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THE CAUCHY PROBLEM FOR WEAKLY HYPERBOLIC
EQUATIONS OF SECOND ORDER

By

Haruhisa ISHIDA

§1. Introduction

In this article we shall study the problem of local existence of C® solutions
to the following semilinear Cauchy problem on [0, T] x R"(T > 0)

L(t,x,0,,0x)u(t,x) = f(t,x,u), (1.1)
u(0,x) = up(x), u, (0, x) = u(x), (1.2)
where

n

L(t,x,0,04) = 6[2 —a (1) Z ajk{a()(x)axjaxk + (aX;‘lO(x))a)Ck}
Jok=1

- ij(& x)0x, — ¢(t,x) — d(t,x)é,,
=1

=07 — a*(t,x,0) — b(1,x,0,) — (1, x) — d(1,x)é,.

Throughout the present article we assume that 0 < C, < ay(x) € B*(R"), ¢(¢) =
o k=1ax&ié 20 (ap is a real constant, ay =ay) for all ¢€R" and that
0 <ai(r) e C*([0, T]) satisfies the condition below:

N = card{[p,q] < [0, T);a}([p,q)) = {0},a{(p — £)a] (g + ) < 0(0 < £ < 1)}
< 00, (1.3)

where card X means the cardinality of a set X, that is, the number N of the
connected components of the sign-changing zero-set of a] on [0,7] is finite.
Moreover we impose that b;,c,d, f € B (with f([0,T],R",0) = {0}) and that
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there is some constant 4, > 0 such that

|5f§b(f, xvé)lz < Aa(a(t’ X,f) + |6,a(l, xvé)l) (1-4)

for every a € Z” and (1,x,¢&) € [0, T] x R x Rf, where a(t,x,{) = ap(x)ay (1)q(&)
(> 0) (refer to K. Kajitani [7] for a more general condition on lower order terms;
see also K. Kajitani-S. Wakabayashi [8]).

Then we obtain the following result.

TueoreMm 1.1. For any initial data wy,uy € C°(R") there exists a small
constant (T =) Ty >0 such that the Cauchy problem (1.1), (1.2) has a unique
solution u(t,x) e C*([0, To] x RY).

When ao(x) is a constant and ay (j,k =1,...,n) are real-analytic in 7,
Theorem 1.1 is proved in P. D’Ancona [4]. He solved the corresponding line-
arized Cauchy problem according to N. Orru [11] and did the semilinear problem
by applying the implicit function theorem of Nash and Moser (see R. S.
Hamilton [5]). In our strategy we shall use pseudo-differential operators to handle
the linearized problem and employ the successive approximation method to solve
the semilinear problem (1.1), (1.2). Then the corresponding linear problem to
(1.1), (1.2) is stated in the following Cauchy problem on [0, 7] x Ry

L(t,x,0;,0x)u(t,x) = f(t,x), (1.5)
u(0,x) = uo(x),u,(0,x) = uy(x). (1.6)

As to the linear problem (1.5), (1.6) the next existence and uniqueness theorem 1s
valid.

TueoreM 1.2. Suppose that (1.3) and (1.4) hold. Let the initial data uo(x),
ui(x) belong 1o C*(R") and f(t,x) € C*([0,T] x R}). Then the Cauchy problem
(1.5), (1.6) admits a solution u(t,x) € C*([0, T| x RY). In particular, if suppuo and
suppu; are contained in the open ball B(r) = {x € R";|x| < r} and if supp (1, )
lies in the ball B(r+ tA(T)) for every te[0,T), then the unique solution u(t,x)
enjoys the finite propagation speed property with speed for t € [0,T] not greater
than A(T), where

MT) = sup [l (ajxao(x)ar ())Il;
(t,x) e [0, T|xR?

so that suppu(t, -) is included in the ball B(r+ ti(T)). Further the following
estimate is established: for any s > 0 and t € [0, T] there exist some constants h > 0
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and C = C(h) > 0 such that
le” (2, x, D) u(, ')||)2'{“(Rf) + e (1, x, D) " u(, ')”f{S(R;')

< el e (C”gyA(O»X, Dx)_1u0||fis+1(kg) +[1e”(0, x, Dx)—lulll%{:(R;‘)

+ [ e D st ~>||§,S(R;>dr), (17)

where c(t) is a nonnegative continuous function dependent on the coefficients
030 axao(x)an(1), OL;(1,%), Fe(t,x), 0vd(t,x) (o] <318/ <2,16] <1) and 7,
g > 0 which depend only on afc‘@fajkao(x)al(t) (lef <2, =0,1), while

\lovale, %, ) + (log ())°
A(t’x’é)hjo a(t, x,&) + (log gx(¢))* “

+ (Ao + &0 log gs(&))t — Mlog g,(¢), (1.8)
an(&) =h+q(&) (h>1),

(M > 0 is taken large enough, independent of h, as A(t,x,&) < 0 for all (t,x,¢) €
[0,T] x Ri"i) and e"(t, x, D,,{)f1 denotes the inverse of the pseudo-differential
operator e"(t,x,Dy) with symbol e?"™:%.4)),

We shall perform the prbof of Theorem 1.2 via the approximation to the
equation (1.5) by strictly hyperbolic equations because the estimate (1.7) for the
equation (1.5) after replacing the coefficients (ajcao(x)a;(r)) of the principle part
by (ajrao(x)ai(t)) + 204 (e > 0,54 is Kronecker’s delta) remains valid. Thus our
main task is to lead the estimate (1.7). To do so we shall transform u(z,x) into
v(t, x) with u(z, x) = (1, x, Dx)v(t, x) and take advantage of the energy function

E(t) = [[(2: + pAd(t, %, D) + Ri (8, %, D))oty ) 3rocary
+ (@ (1, x, Dy)o(t, -), vt Nasrny + [ (1og ga(Dx))o(t, ')Hi"(R;‘)’
where R;(t,x,D,) is given by
Ri(t,x,Dy) = e™(t,x,D,) ™" 0 8,"(t,x, D) — yA(t, x, Dy).

Then we shall get the energy inequality
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B0 < C(T){ E0) + [ e ex D e e

which implies the estimate (1.7).

We remark that the same conclusion as Theorem 1.2 generally fails to hold
for nonnegative a(t) € C*([0,T]) without any restrictive condition (see F.
Colombini-S. Spagnolo [3] or S. Tarama [12]).

§2. Preliminaries

In this section we shall observe the existence of e”(¢, x, DX)_l and mention
some propositions adopting in the subsequent sections.

Lemma 2.1, (i) [0ga0(x)| < Ciao(x) (j=1,...,n).
(i) ((1.7.2) in O. A. Oleinik-E. V. Radkevi¢ [10]) If p(x) € C*(R) is non-
negative, then

|6xp(x)|* < 2p(x) sup |02 p(x)-
(iii) 0z a(t,x, )| < Cv/a(t,x,&) (j=1,...,n).
(iv) |Dya(t,x,&)| < CGia(t,x,&) (j=1,...,n).
(V) 10g,8e,a(t,x, &) < Cy (jik=1,...,n).
(vi) | Dy, Dya(t,x,&)| < Csa(t,x,&) (j,k=1,...,n).
(vi)) [0gb(t,x,&)| < Cs (j=1,...,n).

The next proposition describes basic properties about A(t,x,¢).

LeMMA 2.2. Let <&y = /h+ & (h>1).
(i)

|(7ng/\(1, x,&)|
Co,0logga(&), if |l +18 =0,

S ~
Cop{q(&) + (log gn(€)2Y VP A4(e, x, ), if |a + B >0,

where

ds+ 1.

i y/10sas, % )1 + log an(e))*
Ah(t’x’é)_Jo a(s, x,&) + (log ga(¢))*
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(i) A(t,x,&+7) sA(z,x,§)+{M+6(N+1)}10g<1+ﬁ;7h|(€—)> +1+Cy
(iil) A(r,x,8+ 1) < A(t,x,&) + A, x,1) +2(M + N + 1) log gu(n) + t + Ca.

(iv) Alt,x+,8) <A, x, &)+t + G

Proor. We first note that

A, x,E) +1 < Ap(t,x, ) < Ap(t,x,8) + 1+ 1, (2.1)
where
d |0sa(s, x, &)
Ap(t, x, &) = ds.
i6%c) La(S,X,f)+(logq;.(€))2 ’

It is easy to verify that
) log gx(¢), if |a| =0,
|0 log gn(&)| < {caq,,(g)('”/z), N
< Cugn(&)” " log gn ()

Let us show that A,(zf,x,&) < Ap(T,x,&) < Cloggn(&). For this purpose we
decompose [0, 7] as

[0, 7] ={te0,T);0a1(¢) = 0} U{te [0, T); 8,1 (1) < 0}
=[rf,s{1U -~ U, sh Uy, s U - Uy, sy-]

with N* + N~ < N + 1. Here r; <s <thl (J=1,...,N" = 1), rf <sg <r
(k=1,...,N™ —1) either r{ -—00r r; = 0 and either 53, = T or sy- = 7. Then

the following equality is valid:

N a(st, x, &) + (log ga(£))?
AW(T,x,&) =1 >
oI x4 Ogga(rj*,x £) + (log 4a(¢))?

+ log
j=

a(rj,xc + (log ga(¢))’
Fa(sy,x,&) + (log gn())?’

which deduces that A, (T, x,¢) < Clogg,(€). Using (i) and (ii) in Lemma 2.1, we
know that

(2.2)

02 DEAR(L, x, )| < Cap{q(é) + (log gun(€))*} 1D Ay(z, x, €).
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Thus (i) is established. Now, because of (i) in Lemma 2.1 we get
als,x,&+n) + (log ga(& + )’

< a(s,x,&) + 2(1log ga(€)* + 3 mdg als, x,) + a(s, x,n) + 2(log 241 (1))
j=1

< 2(a(s, x, &) + (loggn(€))?)

X 1+ CI”I C |77|
2
\/;(s, x,&) + (log ga(£))? a(s, x,¢) + (loggn(£))

2
< Colals, x,&) + (log gu(€)2) | 1+ i . 23)
Jals,x,¢) + (1oggx(&))*

Equivalently, the next inequality

1
a(s, x, &+ 1) + (loggn(& +1))°

2
Go ||
a(s,x, &) + (logqh(f))2 ( va(s,x,&+n) + (loggn(é —H?))Z)

holds. Here

1
a(s, x,& +n) + (log gn(& + 1))’

2
4Cy I 25
= a(s, x,&) + (log ga(€))? ( \/(s x,&) + (log ga(¢))’ ) )

if q(¢ +7) > ¢(£)/4. In the meantime, when ¢(¢ +#) < q(£)/4 and ¢(£) = 1, by
virtue of 1 < C|77|/(logqh(f)) ,for h=e

1
a(s,x,&+n) + (loggn(& + n)*

CovV/'C VIAY
= a(s,0.8) + (loggn(@)’ <1 +logqh<é>> 26)
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is valid. From (2.2), (2.3), (2.5) and (2.6) we obtain

Ah(ta X,é + ’7)

il )Wﬁa( 57, %, &) + (log gn(¢))’
loggn(&))  jta(r},x,&) + (log ga(¢))?

7] )W Noa(ry,x, &) + (logga(¢))’
loggn(€))  jtalsy,x,&) + (loggu(¢))*

<log CV* (1 +

+log C2V° (1 + (2.7)

Next, recall that Nt + N~ < N + 1, and check that for any fixed 2(N + 1) points
r;’,s}“;r,;,s,; (=1,...,N5k=1,...,N3N*+ N- =N+1) with rf <s' <
rios e <sg <1y, and

(UNEs) U (U5 51) = U™ st < 0.4

satisfying [r, ;] N [rj41,8541] = {8} = {rjs1} (r; <55 <rj41), then
N* a(st N- 2

logHa(j %, &) + (loggu(£)) H a(r;,x (10gqh(f))2
jora(r,x, &) + (log ga(&)) —ra(sy,x, &) + (loggu(&))

+

LAY dsa(s, x, &) (7 —dals,x,8)
= E ds + E
Jr; a(s, x, &) + (log gn(€))? ’ =) Jrf a(s, x,&) + (log ga(£))*

< An(t, x,8). (2.8)

J=1

So (2.7) and (2.8) imply

Ap(t,x, E+ 1) < Ap(t,x, &) +6(N + l)log(l +@|_Zh|(—f)) + 2(N + 1) log Cy.

Taking account of (2.1), we find that

An(t,x,E+1) < An(t,x, &) + 6(N+1)log(1 +E>’£(T)) +2(N+1)log Co+1 +2.

In addition, since

2
gn(&+1n) < qn(E) (1 + 2}2'&) ,

we gain (ii) via the analogous manner as (2.3)—(2.6). Further, we have for h > e
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a(s,x,& + 1) + (loggn(¢ + 1))’
< 2(a(s, x,) +a(s, x,7) + (log gu(&))* + (log ga(m))?)
< 2(a(s, x,&) + (log ga(&))*)(a(s, x,1) + (log ga(n))*) (2.9)
On the other hand, by substituting (,7) for (¢+7#,—#) in (2.9)

1 _ 2als, x,n) + (log gu(m)*)
a(s,x,&+7) + (loggu(€ +m)> ~  a(s,x,&) + (loggu(¢))?

is true. This time, by applying (2.9) and (2.10) instead of (2.3) and (2.4) to (2.2)

(2.10)

An(t,x, E+13) < Apt, x, &) + An(t, x, 1) + 2(N + 1) loggu(n) + 2(N + 1) log C;.

Hence we see (iii). Also, in aid of (2.2) and C~lap(x) < ap(x + y) < Cap(x) for
C =supap(x)/Cas(=1)

PMHExH,8) < CANTHN) M1 3E) < CAN+D M1 x,0)
is valid. Thanks to (2.1),
eA(t,x+y,«f) < C2<N+l)et+2€A(l’X'é),

which therefore means (iv). ]

Let K(1,x,D,) and K(t,x,D,) be the pseudo-differential operators with
symbols o(K)(t,x,&) = e?M%¢) and o(K)(1, x, &) = e 7"Ax¢) respectively, where
y > 0 will be determined later. Then the symbol of the product of K(t,x,D,) and
K(t,x,Dy) is given by

o(Ko K)(t,x,&) =1 —a(R)(t,x,¢),

where

o(R)(t,x,&) = Z J‘ Os- ” e B I{DEPA(L, x, & + ) e IR E)

=10
x {0%pA(t, x + Oy, &) }e? M50 dydndd
(dn = (2n) " dn). Here the above oscillatory integral of a symbol p(x, &) indicates
Os J J e”"p(y,n) dydn = liny J J e ¥y (ey, en)p(y,n) dydn

for ye #(R) x R;) such that x(0,0) =1 (see H. Kumano-go [9]).
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Let gx ey = ¢72(x, &) |dx|* + W 2(x,&)|dé|* be a Riemannian metric on R
Following L. Hérmander [6], we say that g is o-temperate if there exist positive
constants ¢, C, C and k such that

C7'9,6)(2,0) < Glaiy.eem (2:0) < Cgr (2, )
when g ¢)(,7) < c and such that
95)(2:0) < Cx ey (2.1 + 95,y (x = 3,8 = 1))

for all (x,¢), (1), (2,{) € R*", where the dual form g7, . (»,7) of g(uz)(¥,7) =
¢72(x,&)|y> + ¥ 2(x,&)|n|* is presented by

90y (3o = 2%, )|y + 2 (x, &)l

A positive real-valued function m(x, &) defined on R* is called g-continuous if
there are positive constants ¢ and C such that

C'm(x,&) <m(x+ y,&+1n) < Cm(x, &)

provided g(x¢)(y,n) <c. A g-continuous function m(x,¢) is said to be (g,g)-
temperate if there exist constants C > 0 and k € R such that

m(x+ y,&+1) < Cm(x,&)(1 + g7 5(3,m)"

for every (x,&), (y,7) € R*". For a positive function m(x,&) and g ¢), we de-
fine the symbol class S(m,g) of pseudo-differential operators by the set of all
p(x,&) € C*(R*) satisfying

108DE p(x,&)| < Cupm(x, E)g(x, &) PP (x, &)~

for (x,&) € R*. Then we have the next claims.

LemMma 2.3.

1
q(¢) + (log (<))

= |dx|* + ¥5?(&)lde)

7ldg)?

Jogwe) = ldx|* +

and
Go(x,e) = Ah(l,X,f)zg()(x,g)

are o-temperate.
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ProoF. In the same way as (2.3) and (2.7) we can show that

2 2 Il ’
lPO(é+’7) < CI\PO(é) 1 +\P0(f)

and
W) < 2¥5(m)(1 +q(& — 1) + (log2q1 (& —1))?)
< QY51+ 1€~ 1),
respectively, which follow that gy is o-temperate. As well, similarly to (2.3)
At %, +,6)" < CAw(t,x,6) (1 + 7))
< GA(6, 2,6 (1 + At %, E) 1),

Cln| C'sn!2>

An(t, x, & +n) < Au(t,x,E) (1 + o () + ‘Pg(é)

~ 2
< C4/~\h(l, X, f) (1 +AL‘}(,ZO"(%£—)I7”>

and g, < g¢ imply that g, is o-temperate by Proposition 18.5.6 in L. Hérmander

[6].
LemMa 2.4. o(K)(t,x,¢) and o(K)(t,x,&) are (a,§y)-temperate.

ProoF. Since o(K)(t,x,&) =o(K)(t,x,&)”", it suffices to observe that
a(K)(t,x,&) is (o,gy)-temperate. This is easily known from (2.3), (2.4), (i) and
(iv) in Lemma 2.2. O

PROPOSITION 2.5. (i) Let g = ¢~2(x, &)|dx|* + ¥ 2(x, &)|dE|* be a o-temperate
Riemannian metric. Suppose that H(x,&) = (%)~ < 1. Let mj(x,&) be (a,9)-
temperate weight functions and p;(x,&) € S(mj,g) (j=1,2). Then

O'(p] (X, DX)pZ(xa Dx))(xa ‘f)

— Y a2 py (x, E)HD2py(x, €)} € S(mumyHY, g), Yk = 0.
o<k

(ii) Let g = ¢ 2|dx|* + W 2|dé|* be a o-temperate Riemannian metric with
#¥ > 1 and p(x,&) € S(qn(&)™?,g) (me R,h = 1). Then for any s >0 there are
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some constant C = Cy,, > 0 and an integer £ = {(s,m) such that

1P Dl gy < Clpl™ KD 5wl g
for ue ¥(R"), where
Pl = max  sup [3zD{p(x, &)l g (&)
lel+IBl < £ (x,¢) e RIxR?
(iil) Let g = ¢72|dx|* + W 2|dE|* be a o-temperate Riemannian metric with
#¥ > 1 and p(x,&) € S(1,9). If p(x,Dx) is bijective in H*(R"), then the inverse
p(x,D,)"" of p(x, Dy) is also a pseudo-differential operator with symbol in S(1,g).

(i) and (ii) are special cases of Theorem 18.5.4 and Theorem 18.6.3 re-
spectively in L. Hérmander [6]. (iii) is cited from (g) of Theorem 3.1 in R. Beals
[1].

Now it follows from Lemmas 2.2-2.4 and (i) in Proposition 2.5 (with metric

g = gy, weight functions m; = o(K) and m, = o(K)) that o(R)(1,x,¢&) satisfies
102D2a(R)(1,%,£)| < Cup,, ¥y (&) An(t, x, &)+

for t€]0,T] and x,& € R". Therefore, by (ii) and (iii) in Proposition 2.5 (with
metric g = g,) for each s >0, taking # > 1 large enough, we see that

K(t,x,D,)"" = (I - R)™ o K(1,x,Dy) : H**(R") —» H*(R") (2.11)

exists as pseudo-differential operator, where / = #(y) > 0 is some real number
independent of 4 due to (i) in Lemma 2.2.

COROLLARY 2.6. Let pe S(m,go). Then

(i) o(K~'pK)(x,&) = p(x,&) +ri(p)(x,€)
with r (P) € S(\Pal(é)/\h(lv X, é)ma gO)

(i) (K~ pK)(x,) = plx, &) + 7{p, AH(x,E) + ra(p) (3, )
with ry(p) € S(¥52(&)Au(t, x,&)2m, Gy), where {p,A} is the Poisson bracket of p
and A, or

{p,A}(x, &) = i{(ac,p(x,é))(Dx,A(x, ¢)) = (05A(x, &))(Dxp(x, &)}
j=1

(iii) o(K~'pK)(x,&) = p(x,&) +p{p, A} (x, &) + py(x, &) +13(p)(x,E)
with ry(p) € S(¥5 (E)An(t, x,£)*m, Gy).

Finally we quote a fundamental fact on pseudo-differential operators to need
the proof of the estimate (1.7).
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PropPoSITION 2.7 (Theorem 18.6.8 in L. Hormander [6)). If p(x,{)e
S(‘I’é(é),go) is nonnegative, then there exists a constant Cy >0 such that

Re(p(x, Dx)u, u) ysgmy = — Csllull s (rr)

for ue #(R").

§3. Proof of Theorem 1.2

The crucial stage in the proof of Theorem 1.2 is to derive the energy estimate
(1.7). So we shall first devote ourselves to establishing (1.7).
Set u(t,x) = K(t,x,Dy)v(t,x). If we denote

Py(t,x, 61, Dy)o(t, x) = J IR E) p(y x5, E)i(1, &) dE,

(1,)(t, %, Dx)o(t, x) = J R Dy(1 &) dE,

then the following equality holds:
u,(t,x) = (0, + yA,)yA(t, x, 0y, Dy)v(t, x)
= (La) (&, x, Dx)oi(t, x) + (yA0),4 (2, %, Dx)o(t, X)
= (L,a) o [0:(t,x) + (I = R) ' o {(1_;a) 0 (YA, (8 %, Dx)v(t, x)}]
= K(t,x,D,)(0; + yA(t,x, D) + Ri (1, x, Dy))v(t, x), (3.1)
where
(I = R) " o (1_54) © (YA),7 (1, %, Dx) = yAd(2,X, Dx) + Ry (t,x, Dy).

It is read from an asymptotic expansion of the symbol a((1_,4) o (yA1),)(2, %, &)
that

G(Rl)(t7 X, f) = O(VA,(I, X,f)),
namely
|o(R)(1,%,8)] < CA(,x, &) ¥ (E)An(t, x,6)”. (3:2)

By w(t,x) = K(1, %, Dy)(8; + yAi(t, X, D) + Ri(1, %, Dx)) K(t,x,Dy) ' u(t, x)
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uu(t,x) = K(t,x, D) (0: + yAi(t, x, D) + Ry (1, x, D)) (¢, x)

I3

(3.3)

is also valid. From (3.1) and (3.3) the equation (1.5) is transformed as below:

(8 4+ yA, + R))*v = —K'a*Kv + iK 'bKv + K~ 'cKv

+ K 'dK(3;, +yA, + R))v+ K7 f.

(3.4)

For the sake of brevity we stand for d; =0, +yA, + Ry, @ = K 'a'K, b=
K~!'bK and so on. Then, by use of Corollary 2.6 the symbols of these pseudo-

differential operators are expanded in the following form:

a*(t,x,&) = al(1,%,&) + p{a", A} (1, x,€) + ab(1,x,&) + r3(a?) (1, x, &),
b(t, %, &) = b(t,%,&) + p{b, A} (1, %, &) + ra(b)(1, %, &),
é(t, x, &) = c(t,x) + ri(c)(¢, x, &),
d(t,x,¢) = d(t,x) + ri(d)(t, x, ),
where
jai(1,x, &)} < Clog ga(¢))?,
Ir3(@®) (8, x, €)1, Ira(B) (8, %, €)1, I (€) (8, %, €)], I (d) (1, %, )] < €.

Now we define the energy function
E(t) = [|10(t, - )izrsgm + (@ (8, %, Dx)o(t, ), 0(t, -)) rocany
+ | (log gn(Dx))o(t, -l ar)
for t e [0, T]. Differentiating E(¢), we obtain

%E(t) = 2Re(d70(1), 810(1)) s — 2Re((yA, + R1)010(d), 010(1)) s

+ ((8:a")v (1), v(2)) s + 2Re(@ v(2), 610(2)) 5y,
— 2Re((a" + (1og gu(Dx))*) (YA, + Ru)o(2), 0(2)) 1

— 2Re((log g4(Dx))010(1), (log gn(Dx))v(1)) -

(3.9)

And in view of (3.4)—(3.6) the first term of the right hand side in (3.9) can express
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Re(07v(1), 010(1)) ;5. = —Re(a*v(z), 610(1)) . — yRe({a*, A}o(2), 010(1)) .
~ Re(a3o(1), 10()) g — Re(rs(a)o(t), d10(1)
— Im(bv(1), 010(1) . — y Im({b, A}o(2), 010(2)) -
= Im(r(b)v(1), 010(1)) - + Re(cv(1), 0,0(1)) s
+ Re(do(t), 010() g + Re(K7 f(£),010(1)) o (3.10)

Henceforth we shall estimate the individual terms in the right hand side in
(3.9) with the help of (3.10). Then we shall make use of (i) in Lemma 2.2 without
notice. C(t), Ci(¢), Ca(7),...,Ci5(t) and C,(t) appeared below exhibit suitable
nonnegative continuous functions on [0, 7] independent of 4 and .

First of all, from (3.5)

—yRe({a*, AYo(2),010(t) g = — Y Re((af —al))o(t),y10()) .

1 ~—(1/2) #f
< En{jmax (1A, P abo(r)|1.

AT 0(0)12) + 221 AY 200001 }

where a‘f’(l, x,D,) and afj(t,x, D,) denote the pseudo-differential operators with
symbols {da*(1, x,&)H{Dx A2, x,&)} and {3 A2, x,&)H{Dxa*(1,x, &)} respec-
tively. Here, because 0 < a(t,x,&) € S(¥2(&), go), by Proposition 2.7

Re(@Aw(t),0(1)) e = ~ C(OA*0() 17,
so that

Re((a* + (log q;,)z)A,v(t), v(1)) g + Cs(2)]|(log qh)Atl/zv(t)Hf,s > 0. (3.11)

Now, paying attention to (iii) in Lemma 2.1, we find that
1Al e 7
< Gi(){Re((a" + (log 1)) A (1), v(1)) . + Cu(0)l| (log gn) Ay *u(0) 3}
Likewise, by virtue of (iv) in Lemma 2.1
1A, P ade(0)]l7

< Cy(t){Re((a* + (1og g5))Aw(2), v(1)) g + Co() | (log gn) AL *o(1) I3
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In addition, from [/i;,(t,x,f)/A,(t,x,éH < Cley

| A 200015 < myey C3(0)|A0r0(0)]|3.
Thus

— yRe({a*, A}o(1), 010(2)) 1. — mye5" C3 (DI A *810(2) 7.
< nCy(1){Re((a* + (log gs)*) Ao (1), v(1))
+ G0l (log gn) Ay o(0)l137.)-
Also, in the same manner as above, together with |A;/A,| < C/e
— Re(abo(z), 010(2))
<n?Cs(1)(r*e (| (log gs) (1) 177, + A *10(1)17.)
< n*Co(1) (75 1 log gn) A *v(0) 177 + 1A *010(0) 1)
— Re((log gi(D.))210(1), (log ga(Dy))o(1)) g
< C5(1)(e5 ' | log gn)*o(0) |7, + 1A *010(0)|52)
< Gs(0) (5| log an) A Po()) 13 + 1A *010() 7).
Moreover, by means of (3.5), (v) and (vi) in Lemma 2.1

—Re(r3(a")u(1), 810(1)) o < n*y8(Co () J0(0) |37 + |010(0)]| )
Since
|b(2,x,&)* < Ao(a(t, x, &) + |d.a(t, x, &)|)
< Ao(a(l’ X, é) + (logqh(é))z) + A0|ata(t7 X, é)l

< (Ao + 1)(a(t,x,) + (log ga()) ) Adlt, x,€)
from (1.4) and (1.8), we have

Ibo(O) |71+ < Cro(r){Re((a* + (log g)2)Aww(2), v(2)) s + Cs(£)]| log ga) AL

Hence
= Im(bo(0), 2100 — 5 10000
< Cuo(D){Re((a" + (log ga) ") Aww(1), v(2))

+ Co(8)]| (log gr) A o (0) | 3 }-

15

(3.12)

(3.13)

(3.14)

(3.15)

o(1)l|3:}-

(3.16)
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Besides, from (3.6)—(3.8) and (vii) in Lemma 2.1 it is evident that
—yIm({b, A}o(t), 310(2)) = < ny(Cur ()l|(log n))o(Dllzg: + 11910 (1) 1),
~Im(ra(B)u(2), 010(0)) s < n2* (Cra (Dl + 101011 70),
Re(20(1), 010(1)) = < Cua(D)([lo(0) |77« + 1910(0) 1),

Re(do(t), 810(1)) - < Cra(D)(lo(Dl- + 110(0) 1),

Re(K™'£(2), 010(1)) . < %(IIK”lf(t)llip + 10w (®) 1 7)-
By the way, due to (3.2), for any (y>) p >0

~Re((yA; + R1)r0(t), 010(1) o < (=7 + p)|1A2810()

— Re((@* + (log ga(Dx))*) (7A + R1)o(2),0(1)) g«
< (=7 + p){Re((@* + (log gs)*)Aw (1), v(2)) -
+ (1)l log gn) A Pe()l|:}-
While, owing to [d,a(t,x,&)| < (a+ (logga(¢))*)Au(t, x,€)
((2:a@)o(1), v(1)) s < Cus(t){Re((@* + (log s)*)A0(2), 0(1)) -

+ Cy(1) | (log gn) A *o(D) | 5.}

(3.17)
(3.18)
(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Therefore, on account of (3.11), it follows from (3.12)-(3.14), (3.16), (3.23) and

(3.24) that
2(nCa(2) + Cro()){Re((a* + (log gn) ) Aw(2), v(1))
+ Cy(0)l(log an) A o(0)]17:)

+ 2652 (n?y* Co(1) + Cs(0)) || (log gn(Dx)) AL *o(2) 157+

— 2Re((a* + (log gs(Dx))*) (A + R )o(2), v(1)) . + ((8:a*)o(8), 0(1)) s

< 2(=y + nCy(t) + n*y*eg? Co(t) + &5 2 Cs (1) + Cio(2) + Cis(2) + p)
x {Re((@* + (log ga) ) A (1), v(0)) . + Cs()l|(log an) A *o(D)171.}-

On the other hand, in aid of (3.12)-(3.14) and (3.22)

(3.25)
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2ny’ey" C3(1) + n2Co(t) + Go(2) 1A *010(0) 17
—2Re((yA: + Ry)010(2), 010(2)) gy
< 2(—y+me5 " C5(t) + n* Co(t) + Ga (1) + p)IA 010D (3.26)
So we choose
g =yt +1,

y= sup (nCs(t) + nCy(t) + n* Co(2) + Ca(t) + Cro(t) + Cis(t)) + p.
te[0,T]

Consequently, picking
c(t) = 2n*y8(Co(t) + 1) + 2n*p*(Cia(2) +1)
+2ny(Cu (1) + 1) +2(Cu3(1) + Cra(2)) + 2,
we get from (3.9)-(3.21) and (3.25)—(3.26)

d

2 B0 < cOE@ + 1K1 (1)

Further, by Gronwall’s inequality

E(1) < e 04 (E(O) + J; 1K~ £ ()% dr) (3.27)
holds. Here, record that
E(t) = o)1= + 0ol = 1K w57 + 1K ()17 (3.28)
from (3.1). Meanwhile, by a*(0,x, &) + (log gx(¢))? < CLEY2
E(0) < Gl K™ 'u(0)) 2001 + K ', (0)]| 2. (3.29)

Thus, summing up (3.27), (3.28) and (3.29), we have arrived at the desired (1.7).
Next we shall proceed to a standard verification of the existence of C*®
solution to the problem (1.5), (1.6). In advance, we may rewrite (1.7) like

t
(e, |z + e, |2 < Cy (uuouém + oy | Zeer + L ILf (2, Y eee dr),
(3.30)

where £ =/(y) >0 is the same in (2.11). Now let us consider the following
strictly hyperbolic Cauchy problem on [0, 7] x R}
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{L(t,x,0,,0x) — eAx}w(t,x) = f(t,x), (3.31)
w(0,x) = up(x), w(0,x) = uy(x), (3.32)

where ¢ >0 and A, = Zj 165 (Laplacian). Thanks to the theory of strictly
hyperbolic equations, we know that for any fe€ CO([O T] H), uye HF*!
and u; € H**’ there exists a unique solution u® e C°([0,T]; H***)n
Cl([0, T); H**?) to the problem (3.31), (3.32) (for instance, see Theorem 23.2.2
in L. Hormander [6]). Since the estimate (3.30) is still available for the problem

(3.31), (3.32), we adapt (3.30) to the sequence {#®} and so that

t
1O )12 + 14O < € h(uuonysw il + [ 17O dr)

with constant independent of ¢. Hence, by virtue of the diagonal argument we
can extract a subsequence of {#¥} such that

u® — wy weakly in L*([0,T]; H®),
u? — w, weakly in L*([0, T); H).

These imply wy(t,x) = d;w;(t,x) and w;(f,x) is just a unique solution of the
problem (1.5), (1.6) which belongs to C!([0, T]; H*). Of course, the solution
possesses the finite propagation property as described in the statement of
Theorem 1.2 (cf., in detail, Theorem 4.13 in J. Chazarain-A. Piriou [2]). The C*-
regularity of the solution also follows by differentiating the equation (1.5) in

m

" u(t, x) Z( >6J{a (1,x,0,) 4 b(t,x,0,) + c(t, x)} - 0" Tu(t, x)

Jj=0

+ Z( )6’d (t,x) - O™ Fu(t, x) + 8" £ (¢, x, u(t, x)).

§4. Proof of Theorem 1.1

From now we shall prove Theorem 1.1. Our method relies on a successive
approximation (precisely, the contraction mapping principle).

To begin with, taking the estimate (1.7) into account, we introduce the function
space X, as the completion of C°([0, T]; H™*(R"))N C'([0, T]; H™~'(R")) by
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its norm

ul,} = s[t.;pﬂ{uK(z,x, D) Mult, imgry + 1K (8% D) urlt, s oy}
te(0,

where £ = /(y) > 0 is the identical in (2.11). Under the guarantee of Theorem 1.2,
the approximate sequence {u()(¢,x)} to the solution u(t, x) of the problem (1.1),
(1.2) is yielded by the recursive procedure below:

L(t,x,0,,0x)u™ (1, x) = f(t,x,u""V(t,x)),
U™ (0,x) = uo(x), " (0, x) = uy (x)

for v=1,2,..., where u%(z,x) = 0. So we define the mapping ®: X! — X as

follows: for we X T, u= ®(w) is the solution of the linear problem

m>

L(t,x,0, 0x)u= f(t,x,w),
u((), X) = uO(x)a ut(Ov X) = ul(x)

which exists uniquely by Theorem 1.2 and which belongs to X,I for m large
enough, as can be seen later. Let BT (r) = {ue XT; ||l <r} for r > 1. Then our
chief task is to find some large r > 1 and small T = T(m,r) > 0 for sufficiently
large m > 1 such that

®:BI(r) — BI(r), (4.1)
1
1©() — (W)l < 5 Il — Wl (4.2)
At first it holds that X,I forms a Banach algebra with norm || - ||,: for m large

enough. Indeed, note from (iv) in Lemma 2.2 that
CMIKo(t, D ull g < IK(2, %, D )utll g < Cyl| Kot Dt gy, (4.3)

where Ko(t,D,) = e 7(1,0, D). Furthermore, when we put Pon = KopKy!' for
pE S(qh(f)s/z,go), the next inequality is valid for every integer k > O:

\7A
Pl < COIPIG A Ny mssei (44)
where [s] means the maximal integer not greater than a real number s and

5, YA ~ i
IpIFT™ = max - sup 1Ro0FDEp (&) laayan(€)"
=l ¢e
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In fact, it follows from Theorem 2.6 (1) of Chapter 2 in H. Kumano-go [9] that
Pialt,%,6) = Os- | [0 e e i iy, &) dydy.

Also, because of Taylor’s formula

pon(t, X, &) = ZD A8, E) + ri(t, x, &) = r(t,x, &) + (2, x, &),

jo| <k
where

Ao(8,E) = D;(eyA(t,O,f)—yA(t,o,G,,))l

1 ; ! =
re(t, x, &) = Z o Os- JJ e~V n=rALL 0, CHNHYA(1,0,£) 3y L D2p(x + 0y, &) dOdydn.

fal=k

Here, since |6§la(t,§)k < Co(,/;qh(é)'lm‘/2 by (i) of Lemma 2.2, we obtain, along
with the Sobolev embedding theorem

Dbtk Ol < Y Y (j,)|ag’Df+5p(x,5)||ag”aa<z,c>|

|dj<k o’ +a"=a

A) o
< G ”P“|§;1ﬂ|+k+,,qh(é) iz

Meanwhile, as to r(¢,x,&)

x(t,x,&) = Z&l Os- JJ —iy-n—yA(t,0,E+n)+yA(1,0,¢) ps(t,& +1)

|0]=k
j D2 p(x + 0y, &) dbdyd,

where ;(1,& + n7) = e?ME0EHN) DoemALO.CH1) - Then

0D (1, x,¢)

1 ~
= Z > ( ) J J [ e V(D ps(t,& + 1)) (0F DEY p(x + 0y, &)) dbdydn
o= o Jo

19]=Fk

1 o _ . / " -
= Z 5 Z (a/> Je yA(r,0,¢+r/)+xA(t,0,c)(ag us(t, &+ ﬂ))F((;+),5)(X,f,’7) dn
Toltal=a

ol=k

where
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ol
Flylyon) = | [emeg Do px + 67, ¢) o

1

) " d
= |, [eomag Dl p(y, ) Grao

rl
= | e™/0g"ay DBy (% , é) do

J0

and p(n,¢) stands for the Fourier image of p(x,¢) with respect to x. Thereby,
because yA <0, (iii) in Lemma 2.2 and

108 (1, + m)] < Car (€ + ) <172,
we can see that

|0 D2re(2,x,&)|

< CZ Z th é‘i"? k/2qh(’7)27(M+N+l) *;’At()r]l (/}+5 (X,é,f]”(’iﬂ

|0]=k o'+a’=a

3
—k/2 k/2 2y( N+1) —
< Ca(@)™2 D207 [ anln) Pauln) TN e MO ECL | di

-l
< Cqu(&) ™ Z Z L g () F/ A IENAD =91 01) g1 z

0¢' Di¥p (3 é) f dodn

é)vk/zzz th(”)k/2+zy(M+N+1) ~I60.D| %" DB, &) diy

(s,7A)
< Caqn(¢ ) “pH[k-z4y(M+N+1)+(n+l)/2]+1+k+|at|+|ﬂ|'

Now, employing (4.3) and (4.4) with s =0 and k = [m/2], we enjoy
1K (2, %, D)™ (u(t, - )w(t, )l gm
<N = Rl gm | K (8,3, D) (02, (1, )l g

< Comlt) Y 102{Ko(t, D) (u()w(0)}H 2

o <m
< Cm()([1Ko(t, Dx)u(t, M gmsiwsnsvyanss | Ko (&, D)Wt - )l g

+ ”120([, Dx)u(tv : )”H”‘ ”Ko(l, DX)W(I’ ’ )“H"'/2+I4Y(M+N+Ul+"+3)
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< Cy,m<t)||K0(ta Dx)u(t> ) )HH"’“f(O(t, DX)W(Z, ')”H’”
< Gy m(D)||K(t, %, D) ult, | gm|K (%, D)7 W(t, gm  (45)

as long as m>2[4y(M + N+ 1)] +2n+6.
Next let us look for some nonnegative continuous function ¥, ,,(z,5) on
[0, T] x R/, increasing in each argument, such that

1K (8, D)™ £ (2, -, ult, )l

< l»py,m(tv HK(I’ Xy DX)_lu(tv ')“H’"O)“K(t’ X, Dx)_lu(tr : )”H’" (46)

for sufficiently large m > mp with mg > [n/2] + 1. As can be known from the
observation below, we may seek the above-like function nﬁ%m with second ar-
gument ||K = u| ymzsisaeensnins instead of [|[K~'ul|ym, independent of m by use of
(4.5). However, it is not enough to derive the positivity of the lifespan of the
solution to (1.1), (1.2) in H*. For that aim we require an explicit representation
of 0%f(t,x,u(t,x)) (Ja| <m). In order to procure it, heeding that

of(t,x,y) of(t,x,y) oy
- + —_—
0x; y=u(t, x) Jy 0x;

(0 dut,x) @
(6_x]+ axj @)f(tv X, y)|y:u(!,x)’

Ox, [ (8, x,u(t, x)) =

y=u(t,x)

We express

. "0 du(tx) 9V
ftemute ) = [T (5 + 520 55) 05 D
j=1 /

= Z Cﬁj(t X)afa)], (trx’ y)ty:u(t,x)
|Bl+j=le

+ Y e xdkolf(nx,y)

1B+ < la—1
j=1, ., lal-1

y=u(t,x)"

Then the coefficients cl(q"f;(t, x) are determined by the following relations:

a e « ou(t,x) (q ) .
+ ) (t,x) = c}i )eH(z X) +-a(x—k)c;;}_l(t,x), if |Bl+j=|af+1,

act(s,
5 x)+c(a) @ x)+5 u(t,x) (@ (1),

(O(+Lk) _
(t X) - axk P—ex,j a ﬂ/ 1

€8.j

Lif |Bl+j<|¢ and if j=1,...,]a,



The Cauchy problem for weakly hyperbolic 23

where €k is the unit vector with k-th component 1 in R", ﬁo%(t x)=1 for |p| =

la, cOO(t x) =0 for |a| > 1, ™) (t,x) =0 for |§| =1 and for j=1,...,|e| + 1,

and cﬁy_l(t, x) =0 for |f] =|¢|+ 1. The above relations involve that we can
represent

L 030k f(t,x, )
%S (1, x,u(t, x)) = é; —
jol=1e| " =0 ' o)
il . Bk
) (@ ult,x) - (0fult ) 4.7)
Bt tB=h ﬁl. N .Bk.

1B1=/
Hence, combining (4.3) with (4.7), we can deduce that
1K (2,2, D)7 (8, - u(t, ))lgm < N = R ggm il |K (%, D) £ g

< Cn O = R Mlgpmosm Y, 1025 (8 x,01(t, %)) 2

la] < m+£

SGn) S 5 S5

J
o Smte 18 47=la| k=0 fi+-+h=p
1Bl=i

?

L

k
(aia/\lch(t> X, y)|y:u(t,x)) H agiu
i=1

where, on account of (2.11) and the Gagliardo-Nirenberg inequality:

k
[
i=1

1 6
<c®lolz=" Y 1%l
L2

ol=s

provided 01|+ -+ |dk| = j (see Lemma 3.10 of Chapter 13 in M. E. Taylor
(13])

k
(6;55}1,‘ (t; X, y)|y:u(l,x)) H 0£,u
i=1

L
S nk :
< Haxayf(tvxay)ly:u([,x)”L? Ha)ﬁc'iu R
i=1 L;
< GO u@)lif="> loiu(d)|l 2
lel=/
< Cou(O)IRo(t, D)) lmo Y, 1Ko(t, D)™ |2, e 10 (Ko (8, Diu(8)) -

le|l=j—¢



24 Haruhisa ISHIDA

Consequently
“K(t’ X, Dx)_lf(tv R u(t7 ))“H"’

< Cn®) Y (L4 1Kol gmo + - + | Kou() s ) | Ko () | -2

lo) < m+¢

m+£—1

< Coml®) D IRo(t, Dx)u(®)l 1w | Ko (2, D)uu(1) | g
=0

m+£-1

=< C)’Jn(t) Z HK(I,X, Dx)_]u(t’ ')”A{{’”O”K(t’vax)nlu(t’ ')”H""
=0

Thus we gain (4.6). Here we used the inequality ||v]|,. < Cpl|v]|ym for m > n/2.
Now, in aid of (1.7) and (4.6)

T T
lo@)|F < Cyeh “""’{cy,m,uo,u, + L Wy (1, K ()| gy LK 0(0) | dr},

which leads to (4.1) if T=T,, , >0 is small enough, e.g., r = 2Cpe™* ey et Cymuo,m
and 0 < T <1 with Ty, ,, (1,sup,e[o,l]||K"u(t)||Hmo)r < Cy,m,up,u,- Analogously,
we have by means of Taylor’s formula

T T
1960 = @0l < eb O | KA = £ ) g

1
< Gl = wily, < 5 llu=w

if T <1/2C,, . Therefore we conclude that @ is a contraction on BT (r), whose
unique fixed point is the local solution u(z,x) to the problem (1.1), (1.2).

For now, the lifespan T of the solution, determined in the foregoing pro-
cedure, may depend on m, and so it may happen that 7,, tends to 0 as m does
to oo. But we can select T, = T, for all m > mqy with mg > [n/2] + 1. To this
end, we shall consider the following strictly hyperbolic Cauchy problem on
[0, T,y x RE(e > 0):

{L(t,x,0,,0x) — eAs}w(t,x) = f(2,x,w(t, x)), (4.8)
w(0, x) = up(x), w,(0,x) = uy(x). (4.9)

It we apply the preceding inference to this problem, then there exists a local
solution u; € X,,,To'"" on some interval [0, T;,,]. In the same manner as Section 3 we
also know that for the solution u.(¢,x) to the problem (4.8), (4.9)



The Cauchy problem for weakly hyperbolic 25
1K o)l gmes + 1K (1)
[ - t
<el f“m(chux—luouzmﬂ + 1K | +j LK 15, - el )| ds),
0

which derives u, € eromil since up,u; € C°(R") =« H*(R") and f(t,x,u,(t,x)) €
CO([0, Ty); R? x H™*?(R™)). The above argument can be repeated by induction
on m(=> my).

Now we apply (1.7) to u(z,x), and then in view of (4.6)

1K e ()3 + K 6 (0)] 7

t t
< eh C(S)d'<ChllK“uol|§m+l + 1K |3y + L K (s, - e, )| 5m ds)

<o c(s)ds(culrluo]ﬁ,mﬂ + K 1]

+¢’7,m(Tmoa sup HK_lua(S)llffmo)J IIK_lue(S)IIf{mdS)- (4.10)

$€[0, Tng ] 0

Because sup;., Tmo]HK"lug(s)Hf,mo <B< w from u, e X,,,TO'"", (4.10) means that

K™ ue(0) |y + 1K 0 (0) g

t
< ¢(h, B) (HK“uOHf{M + |K |2 + L 1K ue(5)]| 2 ds).

Therefore, defining

t
EX () = L(nK-‘us(s)uzm K ()] B s,
we get

d - - e
S En(0) < (b, BY(IK ™ ol s + 1K™ utl|gm + B (1))

and by Gronwall’s inequality

EL(t) < c(h, B, Ty ) (EL(0) + [|K ™ g | Fpmer + 1K 0|37,
that is,

K e ()| 2 + K () |3
< &(h, B, Ty )K" so||Fymer + 1K a1 || ) (4.11)

on [0, T,,], where the constant in the right hand side does not depend on &. As
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before, we may rewrite (4.11) like

et (O 2 + () 2 < €y B, Tongy ) ([t s + Nt [ )

on [0,T,,]. Hence, for each m=>=mp{x} is a bounded sequence in
C'([0, T,n,); H™), and by (1.1) a fortiori in C%([0, Tyn,); H™™'). Thus we can
extract a subsequence which converges in C'([0, Ty, J; H™) for all m > my.

ACKNOWLEDGMENT. The author is deeply indebted to Professor K. Kajitani
for many helpful discussions with him and constant encouragement. The author
also would like to express his sincere gratitude to Professors T. Hoshiro and K.
Yagdjian for their proper advice and pointing out careless mistakes during the
research work in the present paper.

Bibliography

[1] R. Beals, Weighted distribution spaces and pseudodifferential operators, J. Analyse Math. 39
(1981), 131-187.

[2] J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations,
Studies in Math. and Its Appl., vol. 14, North-Holland, Amsterdam-New York-Oxford, 1982.

[3] F. Colombini and S. Spagnolo, An example of a weakly hyperbolic Cauchy problem not well
posed in C*, Acta Math. 148 (1982), 243-253.

[4] P. D’Ancona, Local existence for semilinear weakly hyperbolic equations with time dependent
coefficients, Nonlinear Anal. 21-9 (1993), 685-696.
[5]1 R.S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7
(1982), 65-222.
. Hormander, The Analysis of Linear Partial Differential Operators III, Grundlehren math.
Wissensch. (Corrected 2nd Printing), vol. 274, Springer-Verlag, Berlin-Heidelberg-New
York, 1994.
. Kajitani, The well posed Cauchy problem for hyperbolic operators, Exposé au Séminaire de
Vaillant du 8 février (1989).
. Kajitani and S. Wakabayashi, The Cauchy problem for a class of hyperbolic operators with
double characteristics, Funkcial. Ekvac. 39 (1996), 235-307.
. Kumano-go, Pseudo-Differential Operators, MIT Press, Cambridge, Mass.-London, 1981.
. A. Oleinik and E. V. Radkevig, Second Order Equations with Nonnegative Characteristic
Form, Plenum Press, New York-London, 1973.
[11] N. Orrti, On a weakly hyperbolic equation with a term of order zero, Ann. Fac. Sci. Toulouse
Math. 6 (1997), 525-534.

[12] S. Tarama, On the second order hyperbolic equations degenerating in the infinite order—
example —, Math. Japonica 42 (1995), 523-534.

[13] M. E. Taylor, Partial Differential Equations III: Nonlinear Equations, Appl. Math. Sci., vol.
117, Springer-Verlag, Berlin-Heidelberg-New York, 1996.

=)
e

3
~ P~

(9]
(10]

o=

Institute of Mathematics
University of Tsukuba

1-1-1, Tennddai, Tsukuba-shi,
Ibaraki 305-8571,

Japan



