set of O-dimensional simplexes of

K＼(L{f)) to the set of O-dimensional simplexes of Tej by sending S(p) to

dp＼x-
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To verify the theorem, we have to show that the intersection of irreducible

components

where po,p{,... ,pn are one-dimensional cones contained by C＼{f), is not the

empty set if and only if p0 + p{ + ･･･ + pn is a cone in £(/).

This follows the facts that D^o D D^ PI --- PiD-Pnis not an empty set if and

only if p0 + px H ＼-pn is a cone in £(/) and that E(p0 + px -＼ h pn) =

V(Po + P＼+ hjojfll is an irreducible variety by Proposition 2.7 if pQ +

p＼H Vpn is a cone in C＼(f) when dim yt{f) > 2. □

Corollary 2.15. If the dimension of the fundamental face y1 is greater than

or equals to two, the dimension of the dual complex TEj equals to r ―dim yl(f),

and hence TE is isomorphic to a triangulation of (r ―dim yt)-dimensional ball.

3. Complete Tork Hypersurfaces Associated with the Fundamental Parts

For a purely ellipticsingularity(X,O) = (V(/),0) defined by a nondegen-

erate polynomial /, we can associate a pair (fyL,M7l) consisting a Laurent polyno-

mial f^ and a lattice M7l with the fundamental part fn of / and construct

canonically a complete torichypersurface Z{fyL,M7l) as in §1.3,which we callthe

complete torichypersurface associated with thefundamental part f in thissection.

In the following of this section,we willinvestigate the complete toric hyper-

surfaces associated with the fundamental parts of the defining polynomials for

hypersurface purely ellipticsingularitieswhose fundamental faces have the dimen-

sion greater than or equal to two.

In order to study toric hypersurfaces, we often investigate the Newton poly-

hedra of the defining Laurent polynomials. Similarly, studying the fundamental

faces of the Newton diagrams is useful to understand the complete toric hyper-

surfaces associated with the fundamental parts.

We will use the scalar extensions by the fieldof rational numbers Q instead

of R as we use before for the Z-modules M and N etc in order to mind that our

operations to vectors etc are closed in Q every time. Nevertheless, there are no

differences technically.

3.1. Quasi-^-Reflexive Polyhedra and Hyperplanes Passing Through Them

The following definitionsare weaker variations of the definition of reflexive

polyhedra due to Batyrev for w-dimensional convex polyhedra in Mq, which may

have non-integral points as its vertices.
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Definition 3.1 (cf.Batyrev [1],Definition 4.1.5). Let M be a free Z-module

of rank n and N be its dual Z-module. Let A be an ^-dimensional convex

polyhedron in Mq containing the zero 0 e M in its interior. Then the pair

(A, M) is said to be quasi-Q-reflexiveif every affine hyperplane generated by an

(n ―1)-dimensional face of A is of the form for an integral element leN:

{xeMe|<x,I> = -l}.

In the above, if we can take a primitive integral element I e N for every affine

hyperplane generated by an (n - 1)-dimensional face of A, the pair (A, M) is said

to be Q-reflexive.

If (A, M) is a quasi-^-reflexivepair (resp. g-reflexivepair),we callA a quasi-

Q-reflexive polyhedron (resp. Q-reflexivepolyhedron)

Remark 3.2. Note that a g-reflexive pair (A, M) is, of course, a quasi-19-

reflexivepair and that a quasi-^-reflexive pair (A, M) is (^-reflexiveif and only if

there existsan integral point on every affine hyperplane generated by an (n ― 1)-

dimensional face of A.

Remark 3.3. A g-reflexive pair (A, M) is a reflexive pair if and only if A

is integral.

Recall that for a subset K in Mq, the polar dual K* of K is defined by

jr:={yeiVe|<x,y>> -I for all xeK}.

If (A, M) is a reflexive pair, then its polar dual (A*,TV") is also a reflexive pair.

But for a ^-reflexive polyhedron which is not integral, its polar dual is not

O-reflexive.

We will show the following for later use:

Lemma 3.4. Let (A, M) be an n-dimensional quasi-Q-reflexivepair. Then A

contains no integral point in its interior except for the zero 0 e M.

Proof. Suppose that there existsan integralpoint in the interiorof A,

say xo, which is not the zero of Mq. Then there existsat least one (n ―1)-

dimensional face 3 of A through which the one-dimensiorfalcone generated by

xo passes.Let i| be the hyperplane of Mq spanned by 5. Then there exists

an integralvector I e TV such that

H = {xeMe|<x,I> = l}.
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Here, note that since xo is in the interior of A, there exists a positive rational

number a greater than 1 such that the point axo is on H. Hence, we have

<axo,I> = 1, so that <xo,I> # 0 and a = l/<xo,I> holds. Since both xo and 1 are

integral vectors, <xo,I> is an integer.If <Xo,l> > 1, then a < 1: a contradiction. If

<xo,I> = O, then <axo,l> = O: again a contradiction.

Thus A must have no integral point in its interior except for the zero. □

Given a g-reflexivepair (A, M), we can make new ^-reflexivepairs of

codimension 1:

Lemma 3.5. Let M, Mq be as before,respectively.Let H be a rational affine

hyperplane passing through the zero 0 e Mq. If A is a quasi-Q-reflexivepolyhedron,

then for AH := API if and MH := MHH, (A#,M//) is a quasi-Q-reflexive pair.

Proof. We can regard if as a g-vector subspace which contains M (1H as a

lattice.Since A is a convex polyhedron containing the zero c e Mq in itsinterior

and H passes through the zero, A# is an (n ―1)-dimensional convex polyhedron

in H containing the zero in its relativeinterior.

We have to show that the affine hyperplane generated by any {n ―2)-

dimensional face of AH is of the form {x e (Mh)q | <x,l'> = ―1} for some I' e

Nh := Honiz(Af//,Z). Now note that any (n ―2)-dimensional face of A# is the

intersection of some (n ― 1)-dimensional face of A and H. Hence let Sh = S flH

be an (n ―2)-dimensional face of AH which is the intersection of an (n― 1)-

dimensional face S of A and H. Since A is quasi-g-reflexive, there exists an

integral element 1 e N such that 5 = {x e A | <x,I> = ―1}. Let I' be the image of

I by the homomorphism i* : N ―>Nh '■=Hom(M//, Z), which is the dual map of

the inclusion i : M# -^ M. Then, obviously, Sh = {x e A f)H ＼<x,l'> = ―1}. Thus

we are done. □

Corollary 3.6. In the previous proposition, if Ah is integral, then (A/j,M#)

is a reflexivepair.

3.2. The £>-ReflexivePair Associated with the Fundamental Face

Let (X,O) = (V(/),0) be an r-dimensional purely ellipticsingularitydefined

by a nondegenerate polynomial / = Zlme(z>0)r+1dm 'zm- ^-eca^ tnat 7i = 7i(/)

denotes the unique face of T(f) containing 1 in its relative interior. In the

following, we assume that dim y, > 2.
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Now we assume that dime? y, = r - k. Then there existexactly k + 1 compact

faces 5^＼S[1) d[ ' of F(/) such that dim d^' = r for any i and

Let H(°＼H(l＼...,HW be the hyperplanes of MQ spanned by sf＼s[l＼...,d[k)

respectively.Then, we have

7id(^>0)r+1n (H
Let vo,vi,..., Vjtbe the primitive integral generators of the dual cones (S＼')*,

{Sf])＼ ..., (S^)*, respectively. Then we have HR = {meMQ＼ <m, v;->= <1, vf>}

for /= 0,1,... ,k. Here we put

A{i):=(Q^Y+ln(f]^A-t

On the other hand, we define

Nii):=N/＼Y1 &jnN)

＼/=o /

Then we have a natural homomorphism u^ : N^ ―>7V(i+1)for / = 0,1,.... k - 1.

Let M{']:= QA{i)- 1 and M≪ := M^f)M. Then M{'] and N$, further,MR

and N^ are dual to each other.

Moreover, define

L≪ :=
In

i=0

H^ - 1

for j = 0,1,...,/:.Then L^ is a hyperplanein Mq l＼where Mq l' = Mq. Note

that we have

A(/+i)=A(0nL(/+D

for / = 0,l,...,fc- 1.

Consequently, we obtain sequences of lattices:

#(0)^ jy(1)-> >･A^w, Mw <->M{k-l) ^ ... ^ M{0)

and a sequence of convex polyhedra:

(A(0),M(0))d(A(1),M(1))3 ･■･d(Aw,#) ^(yi-^My,).
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Here, we prepare a lemma to progress further:In general,let M be a free Z-

module of rank r + 1 and N be its dual Z-module.

Lemma 3.7. For an integral positive vector w e N, define M(w)

M - 1 and A(w) := {Q>0Y+l nif(w) - 1, where

H(w) := {m Me |<m, w> = <1, w>}.

Then (A(w),M(w)) is a Q-reflexive pair.

//■(w)n

Proof. Let w = (wo,wi,... ,hv) be a positive integral vector in N and let

d := Yli=owi- We assume that w is primitive, i.e.,gcd(wo,w>i,..., wr) = 1.

For this w, we define a lattice M'(w) by

M'(w)
-{

(ai,a2,...,ar) e Zr

r

IE

i=＼

Wi(oLi+ 1) = d mod wq >

and denote by A'(w) the convex hull of the set of pointsin M'(w

(Po :=(-l,-l,...,-l),Pl :=(-!+<//wi, -!,...,-!),...

)

fl

pr:=(-l,-l,...,-l+<//wr)}.

Then (A'(w),M'(w)) is a ^-reflexive simplex and the corresponding toric

variety PA>^ is a weighted projective space of weights w, namely P(w) =

P(wo,wi,...,wr).

We define a homomorphism /A' : M'(w) ―>･A# = Zr+l and its scalar extension

ia'
■
M'(w)Q -> Me ^ er+1, where

*A'(a) = ≪a,lo>,<a,li >,..., <a,lr≫,

lo = (-wi/wo,-W2/wo,...,-wr/wo) and I, = (0,... ,0,1,0,... ,0) for *=1,

2,..., r. Then iA> is injective and the image of it is contained in the r-dimensional

^-vector subspace defined by the equation X)/=o wimt = 0, which we can identify

with M(w)g, in particular, the image of M'(w) by iA> is contained in the sub-

lattice M(w) = {m e M＼ J2i=o w>mi = ^}- Moreover, we can easily show that iA>

is surjective. Therefore, iA> is an isomorphism of lattices.

The image of pf by iA> is (-1, -1,..., -1, <p/,l,->,-1,..., -1) = (-1,

―1,..., ―1, ―1 + d/w{, ―1,..., ―1) for each /. The fact that the convex hull of

the set of the points {u'(P/)} ^s Just A(w) completes the proof. □
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By Lemma 3.5 and the lemma just above, we know that (A^,M^)

(i = 0,1,...,k) are quasi-^-reflexive pairs. In fact, the last one (A^,M^) is a

g-reflexive pair. Although we need quasi-g-reflexivity for (A^,M^), but not

O-reflexivityin the following discussion, we state this fact as a proposition:

Proposition 3.8. (AW,MW) is a Q-reflexive pair.

Proof. As we saw just before, (A^,M^) is a quasi-^-reflexive pair.

Then, as we stated in Remark 3.2, we have to show that there exists an integral

point on the affine hyperplane generated by any face of codimension-one of

A{k).

Now let S be a face of codimension-one of A^. Then there is an integral

element I e N^ such that <5= Awn{xe(MW)e|<x,I) = l} and A{k) is con-

tained by the half-space {x e (M^)q | <x,I> < 1}. If there is no integral point on

the hyperplane {x e (M^)q ＼<x,l> =1}, the integral convex polyhedron yl ―1

must be contained by the half-space {x e (M^)q ＼<x,I> < 0} since y1 ―1 c A^,

which contradicts the fact that yl ―1 contains the zero 0 e M^ in itsinterior,for

dimAw =yx -1 = dim M^. D

By Lemma 3.4, we obtain the following proposition:

Proposition 3.9. The fundamental face yt of a hypersurface purely elliptic

singularity contains no integral point in its relativeinterior except for 1.

Theorem 3.10. Let Z = Z(f^,M7l) be the complete hypersurfacein PVl-i

associatedwith the fundamental part of f. Then the geometric genus of a non-

singularmodel of Z equals to one.

Proof. To begin with, we mention the result of Khovanskii [13] [12].

Lemma 3.11 (Khovanskii). Let f be a nondegenerate Laurent polynomial, A

be the Newton polyhedron of f and let Y be the hyper surface in (C*) im defined

by f. Then there exists a complete nonsingular toric varietyin which the closure Y

of Y is a compact nonsingular variety transverse to all the orbits of the toric

variety. And the geometric genus p(Y) =/jdimF>° j$ given by the formula:

p{?) = r(A),

where I*(A) is the number of the integral points in the interior of A.
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In Lemma 3.11,take /^ = ^2meyinMam ■xm~las / and yt - 1 as A, then we

have a nonsingular compactificationZ with the geometric genus p{Z) = /*(A).

By Proposition 3.9,we have /*(A)= 1. This completes the proof. □

33. Special Cases

At the end of this section, we add some comments on special cases where

yx(/) = A^ hold in the above discussion.The next proposition follows Corollary

3.6:

Proposition 3.12. If yt(f) ―l^k＼ then the pair (yl - l,M7l) is a reflexive

pair.

Remark 3.13. In general, the fundamental face yt{f) does not satisfies the

assumption in the above proposition. Indeed, for the polynomial

/ = z＼+ z＼z2 + z＼zi + z＼+ zf,

yx is contained by (Q>o) C＼H, where H = {m = (mo,mi,m2,m-s) e Q4 ＼

<m,(5,4,3,3)> = 15}, but y, # (Q>0)4 DH.

A complex normal irreducible ^-dimensional projective variety Y with only

Gorenstein canonical singularitiesis called a Calabi-Yau variety if it has trivial

canonical bundle and Hl(Y, (9y) = 0 for 0 < / < n. Due to Batyrev [1],Theorem

4.1.9, a ^-regular toric hypersurface Z(f,M) is birational to a Calabi-Yau

varietyif (A(/),M) is a reflexivepair. See [1],Definition 3.1.1 for the definition

of A-regular hypersurfaces.

The nondegeneracy of the defining polynomial of a purely ellipticsingularity

guarantees the (yl ―l)-regularity of fyL. Therefore, by Corollary 2.12, we obtain

the following statement:

Corollary 3.14. Ifyl= A^, then the closure Ej(o) of the stratum Ej(d) of
o

the essentialdivisorcorresponding to the stratum 8(a) of the dual essentialdiagram

B＼(/) of dimension dim B＼(/) is birational to a Calabi- Yau variety of dimension

(r-dimBi(/)-l).

o
Moreover, the closure Ej{a) of the stratum Ej(o) is birational to a ruled

o
variety over this Calabi-Yau varietyif 3(a) is contained in the interiorof the dual

essential diagram B＼(f).
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4. Three-DImensional Purely EllipticSingularitiescf Type (0,1)

4.1. The Type of a Purely EllipticSingularity

Ishii [6] classified the r-dimensionai purely ellipticsingularitiesusing the

mixed Hodge structures of the (r ―l)-th cohomology groups of the structure

sheaves of the essential divisors of good resolutions of them as below:

Let (X, x) be a purely ellipticsingularity of dimension r > 2 and let n :

X ―>■X be a good resolution of (X,x) with Ej the essential divisor. Then we

have

Proposition 4.1 (Ishii [6]).

r-＼

i=0

where H^(*) is the (i,j)-componentof Gr/T-Hm(*)

'l(^)

By the proposition just above, for a unique / (0 < i < r ― 1),

Hr-l(Ej,&j)=H?:＼(Ej)^C.

Definition 4.2 (Ishii). A purely elliptic singularity (X, x) is of type (0, /) if

Hr~l(Ej,(9Ej) consists of the (0,/)-Hodge component.

Watanabe [18] gave the relationbetween the type of a hypersurfacepurely

ellipticsingularityand the dimension of the fundamental face of the Newton

boundary of the definingequation:

Proposition 4.3 (Watamabe). Let (X, O) = (V(/),0) be an r-dimensional

purely ellipticsingularitydefined by a nondegenerate polynomial f. Then (X, O) is

of type (0, dim y* ―1) if dim y, > 2 and of type (0,0) // dim yt = 1 or 0.

4.2. The Dual Essential Diagram of a Three-Dimensional Hypersurface

Purely EllipticSingularity of Type (0,1) and the Stratiication on It

Three-dimensional hypersurface purely ellipticsingularitiesof type (0,1) have

two-dimensional fundamental faces and two-dimensional essentialcones by Propo-

sition 4.3. These have the simplest structures in hypersurface purely ellipticsin-
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gularities with the fundamental faces of dimension greater than or equal to two

and the non-trivial dual essential diagrams.

Let / g C[zo, z＼,Z2, Z3] be a nondegenerate polynomial defining a purely elliptic

singularity of type (0,1) at the origin O e C4. Then as we mentioned above, both

the dimension of the fundamental face yl and that of the essential cone C＼(/) are

two. Therefore, the dual essential diagram B＼{f) is a line segment.

Take a nonsingular subdivision S(/) of the dual fan £(/). In fact, we have

only to take a nonsingular subdivision C＼(/) of the essential cone C＼(/) to see

the essential divisor. Then the essential divisor Ej of the induced resolution of

singularities n : (X, E) ― (X, O) is just

E

/>eQ(/)(l)

Dp %

Let 7j and y＼ are three-dimensional faces of T+(f) such that

yiif) = ylt)^y[p)-

and let p^ and p^ be one-dimensional cones dual to the faces yf and y[ ,

respectively. Moreover, let p^ = po,p＼,...,ps, p^ = Ps+i be one-dimensional

cones in S(/) in the essential cone C＼(f), where in this order, one-dimensional

cones appear in C＼{f). Figure 1 shows the dual essentialdiagram of (X,O) and

the stratificationassociated with £(/).

By Theorem 2.10, we know that any one-dimensional stratum of B＼{f)

corresponds to a stratum of Ej isomorphic to

Z{fyLi,M7l)=Y{fyLi)^{C*)1.

o
The stratum d(pj) corresponds to the stratum Ej(p{) isomorphic to

Z(/yf,M7l)xcC*

for i = 1,2,...,s. And the stratum S(p^) (resp. S(p^)) corresponds to the

stratum EJ(p{-Ci>)(resp. Ej(p^>)) isomorphic to

Z(jiuMw) (resp. Z(/fw,Jlf (/n))
'i /i /i 'i
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4.3. The Dual Complex of the Essential Divisor

By Theorem 2.14, we can easilyread the structure of the dual complex TEj of

Ej from Figure 1.

On the other hand, as we saw before, Theorem 2.10 and Corollary 2.12 give

the structure of the closure of each stratum of the essential divisor up to

birational equivalence. In particular, the closure of the stratum of Ej corre-

sponding to a one-dimensional stratum of B＼(/) is a nonsingular algebraic curve

isomorphic to the toric hypersurface Z(fyL,M7l) associated with the fundamental

face yl, which is also a nonsingular algebraic curve, for two nonsingular curves

which are birational to each other are isomorphic to each other.

Moreover, by Theorem 3.10, the geometric genus of the toric hypersurface

associated with the fundamental face of a purely ellipticsingularityis one, so that

Z(fyL,M7l) is an ellipticcurve.

Summing up, we obtain the following final statements:

Theorem 4.4 (cf. Ishii [6], Theorem 4.6). The dual complex TEj of the

essential divisor Ej of the singularity(X,O) = (V(/),0) is of dimension one.

Dm＼x = Ej(pW) (resp. D w|^ = Ej(pW)) is birational to

Z(jluMw) (resp. Z(/f>hMw))

and for i = 1,2, ...,s, Dpj＼x= Ej{Pi) ^ birational to the ellipticruled surface:

The intersection of every two irreducible components adjacent to each other

(Dp-＼x)^(Dp-+l＼x)= Ej(pj + pj+l) is isomorphic to a nonsingular ellipticcurve
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