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THE CAUCHY PROBLEM FOR WEAKLY HYPERBOLIC

EQUATIONS OF SECOND ORDER

§ 1. Introduction

By

Haruhisa Ishida

In thisarticlewe shall study the problem of local existence of C00 solutions

to the following semilinear Cauchy problem on [0,T] x R"(T > 0)

where

L(t, x, dt,dx)u(t, x) = f(t, x, u),

u(O,x) = wo(jc),m,(O,x) = ui(x)

L(t,x,dhdx)= dl-al(t)J2
j,k=＼

ajk{ao(x)dxdXk + (dXjaQ(x))dXk}

n

(1.1)

(1.2)

= d; - J(/, x, dx) - b{t,x, dx) - c{t,x) - d(t,x)dt.

Throughout the present articlewe assume that 0 < Ca < ao(x) e 23°°(^"),q(g) =

J2j,k=iajk^fik^ 0 (ajk is a real constant, a,* = a^) for all £e R" and that

0 < a＼(t)e C°°(＼0,T}) satisfiesthe condition below:

N = aud{[p,q] cz[O,T};a[([p,q}) c {0},a[{p - e)a[(q + e) < 0(0 < s ≪ 1)}

< oo. (1.3)

where card X means the cardinalityof a set X, thatis, the number N of the

connected components of the sign-changing zero-setof a{ on [0,T] is finite.

Moreover we impose that bhc,d,fe<Bx (with f([0,T],Rn,0) c {0}) and that
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there is some constant Aa > 0 such that

＼d^b(t,xA)＼2< AM',*,£) + W,x,£)＼) (1-4)

for every aeZ; and 0,x,£) e [0,T] x R$ x R", where a(?,x,£)= ao(x)ai(t)q(£)

(> 0) (refer to K. Kajitani [7] for a more general condition on lower order terms;

see also K. Kajitani-S. Wakabayashi [8]).

Then we obtain the following result.

Theorem 1.1. For any initial data uq,u＼g C^(Rn) there exists a small

constant (T >) Tq > 0 such that the Cauchy problem (1.1), (1.2) has a unique

solution u(t,x) e C°°([0,To] x R").

When ao(x) is a constant and ajk (j,k = 1,...,≪) are real-analytic in ?,

Theorem 1.1 is proved in P. D'Ancona [4]. He solved the corresponding line-

arized Cauchy problem according to N. Orru [11] and did the semilinear problem

by applying the implicit function theorem of Nash and Moser (see R. S.

Hamilton [5]).In our strategy we shall use pseudo-differential operators to handle

the linearized problem and employ the successive approximation method to solve

the semilinear problem (1.1), (1.2). Then the corresponding linear problem to

(1.1), (1.2) is stated in the following Cauchy problem on [0,7] x Rnx

L(t,x,dhdx)u(t,x)=f(t,x), (1.5)

u(0,x) = uo(x),ut(O,x) = u＼(x). (1.6)

As to the linear problem (1.5),(1.6) the next existence and uniqueness theorem is

valid.

Theorem 1.2. Suppose that (1.3) and (1.4) hold. Let the initial data uq{x),

u＼{x) belong to Cx(Rn) and f(t,x) e C°°([0,T] x R"). Then the Cauchy problem

(1.5), (1.6) admits a solution u(t,x) e C°°([0,T] x R"). In particular, if suppuo and

supp≪i are contained in the open ball B(r) = {x e R"; ＼x＼< r} and if supp/(f, ･)

lies in the ball B(r + tk(T)) for every te [0,7"], then the unique solution u(t,x)

enjoys the finite propagation speed property with speed for t e [0, T] not greater

than MT), where

X(T) = sup

(/,x)e[O, Tlxi?"

||(fl/jfcao(*MO)ll

so that suppu(t, ･) is included in the ball B(r + tk(T)). Further the following

estimate is established: for any s >0 and t e [0, T] there exist some constants h > 0
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and C = C(h) > 0 such that

＼＼evA(tx D )~l

< e

u(t

J>)rfT
(

)＼＼2

H (*; )
+ ＼＼eVA(t,x,Dx)-lut(t1-)＼＼

2

Hs{Rnx)

C＼＼ey＼^x:DxyluQ＼＼2H^{K) + ＼W＼Q,x,Dxyxux＼＼2HS[Rn)

＼＼eyA(T,x,Dxylf(T, ■)!&.(*.) </t

3

(1.7)

where c{i) is a nonnegative continuous function dependent on the coefficients

d^ajkao(x)ai(t), d%(t,x), dsxc(t,x), dsxd(t,x) (|a| < 3, ＼fi＼< 2, ＼S＼< 1) and y,

sq > 0 which depend only on d*d?ajkao(x)ai(t) (lal < 2,(5 = 0,1), while

A(t,x,£)
~Jo

iaTa(T,x^)|2 + (log^(^))4

a(T,x,£) + (log^))2
dx

+ (A0+eo＼ogqh(Z))t-M＼ogqh{Z), (1.8)

qh{£)=h + q{S) (A>1),

(M > 0 is taken large enough, independent of h, as A(t,x,£) < 0 for all(t,x,£)e

[0,T] x if^) and erA(t,x,Dx)~l denotes the inverse of the pseudo-differential

operator evA(t,x,Dx) with symbol erA^'x^).

We shall perform the proof of Theorem 1.2 via the approximation to the

equation (1.5) by strictlyhyperbolic equations because the estimate (1.7) for the

equation (1.5) after replacing the coefficients(ajkao(x)a＼(t))of the principle part

by (ajkao(x)ai(t))+ s2Sjk(e > 0,<5/fcis Kronecker's delta) remains valid. Thus our

main task is to lead the estimate (1.7). To do so we shall transform u(t,x) into

v(t,x) with u(t,x) = eyA(t,x,Dx)v(t,x) and take advantage of the energy function

E{t) = ||(0r+ yAt(t,x,Dx) + RX (t,x,Dx))v{t, ■)||^W)

+ {a＼t,x,Dx)v{t, -)At, ■))H'{K)+ ＼＼^9h{Dx))v{t, Oll^jr;).

where R＼(t,x,Dx) is given by

Ri (t,x, Dx) = eyA(t,x, Dx)~l o dtevA(t,x,Dx) - yAt(t,x,Dx).

Then we shall get the energy inequality
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E(t)<C(T)U(0) +
^＼＼eyA(r,x,Dxrlf(z,.)＼＼2H

sdzX

which implies the estimate (1.7).

We remark that the same conclusion as Theorem 1.2 generally failsto hold

for nonnegative a＼(t)e Cco([0,T＼) without any restrictive condition (see F.

Colombini-S. Spagnolo [3] or S. Tarama [12]).

§2. Preliminaries

In this section we shall observe the existence of eyA(t,x, Dx)~l and mention

some propositions adopting in the subsequent sections.

Lemma 2.1. (i) ＼dXjao{x)＼< Ciao{x) (j = 1,...,≪).

(ii)((1.7.2)in O. A. Oleinik-E. V. Radkevic [10]) If p(x) e C2(R) is non-

negative, then

＼dxP(x)＼2<2p(x)sup＼d2xP(x)＼.

(iii)＼dz.a(t,x,£)＼<*Cly/a{t,x,£,) (j=l,...,n).

(iv) ＼DXja(t,x,Z)＼<C3a(t,x,Z) (y = l,...,/i).

(v) ＼8^dija(t1x^)＼<C4 (j,k=l,...,n).

(vi) ＼DXkDXj.a(t,x,£)＼<C5a(t,x,£) (j,k = 1,...,≫).

(vii) |a^,^OI<Q C/=l,...,/i).

The next proposition describes basic properties about A(f,x, £)

Lemma 2.2. Let (Oh = ＼[h+ ＼tf (h>＼).

(i)

Idpi A( t,x,£)＼

J C0)olog #*(<!;),
C*,B{q(Z) + (log^(^))2}-(|a|/2)A,(r,x,0

where

Ah(t,x,£) =
Jo

|a,fl(j,s,fl|2+ (iogg*(fl)4

if

if |a| + ＼P＼> 0,

ds+l.
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ii) A(t,x,£ + ri)< A{t,x,£) + {M + 6{N + l)}log (■+

logoff)

)

+ t + Q

iii)A{t,x,£ + ri)< A(f,x,f) + A(t,x,rj) +2(M + N+ ＼)logqh(r/)+ t+ C2.

iv) A{t,x + y,£)< A(t,x^) + t+C3.

Proof. We firstnote that

Ah(t,x,£)+ l <Ah(t,x,Z)^Ah(t,x,Z) + t+l,

It is easy to verify that

|d?log<fc(0|£

Joa

＼dsa{s,x,£)＼

(s,x,Z) + (logqh(Z))2

ds

{ logqh(£), if|a|=0,

Cxqh(Z)-{W2＼ if |a| > 0,

5

(2.1)

<Ca^(O-(|ai/2)log<7/,(£).

Let us show that Ah(t,x,£) < Ah{T,x,£) < C＼ogqh{ ). For this purpose we

decompose [0, T] as

[o,r] = 06[o,r];3Kn(0^o}uOe[o,r];a,fli(0^o}

= [r+,*+] U ･･･ U [r++,s++] U [r^si) U ■･･ U fo_,^_]

with iV+ + N~ < N + 1. Here r+ < s+ <r++1 (j = 1,...,N+ - 1), r^ < s^ < r^+1

(k = 1,...,N~ - 1) either r+ = 0 or rf = 0 and either s++ = Tor %_ = T. Then

the following equality is valid:

A*(r,*,£)
N+

=iogn

7=1

fl(j+,*,<*) + (iog<a(fl)2

a(r;,x^) + (log^(^))2

≫la(rf,x,Z) + {logqh(Z))2
+ lOg J- r
f=＼a(sr,x,Z) + (logqh(Z))2

(2.2)

which deduces that Af,{T,x,£,)< Clog #/,(£).Using (i) and (ii)in Lemma 2.1, we

know that

＼d*,D'fiMt,x,{)＼< C,.fi{q(Z)+ (logqh(Z))2yM/2)Ah(t,x,n
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Thus (i) is established. Now, because of (ii)in Lemma 2.1 we get

a(s,x,Z + rj)+ (logqh(Z + rj))2

n
< a(s,x,£)+2{logqh(Z))2 + ^rijdzla{s,x,£>) + a(s,x,ri)+ 2(＼og2qi(r}))2

j=i

<2(a(s,x,Z) + (＼ogqh(Z))2)

X 1 +

<

)

)

(2.3)

(2.4)

(2.5)

(2.6)

c＼n＼

a(s,x, ) + (＼ogqh(Z

<Co(a(s,x,£) + (log<7^))2)

Equivalently, the next inequality

1

a(s,x,£ + r])+ (＼ogqh(Z + ri))2

Co

a{s,x,Z) + (＼ogqh(£))2

_
,

c'＼n＼2

})2 a(s,x,Z) + (logqh(Z))2

*

*

holds. Here

1

a(s,x,£+ n) + aogqh(£ + n))2

<
4Co

a(s,x,Z) + (logqh(Z))2

＼1＼

a(s,x,Z) + (logqh(Z))2

＼1＼

(

■

0 > 1, by

a(s,x,Z) + (logqh(Z))2

if q(£+ rf)> q{£)/4.In the meantime, when q(£+ rj)< g(£)/4 and q(

virtue of 1 < C＼n＼/(logah(£))2,for h > e

1

a{s,x,Z + ti)+ {＼ogqh{£ + ri))2

<

CqVc

~ a(s,x,Z) + (logqh(Z))2

■

logqh(£)

4
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is valid. From (2.2), (2.3), (2.5) and (2.6) we obtain

Ah(t,x,£ + ri)

V log ?*(£)/

+logcWl+-i-)

|^;,^) + (iog^))2

6N~ fla(rr,x,0 + (log^(0)2

yflte-,*,o
+ (iogtt(o)2

7

(2.7)

Next, recall that N+ + N < N + 1, and check that for any fixed 2(TV + 1) points

rf,sf;r]-,s];{j=l,...,N+;k=l,...,N-;N++N-=N+＼) with r+< s+<

rtv rl <sl <r^+l and

(U£>/,tfl)u(U^k/.^l) = UjI^M - 1<M

satisfying [r,-,j,-]fl [r,-+i,j,-+i] = {s,} = {rj+l} (r,- < sj < r,-+1), then

log

N+
n

7=1

a(sf,x,£) +(log qh( )

a(r+,x,£) + (logqh(Z))

N+ r<

7=1 3r!

2 ^a(rr,x^) + (log^))2

dsa(s,x,£)

a{s,x,Z) + (＼ogqh(Z))2

<Ah(t,x,£).

So (2.7)and (2.8)imply

ds+ T P -fa&X't)

Ak(t,x,Z + t,)£Mt,x,Z) + 6(N+1)10^(1+^

Taking account of (2.1), we find that

Ah(t,x^ + f])<Ah(t,x^) + 6(N+l)log(l+^^

In addition, since

qh(Z+ n)<qh{Q

(

■

c＼n＼

VS(O

)

)

ds

(2.8)

+ 2(Ar+l)logC0.

+ 2(N+l)logCQ + t + 2.

we gain (ii)via the analogous manner as (2.3)-(2.6).Further, we have for h > e
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a(s,x,£+ ri)+ {＼ogqh(Z + ri))2

< 2{a(s,x,Z)+a{s,x,ri) + (log^(^))2 + (log^(//))2)

< 2(a{s,x,£)+ (loggh^))2)(a(s,x:fj) + (log^(^))2)

On the other hand, by substituting (£,n) for (£+ n, ―rj)in (2.9)

1

a($,x,£ + ri)+ (logqh{t + ri))2

2{a(s,x,ri) + (logqh(ri))2)

a(s,x^) + (logqh{Z))2

(2.9)

(2.10)

is true. This time, by applying (2.9) and (2.10) instead of (2.3) and (2.4) to (2.2)

Mt,x,£ + ri)<LAh(t,x,Z)+Mt,x1ri) + 2(N+l)＼ogqh(ri) + 2{N+l)＼ogC^

Hence we see (iii).Also, in aid of (2.2) and C~1ao(x) < ao(x + y) < Cao(x) for

C>supao(*)/Q(> 1)

eAh(t,x+y,t)< c2(N++N-)eAh(t,x,Z)^ ^(tf+l^A^/.x.f)

is valid. Thanks to (2.1),

eA(t,x+y,£)K C2(N+l) t+2 A(t,x,t)

which thereforemeans (iv) □

Let K(t,x,Dx) and K(t,x,Dx) be the pseudo-differential operators with

symbols a{K)(t,x,£) = g^C*.*) and cr(K)(t,x, ) = e~y^x^ respectively,where

y > 0 will be determined later. Then the symbol of the product of K(t, x, Dx) and

K(t,x,Dx) is given by

<T{KoK){t,x,£) = l-<r{R)(t,x,Z),

where

a(R){t,x^) = Y
I
Os-
ffe-/^{Z)?yA(/,x,^

+ ≫7)}c-J'A^Jc^+')

(dri = (2n)~ndrj).Here the above oscillatoryintegral of a symbol p(x,£) indicates

Os- e iyrip(y, fj)dydt] = lim e iyrix(ey,&l)p(y, i) dy^n

for xe^iRy x R") such that /(0,0) = 1 (see H. Kumano-go [9]).
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Let g{x^) = <j>~2(x,£)＼dx＼2+ x＼~2(x,£,)＼d£,＼2be a Riemannian metric on R2n.

Following L. Hormander [6], we say that g is cr-temperate if there exist positive

constants c, C, C and k such that

when g(x^)(y,rj) < c and such that

g(y,n)(z,C)£Cg{x,;)(z,C)(l+gZy
ltl){x-y,Z-ri))k

for all (x,£), {y,ij), (z,C)eR2n, where the dual form ga{xi){y,n) of g{x^){y,rj) =

4T2{x,S)＼y＼2 +r2(x,OH2 is presented by

ga{xA){y,r1) = ^1{xA)＼y＼2 + f{x^)＼r,＼2.

A positive real-valued function m(x,Q defined on R2n is called ^-continuous if

there are positive constants c and C such that

C~lm(x, f) < m(x + y,£ + rj) < Cm(x, ^)

provided g(x^)(y,ri) < c. A gf-continuous function m(x,£) is said to be (o,g)-

temperate if there exist constants C > 0 and k e R such that

m(x+;>,£ + *) < Cm(x,£)(l +g^)(y,ri))k

for every (x,£), (y,tj) eR2n. For a positive function m(x,£) and ^(x,<^),we de-

fine the symbol class S(m,g) of pseudo-differential operators by the set of all

p{x^)EC°°(R2n) satisfying

for (x, £) g^2". Then we have the next claims.

Lemma 2.3

0o(jc,o =' ＼dx＼2 +
1

*(£)+ (logtt(O)2

H2 + t0-2(£M|2

and

are a-temperate.

do(x,n=^h(t,x^)29o(x,{)

＼dtf
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Proof. In the same way as (2.3) and (2

^l^ + rj)<C^l^)

7) we can show that

(■+
＼n＼

*Fo(£

i)
2

T02(£)< 2T2(;/)(1 + q(£-n) + (Iog2*i(f - n))2)

^C2^02(i7)(l + |^-J7|2),

respectively, which follow that go is <7-temperate. As well, similarly to (2.3)

Ah(t,x,+y,Z)2 < C3Ah(t,x,Z)＼l + ＼y＼)

< C3AA(f,x,<2;

Ah(t,x,£ + ri)<Ah(t,x,£)

)2(l+Ah(t,x,Z)＼y＼)

(

■

< C4Ah(t

CM
%(£)

x,£)
(
l +

c＼n＼2

Ah(t,x,£)

)

MJ

and g0 < g^ imply that g0 is cr-temperate by Proposition 18.5.6 in L. Hormander

[61.

Lemma 2.4. (j(K)(t,x,£) and a(K)(t,x,£) are (a,go)-temperate.

Proof. Since a{K)(t,x,£) = a(K)(t,x, £)~＼ it suffices to observe that

a(K)(t,x,£) is (a,^0)-temperate. This is easily known from (2.3), (2.4), (ii) and

(iv) in Lemma 2.2. □

Proposition 2.5. (i) Let g = <f>~2{x,Q＼dx＼2 + Y~2(x, )＼d£＼2be a a-temperate

Riemannian metric. Suppose that H(x,£) = (^F)"1 < 1. Let nij(x, <f) be (a,g)-

temperate weight functions and pj(x,£) e S(rrij,g) (j = 1,2). Then

o{Pi{x,Dx)p2(x,Dx)){x,£)

~
E
"}~l{dlPi {*> Z)HDaxP2(x, 0) e S(mim2Hk, g)^k> 0.

(ii) Let g = <f>~2＼dx＼+ *＼~2＼d£＼be a a-temperate Riemannian metric with

^＼ > 1 and p(x,0 e S(qh(nm/2,g) (meR,h> 1). Then for any s>0 there are
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some constant C = Cs,m > 0 and an integer £ = £(s,m) such that

＼＼P(x,Dx)u＼＼h-(r-)* C|/≫|?')||</),≫||^(Jr-)

for u e Sf(Rn), where

Am)p＼＼' = max sup ＼dZDlp(x,Z)＼^VMqh{Z)-m'2
M+lfl^' [x,QeRnxxRn

11

(iii)Let g = </>2＼dx＼+ *F 2＼d^＼ be a a-temperate Riemannian metric with

0> > 1 and p(x,£) eS(l,g). If p(x,Dx) is bijectivein Hs(Rn), then the inverse

p(XiDx)~~ of p(x,Dx) is also a pseudo-differentialoperator with symbol in S(＼,g).

(i) and (ii) are special cases of Theorem 18.5.4 and Theorem 18.6.3 re-

spectivelyin L. Hormander [6].(iii)is cited from (g) of Theorem 3.1 in R. Beals

[1]-

Now it follows from Lemmas 2.2-2.4 and (i)in Proposition 2.5 (with metric

g = g05 weight functions m＼ = a(K) and mi ― o(K)) that a(R)(t,x,£) satisfies

|djz#x(*)(',*,£)l < c^Y%l-^(Z)Ah(t,x,zf＼+w+2

for te[0,T] and x,£eRn. Therefore, by (ii) and (iii)in Proposition 2.5 (with

metric g = g0) for each s > 0, taking h > 1 large enough, we see that

K(tiX,Dx)~l = (I-R)-1 oR{t,x,Dx) : Hs+'(Rn) -> HS(R") (2.11)

exists as pseudo-differential operator, where / = £{y)> 0 is some real number

independent of h due to (i) in Lemma 2.2.

Corollary 2.6. Let p e S(m,go). Then

(i) a(K-lpK)(x, £)= p(x, Z) + n (/>)(*,̂ )

wfrA ri(/>)e5'(Yo1(^)AA(f,x,^)m, gf0)-

(ii)a(K-lpK)(x,£) = p(x,£) +y{p,A}(x^) +r2(p)(x,£)

with ri(p) e S(^Q2(^)Ah(t,x,^)2m,g0), where {p,A} is the Poisson bracket of p

and A, or

{p,A}(x,Z) =
^{(5^(x,0)(^A(x,^))

- {dtjAfrZMD^pfcZ))}.

(iii)a(K-lpK)(x, Z) = p{x, Z) + y{p, A}{x, Z) + P2(x, Z) + r3(p){x,Z)

with r3{p) 6^0-3(OAA(f,i^)3m,3o).

Finally we quote a fundamental fact on pseudo-differential operators to need

the proof of the estimate (1.7).
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Proposition 2.7 (Theorem 18.6.8 in L. Hormander [61). If p(x,£)e

5(^0 (^)
5̂ o)
is nonnegative, then there exists a constant Cs > 0 such that

RG{p(x,Dx)u,u)Hs{Rn) > - Q＼＼u＼＼Hs{Rn)

for u e £f(Rn).

§3. Proof of Theorem 1.2

The crucial stage in the proof of Theorem 1.2 is to derive the energy estimate

(1.7). So we shall firstdevote ourselves to establishing (1.7).

Set u(t,x) = K(t,x,Dx)v(t,x). If we denote

P,{t,x,dt,Dx)v(t,x) =
^W'^pit^d^vfaQdZ,

(＼,)(t,x,Dx)v{t,x) =
＼e**+≪>xMv{t,Z)fc

then the following equality holds:

ut(t,x) = (dt + yA,)yA(t,x, d,,Dx)v(t,x)

= (lyA)(t,x,Dx)vt(t,x) + {yAt)yA(t,x,Dx)v{t,x)

= (lyA) o [Vt(t,x)+ (I- Ryl o{(l_yA) o {yAt)yA(t,x,Dx)v(t,x)}]

= K(t,x,Dx){dt + yAt(t,x,Dx) + Rl(t,x,Dx))v(t,x), (3.1)

where

(/- R)'1 o (l_yA) o (yAt)7A(t,x,Dx) = yAt(t,x,Dx) + Ri{t,x,Dx).

It is read from an asymptotic expansion of the symbol <t((1_7a)°{yAt)yA)(t,x,<!;)

that

a{Ri){t,x^) = o(yAt{t,x,^)),

namely

By ut(t,x)

Ki?i)(r,x,£)l < CyAt(t,x,Z)^l(QAh(t,x,Z)2.

= K(t,x,Dx){dt + yAt(t,x,Dx) + R}(t, x,Dx)) K(t,x, Dxy{u(t, x)

(3.2)
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utt(t,x)=K{t,x,Dx)(dt + yAt{t,x,Dx)+Rl{t,x,Dx))2v(t,x) (3.3)

is also valid. From (3.1) and (3.3) the equation (1.5) is transformed as below:

(dt + yAt + R1)2v = -K~la*Kv + iK~lbKv + K~lcKv

+ JT1 dK(dt + y＼t + R1)v + K~lf. (3.4)

For the sake of brevity we stand for d＼= dt + yAt + R＼, a" = K~la$K, ~b―

K~lbK and so on. Then, by use of Corollary 2.6 the symbols of these pseudo-

differential operators are expanded in the following form:

S≪(f,x, £) = J(t, x, f) + y{a＼ A}(?, x, 0 + 4(t, x, ?) + r3(a*)(t, x, 0, (3-5)

~b(t,*, £) = b{t, x,£) + y{b, A}(r, x, S) + r2(b)(t, x, {)

c(t,x, f) = c{t,x) + rx(c)(t,x,£),

where

＼4(t,x,£)＼£C{logqh(Z))2,

＼r3(J)(t,x,Q＼Ar2(b)(t,x^)l＼ri(c)(t:x,aAri(d)(t,x^)＼ < C'.

Now we define the energy function

E{t) = ＼＼dxv(t,Oll^")+ (≪"(?,x,D,)y(r,-),v(t,-)W-)

+ ＼＼(logqh(Dx))v(t,-)＼＼2Hs{Rn)

for fefO, 71. Differentiating E(t), we obtain

-rE{t) = 2Re(d2lv(t),dlv(t))H,-2Re{(yAt + Rl)d1v(t),div(t))H

(3.6)

(3.7)

(3.8)

+ ((dtJ)v(t),v(t))HS +2Re(atv(t),div{t))H.

- 2Re((a≫ + (logqh(Dx))2)(yAt + Rt)v(t),v(t))H,

- 2Re((logtt(Z>x))dii>(0, (logqh(Dx))v(t))Hs. (3.9)

And in view of (3.4)-(3.6) the firstterm of the right hand sidein (3.9) can express
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= -Re(ah(t)Av{t))H, -yRQ({J,A}v(t),dlV(t))HS

-Re(a5u(O^iy(O)^-Re(r3(att)i;(O,5iKO)//*

- lm(bv(t), dxv(t))HS - yIm({6, A}v(t), dxv{t))HS

- lm{r2{b)v{t),dxv{t))HS +Re(cv(t),dlv(t))HS

+ RQ(dv(t),dlV(t))HS + Re(K-lf(t), d{v(t))Hs.
(3.10)

Henceforth we shall estimate the individual terms in the right hand side in

(3.9) with the help of (3.10). Then we shall make use of (i)in Lemma 2.2 without

notice. C(t), C＼(t),Ciit),...,C＼s{t)and Cs(t) appeared below exhibit suitable

nonnegative continuous functions on [0, T] independent of h and y.

First of all,from (3.5)

-yRe({a≪,AM0,dii;(0)/,. =-^Kt{{a*-a＼}v{t),ydxv{t))H.

7=1

･H max (＼＼Af/2)afv(t)＼＼2H

+ ||AA-(1/2)4KOII^) + 2y2||Aj/23n;(0l|^}

where cq (t,x, Dx) and a＼j(t,x,Dx) denote the pseudo-differential operators with

symbols {d^J(t,x^)}{DXjA(t,x^)} and {d^A{t,x^)}{DxJ{t,x^)} respec-

tively. Here, because 0 < a(t, x, £) g S^Tq^),^), by Proposition 2.7

Re(*≪A,i;(0,i>(0)tf* > - C(0l|A;/2i;(0||^,

so that

Re((fl≪ + (log^)2)A,i;(0,≪(0)^ + C,(0||(log^)A,1/2i;(0ll^ > 0- (3.11)

Now, paying attention to (iii)in Lemma 2.1, we find that

< C,(0{Re((fl≪ + (logqh)2)Atv(t),v(t))HS + C,(0H(log^)A,1/2i;(0ll^}.

Likewise, by virtue of (iv) in Lemma 2.1

iia^(1/2M/WII^

< C2(0{Re((fl≪ + (logqh)2)Atv(t),v(t))HS + C3(t)＼＼(logqh)Ay2v(t)＼＼2H-}'
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In addition, from ＼Ah(t,x,£)/At(t,x,£)＼< C/e0

Thus

-yRe({aKA}v(t),d1v(t))H.-ny2^lC3(t)＼＼Ay23lv{t)＼＼2H,

< ≪C4(f){Re((a≪+ (logqh)2)Atv(t),v(t))HS

+ Cs(t)＼＼(logqh)Alt/2v(t)＼＼2Hs}.

Also, in the same manner as above, together with |A/,/AJ < C/sq

15

(3.12)

-RQ(4v(t),dlV{t))HS

< n2C5(t)(y%l＼＼(logqh)5/2v(t)＼＼2HS + ||Ar1/25,i;(OI|^)

< ≫2C6(O(yVl|(log^)A,1/2i;(0ll^ + ＼＼Ay2dlV(t)＼＼2HS). (3.13)

- Re((log^(Dx))all;(0, (logqh(Dx))v(t))HS

< C8(0(£o2||(log^)Ar1/2KOII^ + ＼＼Ay2dlV(t)＼＼2HS). (3.14)

Moreover, by means of (3.5),(v) and (vi)in Lemma 2.1

-Re(r3(fl|lMO,5iKO)^^/i3y6(C9(OII≫(OII^ + ll5iKOII^)-

Since

＼b(t,x,Z)＼2< A0(a(t,x,{)+ ＼dta(t,x,)＼)

<Ao(a(t,x^) + (logqh^))2)+A0＼dta(tiX^)＼

<(A0 + l)(a(t,x,Z)+ (logqh(Z))2)At(t,x,Q

from (1.4)and (1.8),we have

(3.15)

＼Mt)＼＼2H,< Clo(0{Re((fl≪ + (logqh)2)Atv(t),v(t))HS + Cs(t)＼＼(＼ogqh)A}/2v(t)＼＼2H,}

Hence

-Imibvit)^^))^ -l-＼＼dlV(t)＼＼2HS

< Clo(0{Re((fl≪+ (logqh)2)Atv(t),v(t))Hs

+ Cs(t)＼＼(logqh)Ay2v(t)＼＼ls}. (3.16)
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Besides, from (3.6)―(3.8)and (vii)in Lemma 2.1 it is evident that

-yIm({6,AM0,^(0);P < ≫y(Cii(OIIOogtt)MOI& + PiKOIlU (3.17)

-Im(r2(ftM0,5,i;(0)^^iiV(C12(0IIK0ll^ + l|3i≫(0ll^), (3-18)

RQ(cv(t),dlV(t))Hs * C13(O(IKOI&' + II^(OII^), (3-19)

Re(Jt;(0,5iy(0)^ < C14(0(IIK0ll^ + II^MII^), (3-20)

RC(K-lnt),dlV(t))HM <
＼{＼＼K-lf{t)＼＼2HS

+ ||5,i;(0l|^)- (3-21)

By the way, due to (3.2), for any (y >) p > 0

-ReiiyAt + RWMWrtt)),,, < (-y + p)||Ar1/25n;(0ll^, (3-22)

- Re((fl≪+ (logqh(Dx))2)(yAt + Rx)v(t),v{t))H,

< {-y + p){Re((a* + (logqh)2)Atv(t),v(t))HS

+ C5(0H(log^)A;/2i;(0||^}. (3.23)

While, owing to ＼dta(t,x,£)＼< (a+ (logqh(Z))2)At(t,x,£)

((dtal)v(t),v(t))HS< Cl5(t){Re((a* + (logqh)2)Atv(t)At))H>

+ C5(r)||(log^)A;/2i;(OII^}- (3-24)

Therefore, on account of (3.11),it follows from (3.12)-(3.14),(3.16), (3.23) and

(3.24) that

2(nC4(0 + C10(r)){Re((a≪+ (log^)2)Art;(0,i;(0)^

+ C,(0||(log^)A;/2i;(OI|^}

+ 2s^2(n2y4C6(t) + C8(0)||(log^(2)x))Af1/2i;(0||2,s

- 2Re((fl≫+ (log^(Dx))2)(yA? + Rl)v(t),v(t))H- + ((dta*)v(t),v(t))HS

< 2{-y + nC4(t)+n2y%2C6{t)+SQ2Cs{t) + Cl0(t) + Cl5{t) + p)

x {Re((a≪ + (logqh)2)Atv(t),v(t))HS + C,(0||(log^)A;/2i;(0ll^}- (3-25)

On the other hand, in aid of (3.12)-(3.14) and (3.22)



The Caucfay problem for weakly hyperbolic

2(≫yVC3(0 +n2C6(t) + C8(0)||Ar1/25,i;(0||^

- 2Re((yA, + Ri)div(t),div(t))H,

17

< 2(-y + ny＼lC3{t) + n2C6(t) + C8(?) +^)||A/1/23,i?(0||L (3.26)

So we choose

fio>?2 + l,

y > sup (≫C3(0 +nC4{t) +n2C6{t) + C8(f) + C10(0 + Cl5(t)) + p.

te[0,T]

Consequently, picking

c(t)= 2n3y6(C9(t) + 1) +2≪V(Ci2(0 +.1)

+ 2ny(Cu(t) + 1) + 2(Cn(t) + C,4(0) + 2,

we get from (3.9)-(3.21) and (3.25)-(3.26)

jtE{t)<c{t)E{t) + ＼＼K-lf{t)＼＼2H*-

Further, by Gronwall's inequality

E(t)< elc{z)dx

holds. Here, record that

(E(Q)
+
^＼＼K-lf(T)＼＼2HsdT＼

E{t) > ＼＼v{t)＼＼2HS+ Wdxvifyfw = ＼＼K-lu{t)＼＼2HS+ ＼＼K-lut{t)＼＼2Hs

from (3.1). Meanwhile, by ≪≪(<),*,£) + (log^(^))2 < C(Ol

E(0) < Ch＼＼K-lu(0)＼＼2HS+l + HJT1!!,^)!!^.

(3.27)

(3.28)

(3.29)

Thus, summing up (3.27),(3.28) and (3.29), we have arrived at the desired (1.7).

Next we shall proceed to a standard verification of the existence of C00

solution to the problem (1.5), (1.6). In advance, we may rewrite (1.7) like

＼Mt,-)＼＼2H-+ ＼Mt,-)＼＼2H'ZCy,h ||≪o|li^+i+||≪l|||r +̂
[V(*,

-)＼＼2H^dr
Jo

)

(3.30)

where / = /(y) > 0 is the same in (2.11). Now let us consider the following

strictlyhyperbolic Cauchy problem on [0,T] x R"
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{L(t,x,dt,dx)-eAx}w(t,x)=f(t,x), (3.31)

w(O,x) = uo(x),wt(Q,x) = wi(x), (3.32)

where e>0 and Ax = Y2j=i d＼-(Laplacian). Thanks to the theory of strictly

hyperbolic equations, we know that for any / e C°([0,T]; Hs+tf), u$ e Hs+f+l

and uxeHs+t there exists a unique solution u^ e C°([0,r];iJi+/+1) D

C^tO, r];i/i+/) to the problem (3.31),(3.32) (for instance, see Theorem 23.2.2

in L. Hormander [6]).Since the estimate (3.30) is stillavailable for the problem

(3.31), (3.32), we adapt (3.30) to the sequence {w(£)}and so that

ll≪(e)(OII^ + ll≪ie)

with constant

can extract a

(Olllr-̂ ^^Hiioll^, + ||m||^ +
£
||/(r)||^ d^j

independent of e. Hence, by virtueof the diagonal argument we

subsequence of {u^} such that

u(s)_> Wl weakly in L2([0,T];Hs)

uf -> w2 weakly in L2([0, r];^)

These imply W2{t,x) = dtwi(t,x) and w＼(t,x)is just a unique solution of the

problem (1.5), (1.6) which belongs to C!([0, T];HS). Of course, the solution

possesses the finite propagation property as described in the statement of

Theorem 1.2 (cf.,in detail,Theorem 4.13 in J. Chazarain-A. Piriou [2]).The C00-

regularity of the solution also follows by differentiatingthe equation (1.5) in t:

dT+2u(t,x)=
7=0 V J /

dj{at(t, x, dx) + b(t, x, dx) + c(t, x)} ■drJu(t, x)

+e(;) d{d{t,x)■d^-Ju^x) + d?f(t,x,u{t,x))

§4. Proof of Theorem 1.1

From now we shall prove Theorem 1.1. Our method relies on a successive

approximation (precisely, the contraction mapping principle).

To begin with, taking the estimate (1.7)into account, we introduce the function

space Xl as the completion of C°([0,T];Hm+'(Rn)) n C!([0, T]＼Hm+'-＼Rn)) by
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sup {＼＼K(t,x,Dx)-lu{t, ■)＼＼2Hm{Rn)+ ＼＼K(t:x:Dxylut(t, ■)||^-1(ir)}1/2,

t*[O,T]

where £= £{y)> 0 is the identicalin (2.11).Under the guarantee of Theorem 1.2,

the approximate sequence {u(v＼t,x)} to the solution u(t,x) of the problem (1.1),

(1.2) is yielded by the recursive procedure below:

{
L(t,x,dt,dMv＼tiX) = f(t,x,u^l＼t,x))

u^(O,x)=uo(x)Mv)(Oix) = ul(x)

for v = 1,2,..., where u^(t,x) = 0. So we define the mapping # : X* ―>x£ as

follows: for w e X£, u = O(w) is the solution of the linear problem

L(t,x,dt,dx)u = f(t,x,w),

u(O,x) = uo(x),ut(O,x) = u＼(x)

which exists uniquely by Theorem 1.2 and which belongs to X^ for m large

enough, as can be seen later.Let B^(r) = {u e X*＼ ||m||^< r] for r > 1. Then our

chief task is to find some large r > 1 and small T = T(m,r) > 0 for sufficiently

large m ≫ 1 such that

R : BTm{r) - ^(r)

||<D(M)- >(w)t< 1n IIr

(4.1)

(4.2)

At firstit holds that X^ forms a Banach algebra with norm ||■||^ for m large

enough. Indeed, note from (iv) in Lemma 2.2 that

C;l＼＼K0(t,Dx)u＼＼Hm ^ ＼＼K(t,x,Dx)u＼＼Hm^ Cy＼＼K0(t,Dx)u＼＼Hm, (4-3)

where Ko(t,Dx) = e~7A(t,0,Dx). Furthermore, when we put pyA = KopK^1 for

p e S(qh{^) ,00), the next inequality is valid for every integer k > 0:

I^aI? <C(^y)b||[;^+i)]+n+3+^ (4-4)

where [s] means the maximal integer not greater than a real number s and

＼＼p＼＼{^A)=

|a|max (
sup ＼＼K,dlD{p{x^)＼＼^K)l^f~H)l1
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In fact,it followsfrom Theorem 2.6 (1) of Chapter 2 in H. Kumano-go [9]that

pyA(t,x,£)= Os-
^e-^-^'^^+y^'^pix+y.^dydr}.

Also, because of Taylor's formula

where

＼*＼<k

Ut,Q = D;(e^0^A^^%^

rk(t,x,£)=
Z―･ (v!

f

e-i>7-yA(/,0,M-7)+yA(/,(U) ･>,≪

f

Here, since ＼dfla(t^)＼< CaJqh(ZrW2 by (i)

with the Sobolev embedding theorem

＼dlDPxr{t,xA)＼<E E
＼8＼<ka.'+u."=a
(>

DaxP{x + 9y^)d9dydf].

of Lemma 2.2,we obtain, along

?DWp{x,Z)＼＼dfW,Z)＼

^ ^i＼＼p＼ha＼+＼p＼+k+nqh＼c,)

Meanwhile, as to r^(r,x, Q

rk(t,x,£)= E
i
Os-
f L-^-yA(/,o,{+,)+yA(/,o>oMj(r^

+ l7)

x
f
Dsxp(x + 0y,Z)dddydr},
Jo

where ns{t,£+ rj)= ^(U+^^-yAM,^/). Then

£
(aM＼＼l

e'^ito^Z + nWt'D^5p{x + By,£))dddydrj
+a≪_aV oc/ JJ Jo

=
yL y

(

＼5＼=k a'+a"=a ^

where
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F^S)(x,Z,r/) = I ^e-todfDWpix + OytfdydO

=
＼＼e-'{^-leSfD^p(y,i)pe

= f eixr>/ed-nd(D^dp^-,i＼d9

21

and p(ti,£)stands for the Fourier image of p(x,£) with respect to x. Thereby

because yA < 0, (iii)in Lemma 2.2 and

we can see that

＼d;Dirk(t,x,Z)＼

SCE E ≪≪+7)-*/2≫wWJ'+''+1)≪-^1A')i^)(x,≪,?)i*≫

＼S＼=ka'+a"=ocJ

< cqm~kl1 E E
f
ftM""*!^^''^'^! <*≫

< Cqh{Q-k/1 E E |f qh{r,)kll+2y{M+N+l)e-y^^e-n afD^A

< Cqh(Z)-k<2 J2E
J^('/)*/2+2)'(JI'+JV+1)^J'A(/'0'')|3f/)^(i7,01

^

< Cou(^){s"k)/2＼＼n＼＼{s'7A)^ ^Hh＼S) li/'||[A:+4y(M+Ar+l)+(≪+l)/2]+l+A:+|a|+|^|-

Now, employing (4.3)and (4.4) with s = 0 and k ―[m/2], we enjoy

＼＼K{t,x,Dxy＼u{t,-)w(t,-))＼＼Hm

< ＼＼(I-Rrl＼＼H^H4K(t,x,Dx)(u(t,-)w(t,.))＼＼Hm

<Cy,m(t) Y, ＼＼d≪x{Ko(t,Dx)(u(t)w(t))}＼＼L2

lal< m

< C7,m(t)(＼＼Ko(t,Dx)u{t,■WHm/z+MM+N+x^WKofaDJwit, -)＼＼Hm

+ ＼＼K0(t,Dx)u(t,-)＼＼Hm＼＼Ko{t,Dx)w(t,■)||^w≪*dm)

dddri
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< Cy,m(t)＼＼Ko(t,Dx)u(t,OIUI^AX;, -)＼＼Hm

< Cy,m{t)＼＼K{t,x,Dxyxu{t,■^WKit^Dx)-1^, -)＼＼Hm (4.5)

as long as m > 2[4y(M + N + 1)] + In + 6.

Next let us look for some nonnegative continuous function ^ym{t,s) on

[0,T] xiJ^, increasing in each argument, such that

＼＼K(t,x,Dxylf(t, .,≪(r,-))||^

^Jfji^x,!),)-1^, .)＼＼Hmo)＼＼K(t,x,Dxylu(t,-)＼＼Hm (4.6)

for sufficientlylarge m > mo with mo > [n/2] + 1. As can be known from the

observation below, we may seek the above-like function ij/ym with second ar-

gument ＼＼K~lu＼＼Hm/2+l4y(M+N+i)]+n+iinstead of H^^^H^mo independent of m by use of

(4.5). However, it is not enough to derive the positivity of the lifespan of the

solution to (1.1),(1.2) in I/00. For that aim we require an explicitrepresentation

of d*f(t,x,u(t,x)) (|a| <m). In order to procure it, heeding that

dXjf{t,x,u{t,x)) =

we express

d-/(f, *,≪(*,*)) =

Then the coefficients

<

(oi+ek)
(',*)

df{t,x,y)

dxj

+

y=u(t,x)

du(t,x) d

dx; dy

+

+

)

df{t,x,y) dy

dy dxj
y=u(t,x)

f(t,x, y)＼y=u(t>x),

+

f(t,X,y)＼y=u(t,X)

tiXi y)＼y=u(t,x)

J2 4%x)d^yf(t,x,y)＼y=u^x)

W+j<M-i

c≪j(r,x)are determined by the following relations:

= c
(≪)

P-ek,j
(*,*) +

du{t,x)

dxk
$_,(*,*), if y≫|+ y=H + i,

ct^x)JlM+c^Jt,x)+^lctul,x)

if ＼p＼+ j < |<x| and if j = 1,..., |a|
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where e^ is the unit vector with k-th component 1 in Rn, c^0(t,x) = 1 for |/?|=

|a|, c${t,x) = 0 for |a| > 1, c^y.(f, x) = 0 for ＼p＼= 1 and for j = 1,..., |a| + 1,

and Cp_-[{t,x)=§ for ＼fi＼= ＼a＼+ 1. The above relations involve that we can

represent

l<*l+/=|a|

X

a!
i

k=0

£

dsxdkyf(t,x,y)

k＼

(d*Mt,x)
)

/v

Hence, combining (4.3) with (4.7),we can deduce that

＼＼K(t,x,Dx)-lf(t,;u(t,-))＼＼Hm<＼＼(I-

<Cm{t)＼＼{I-R)-l＼＼Hm_>Hm J2

|a|< m+{

< Cy,m(t) E E E
|a| < m+t |<5|+/=|≪l k=0 0

y=u(t,x)

(#"(',*))
w

Ryl＼＼H^HA＼K{t^Dx)f＼＼Hm

Kf{t,x,u{t,x))＼＼L*

k

E

＼fi＼=J

(s^/M^Um)
i=＼

where, on account of (2.11) and the Gagliardo-Nirenberginequality

<^)NlS!EllAl^

L1 ＼i＼=J

(4.7)

1

provided |<5i|H ＼-＼Sk＼=j (see Lemma 3.10 of Chapter 13 in M. E. Taylor

[131)

(si dk
yf(

k

^^U(r,*))II^'

i=＼

<＼＼d8xdkyf{t,x,y)＼y=u{tJ＼Lf

k

n*?≪
1=1

< Cy *(OII≪(Ollfc

<Cy^t)＼＼k^Dx)u{t)＼＼kH^ E

＼e＼=J-'

LI

＼＼Mt,Dx)-l＼＼L2
^H,＼＼dex(Ko(t,Dx)u(t))＼＼Ll
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Consequently

＼＼K(t,x,Dx)-lf(t, -, u(t, -))＼＼Hm

< C,m{t)

< Cy,m{t)

< CyJt)

J2 (1 + ＼＼Kou(t)＼＼H,o+■■■ + ＼＼Kou(t)＼＼^)＼＼Kou(t)＼＼H^

|a|< m+tf

m+t-＼
E

7=0

W+/-1
£

7=0

＼＼Ko(t,Dx)u(t)＼＼U＼＼^Dx)u(t)＼＼H-

＼＼K(t,x,Dxylu(t,OIlUP^AcrV?, -)IU≫

Thus we gain (4.6). Here we used the inequality ＼＼v＼＼Lao< Cm＼＼v＼＼Hmfor m > n/2

Now, in aid of (1.7) and (4.6)

ll*(≪)l£ < cJ≪c{t)dt＼cyMUl +
^＼y^MK-＼{t)＼＼HmQ)＼＼K-＼{t)＼＼Hmdt^

which leads to (4.1) if T= Tm,r>0is small enough, e.g.,r = 2C/?emax'6[°-1]c(/)C},,WjM0;ttl

and 0< T < 1 with T＼j/ym {l,swpts[{)l]＼＼K-lu(i)＼＼HmQ)r<C7,w,Mo,Ml. Analogously,

we have by means of Taylor's formula

||*(≪)-O(W)|| : s J. ＼＼K-l{f(t,-,u)-f(t,-,w)}＼＼Hmdt

<Cy,mT＼＼u-w＼＼l<l-＼＼u-w＼＼l

if T < l/2C7jm. Therefore we conclude that > is a contraction on B^(r), whose

unique fixed point is the local solution u{t,x) to the problem (1.1), (1.2).

For now, the lifespan T of the solution, determined in the foregoing pro-

cedure, may depend on m, and so it may happen that Tm tends to 0 as m does

to oo. But we can select Tm = Tmo for all m>mo with mo > [n/2] + 1. To this

end, we shall consider the following strictlyhyperbolic Cauchy problem on

[0, Tm] x Rnx(s > 0):

{L(t, x, dt,dx) - eAx}w(t, x) = /(?,x, w(t,*)), (4.8)

w(0,x) = uo(x),wt(O,x) = ui(x). (4.9)

It we apply the preceding inference to this problem, then there exists a local

solution ue g Xm °on some interval [0,T-mo＼.In the same manner as Section 3 we

also know that for the solution uE(t,x) to the problem (4.8), (4.9)
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< eSod{s)ds(ch＼＼K-luo＼＼2Hm+i+ ||^-1≪i||^ +
|j|i^-1/(5,

-,ue(s, .))lllr≫*)

which derivesue e X^ since wo,≪ie C$>(Rn) a i7°°(i?w)and f(t,x,ue(t,x))e

C°([0,Tmo]]Rnxx Hm^{Rn)). The above argument can be repeated by induction

on m(> wo).

Now we apply (1.7) to ue{t,x),and then in view of (4.6)

＼＼K-lusm^ + ＼＼K-xu'At)＼＼2Hm

. ＼'c{s)ds(

QHJrtoll^, +＼＼K-lul＼＼2Hm+^＼＼K-lf(S,-Ms, ･))!&-*)

^e^'^fcWK-'uoWl^ + WK-'mW
2

+ ilsyjTmo, sup ＼＼K-lue(s)＼＼2Hmo)
(wK-'u^f^ds)

(4.10)

Because supSe[o,Tm}＼＼Klue{s)＼＼H≫*< B < oo from ueeXm °,(4.10) means that

<c(h,B) ＼＼K-lu0＼＼2Hm+i+ prVH^ +^＼＼K-1u£(s)＼＼2h^s^

Therefore,defining

Kit) =
l＼

＼＼K-lu£(S)＼＼

Jo

2

Hrn
+ ＼＼K-lu'{s)＼＼2Hm)ds

we get

jtE'm{t) < c{h,B){＼＼K-lu42Hm+i+ WK-'u^+E^t))

and by Gronwall's inequality

EEm{t) < c(h,B, Tm)(EEm(0) + IIJT^II^, + HAT^ill^),

that is,

＼＼K-lu£(t)＼＼2Hm+ ＼＼K-'u'£(t)＼＼2Hm

. ^c(/r,JB,rmo)(||^-1ttO||^, + ＼＼ITlul＼＼2Hm) (4.11)

on [0,TmX where the constant in the right hand side does not depend on e. As
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before, we may rewrite (4.11) like

＼＼u,{t)＼＼2Hm+ K(t)＼＼2Hm < c(h,B,Tm,y)(＼＼uo＼＼2Hm≪+i + IlKiHJUr)

on [0,Tm]. Hence, for each m > rao{u£} is a bounded sequence in

Cl{[0,Tm};Hm), and by (1.1) a fortioriin C2([0, Tm];Hm-1). Thus we can

extract a subsequence which converges in C'([0, Tmo];Hm) for all m>mo.
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