ON STRONGLY ALMOST HEREDITARY RINGS

By

Yoshitomo Baba and Hiroyuki Miki

- M. Harada defined an almost projective module in [8] and showed that semisimple rings, serial rings, QF-rings and H-rings are well-characterized by the property of an almost projective module in [8], [9]. Using an almost projective module he further considered the following generalized condition of a hereditary ring in [7]:
 - $(*)_r$ Every submodule of a finitely generated projective right *R*-module is almost projective.

In this paper we call an artinian ring R a right strongly almost hereditary ring (abbreviated right SAH ring) if R satisfies $(*)_r$. On the other hand, an artinian hereditary ring is characterized by the following equivalent conditions:

- (a) Every submodule of a projective right R-module is also projective;
- (b) every submodule of a projective left R-module is also projective;
- (c) every factor module of an injective right R-module is also injective;
- (d) every factor module of an injective left R-module is also injective. In section 2 we consider the following generalized condition of (c):
- $(*^{\sharp})_r$ Every factor module of an injective right *R*-module is a direct sum of an injective module and finitely generated almost injective modules. Similarly we define $(*^{\sharp})_l$ for left *R*-modules. The first aim of this paper is to show that an artinian ring *R* is right SAH if and only if *R* satisfies $(*^{\sharp})_l$. But we see that the equivalence between a right SAH ring and an artinian ring which satisfies $(*^{\sharp})_r$ does not hold in general.
- In [7] M. Harada further considered the following two stronger conditions than $(*)_r$:
 - $(**)_r$ The Jacobson radical of M is almost projective for any finitely generated almost projective right R-module M;
 - $(***)_r$ every submodule of a finitely generated almost projective right Rmodule is also almost projective.

And he showed that an artinian ring R satisfies $(**)_r$ iff it satisfies $(***)_r$. In section 3 we consider the following generalized conditions of (c):

- $(**^{\sharp})_r$ M/Socle(M) is a direct sum of an injective module and finitely generated almost injective modules for any injective or finitely generated almost injective right R-module M;
- $(***^{\sharp})_r$ every factor module of an injective or finitely generated almost injective right *R*-module is a direct sum of an injective module and finitely generated almost injective modules.

We also consider $(**^{\sharp})_l$ and $(***^{\sharp})_l$ for left *R*-modules. The second aim of this paper is to show that an artinian ring *R* satisfies $(**)_r$ if and only if *R* satisfies $(**^{\sharp})_l$ if and only if *R* satisfies $(***^{\sharp})_l$. But we see that the equivalence between the two conditions $(**)_r$ and $(**^{\sharp})_r$ does not hold in general.

1. Preliminaries

In this paper, we always assume that every ring is a basic artinian ring with identity and every module is unitary. Let R be a ring and let $P(R) = \{e_i\}_{i=1}^n$ be a complete set of pairwise orthogonal primitive idempotents in R. We denote the *Jacobson radical*, an *injective hull* and the *composition length* of a module M by J(M), E(M) and |M|, respectively. Especially, we put $J := J(R_R)$. For a module M we denote the *socle* of M by S(M) and the k-th socle of M by $S_k(M)$ (i.e., $S_k(M)$ is a submodule of M defined by $S_k(M)/S_{k-1}(M) = S(M/S_{k-1}(M))$ inductively).

Let M and N be modules. M is called N-projective (resp. N-injective) if for any homomorphism $\phi: M \to L$ (resp. $\phi': L \to M$) and any epimorphism $\pi: N \to L$ (resp. monomorphism $i: L \to N$) there exists a homomorphism $\tilde{\phi}: M \to N$ (resp. $\tilde{\phi}': N \to M$) such that $\phi = \pi \tilde{\phi}$ (resp. $\phi' = \tilde{\phi}'i$). And M is called almost N-projective (resp. almost N-injective) if for any homomorphism $\phi: M \to L$ (resp. $\phi': L \to M$) and any epimorphism $\pi: N \to L$ (resp. monomorphism $i: L \to N$) either there exists a homomorphism $\tilde{\phi}: M \to N$ (resp. $\tilde{\phi}': N \to M$) such that $\phi = \pi \tilde{\phi}$ (resp. $\phi' = \tilde{\phi}'i$) or there exist a nonzero direct summand N' of N and a homomorphism $\theta: N' \to M$ (resp. $\theta': M \to N'$) such that $\phi = \pi i$ (resp. $\theta' \phi' = pi$), where i is an inclusion of N' in N (resp. p is a projection on N' of N). Further M is called almost projective (resp. almost injective) if M is always almost N-projective (resp. almost N-injective) for any finitely generated R-module N.

We call an artinian ring R a right almost hereditary ring if J is almost projective as a right R-module. By [8, Theorem 1] this definition is equivalent to the condition: J(P) is almost projective for any finitely generated projective right R-module P.

A module is called *uniserial* if its lattice of submodules is a finite chain, i.e.,

any two submodules are comparable. An artinian ring R is called a right serial ring if every indecomposable projective right R-module is uniserial. And we call a ring R a serial ring if R is a right and left serial ring. Let f_1, f_2, \ldots, f_n be primitive idempotents in a serial ring R. Then a sequence $\{f_1R, f_2R, \dots, f_nR\}$ (resp. $\{Rf_1, Rf_2, \dots, Rf_n\}$) of indecomposable projective right (resp. left) Rmodules is called a Kupisch series if $f_iJ/f_jJ^2 \cong f_{i+1}R/f_{i+1}J$ (resp. $Jf_i/J^2f_i \cong$ Rf_{j+1}/Jf_{j+1}) holds for any $j=1,\ldots,n-1$. Further $\{f_1R,f_2R,\ldots,f_nR\}$ (resp. $\{Rf_1, Rf_2, \dots, Rf_n\}$) is called a cyclic Kupisch series if it is a Kupisch series with $f_n J/f_n J^2 \cong f_1 R/f_1 J$ (resp. $Jf_n/J^2 f_n \cong Rf_1/Jf_1$) holds. Let R be a serial ring with a Kupisch series $\{f_1R, f_2R, \dots, f_nR\}$. If $f_nJ = 0$ and $P(R) = \{f_1, \dots, f_n\}$, then R is called a serial ring in the first category. And if $\{f_1R, f_2R, \dots, f_nR\}$ is a cyclic Kupisch series and $P(R) = \{f_1, \dots, f_n\}$, then R is called a serial ring in the second category. Moreover a serial ring is called a strongly serial ring if it is a direct sum of indecomposable serial rings R with a Kupisch series $\{f_{1,1}R, f_{1,2}R, \dots, f_{1,\beta_1}R, f_{2,1}R, \dots, f_{m,\beta_m}R\}$ such that $|f_{i,\beta_i}R|=2$ for any i = 1, ..., m-1 and $|f_{m,\beta_m}R| = 1$ or 2, where $P(R) = \{f_{i,j}\}_{i=1,j=1}^{m \beta_i}$ and $f_{i,j}R$ is injective iff j=1. Then, if $|f_{m,\beta_m}R|=1$ (resp. = 2), then R is a serial ring in the first (resp. second) category. Further we can easily check the following characterization of a strongly serial ring.

LEMMA 1. Let R be an indecomposable strongly serial ring with a Kupisch series $\{f_{1,1}R, f_{1,2}R, \dots, f_{1,\beta_1}R, f_{2,1}R, \dots, f_{m,\beta_m}R\}$, where $P(R) = \{f_{i,j}\}_{i=1,j=1}^{m \beta_i}$ and $f_{i,j}R$ is injective iff j = 1. Then the following hold:

- (1) $S(f_{i,j}R) \cong f_{i+1,1}R/f_{i+1,1}J$ for any i = 1, ..., m-1 and $j = 1, ..., \beta_i$ and $S(f_{m,k}R) \cong f_{m,\beta_m}R/f_{m,\beta_m}J$ (resp. $\cong f_{1,1}R/f_{1,1}J$) for any $k = 1, ..., \beta_m$ if $|f_{m,\beta_m}R| = 1$ (resp. = 2);
- (2) $\{f_{1,1}R/f_{1,1}J^j\}_{i=1}^{\beta_1+1} \cup \{f_{i,1}R/f_{i,1}J^j\}_{i=2,j=2}^{m-1} \cup \{f_{m,1}R/f_{m,1}J^j\}_{j=2}^{\beta_m}$ (resp. $\{f_{i,1}R/f_{i,1}J^j\}_{i=1,j=2}^{m}$) is a basic set of indecomposable injective right R-modules if $|f_{m,\beta_m}R| = 1$ (resp. = 2);
- (3) $\{Rf_{m,\beta_m}, Rf_{m,\beta_m-1}, \dots, Rf_{m,1}, Rf_{m-1,\beta_{m-1}}, \dots, Rf_{1,1}\}$ is a Kupisch series (resp. a cyclic Kupisch series) of left R-modules with $|Rf_{i,2}| = 2$ for any $i = 1, \dots, m$ and $|Rf_{1,1}| = 1$ (resp. $= \beta_m + 1$) if $|f_{m,\beta_m}R| = 1$ (resp. = 2);
- (4) $S(Rf_{1,1}) \cong Rf_{1,1}/Jf_{1,1}$ (resp. $\cong Rf_{m,1}/Jf_{m,1}$) if $|f_{m,\beta_m}R| = 1$ (resp. = 2), $S(Rf_{i,1}) \cong Rf_{i-1,1}/Jf_{i-1,1}$ for any i = 2, ..., m, and $S(Rf_{k,j}) \cong Rf_{k,1}/Jf_{k,1}$ for any k = 1, ..., m and $j = 2, ..., \beta_k$;
- (5) $\{Rf_{i,1}/J^{j}f_{i,1}\}_{i=2,j=2}^{m} \stackrel{\beta_{i-1}+1}{\cup} \{Rf_{m,\beta_{m}}/J^{j}f_{m,\beta_{m}}\}_{j=1}^{\beta_{m}}$ (resp. $\{Rf_{1,1}/J^{j}f_{1,1}\}_{j=2}^{\beta_{m}+1} \cup \{Rf_{i,1}/J^{j}f_{i,1}\}_{i=2,j=2}^{m}$) is a basic set of indecomposable injective left R-modules if $|f_{m,\beta_{m}}R| = 1$ (resp. = 2).

For a set S of R-modules, a subset S' of S is called a basic set of S if

- (a) for any $M, M' \in S'$, $M \approx M'$ as R-modules iff M = M' and
- (b) for any $N \in S$, there exists $M \in S'$ such that $M \approx N$ as R-modules.

2. Strongly almost Hereditary Rings

The following is a structure theorem of a right SAH ring given by M. Harada.

THEOREM A ([7, Theorem 3]). A ring is right SAH if and only if it is a direct sum of the following rings:

- (i) Hereditary rings;
- (ii) strongly serial rings;
- (iii) rings R with $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, f_2^{(1)}, \dots, f_{n_1}^{(1)}, f_1^{(2)}, \dots, f_{n_2}^{(2)}, f_1^{(3)}, \dots, f_n^{(k)}\}$ such that, for each $l = 1, \dots, k$ we put $S_l := \sum_{j=1}^{n_l} f_j^{(l)}$ and $H := \sum_{s=1}^m h_s + \sum_{l=1}^k f_1^{(l)}$, the following three conditions hold for any $l = 1, \dots, k$:
 - (x) S_lRS_l is a strongly serial ring in the first category with a Kupisch series $\{f_1^{(l)}RS_l, f_2^{(l)}RS_l, \dots, f_{n_l}^{(l)}RS_l\}$ of right S_lRS_l -modules,
 - (y) $S_l R(1 S_l) = 0$, $(h_1 + \dots + h_m) R f_1^{(l)} \neq 0$ and $(h_1 + \dots + h_m) \cdot R(f_2^{(l)} + \dots + f_{n_l}^{(l)}) = 0$, and
 - (z) HRH is a hereditary ring.

We note that by [4, Lemma 3.1] a ring in Theorem A (iii) coincides with a ring in [4, Theorem B (iii)] if it satisfies that $\alpha_l = 1$ and $S_l R S_l$ is a strongly serial ring for any l = 1, ..., k, where α_l and S_l are as in it.

Moreover, the condition (ii) in the above Theorem is not the same as [7, Theorem 3], i.e., when R is a serial ring in the second category, he wrote that "R is a serial ring in the second category with $J^2 = 0$ ". But this original condition is not suitable. We give an example. Let R be a serial ring in the second category with $P(R) = \{f_1, f_2, f_3, f_4\}$ such that $\{f_1R, f_2R, f_3R, f_4R\}$ is a Kupisch series and $|f_1R| = 4$, $|f_2R| = 3$, $|f_3R| = 2$, $|f_4R| = 2$. Then R is a strongly serial ring. So it is right SAH by the following proof. But $J^2 \neq 0$. In an unpublished lecture note written by M. Harada the condition is already corrected. Now we give a proof with respect to this part for reader's convenience.

PROOF. Assume that R is an indecomposable right SAH serial ring in the second category. And we show that R is a strongly serial ring. Let

 $\{f_1R, f_2R, \dots, f_nR\}$ be a Kupisch series with $P(R) = \{f_i\}_{i=1}^n$. We may assume that f_1R is injective and $|f_1R| \ge |f_iR|$ for any $i = 1, \dots, n$.

First suppose that $f_1Jf_1 \neq 0$. Then we claim that f_1Jf_1 is simple as a right f_1Rf_1 -module. Since $f_1Jf_1 \neq 0$, $f_1J^n/f_1J^{n+1} \cong f_1R/f_1J$. Then a right R-module f_1J^n is almost projective (but not projective) because R is right SAH. So $f_1R/S_i(f_1R)$ is injective for any $i=0,\ldots,n-1$ by [8, Theorem 1] since the kernel of the projective cover: $f_1R \to f_1J^n$ is $S_n(f_1R)$. Hence

(†) $\{f_1R/S_i(f_1R)\}_{i=0}^{n-1}$ is a basic set of indecomposable injective right R-modules.

Assume that $f_1J^2f_2 \neq 0$. Then $f_1J^{n+1}/f_1J^{n+2} \cong f_2R/f_2J$. On the other hand, f_1J^{n+1} is almost projective (but not projective) because R is right SAH. Therefore f_2R must be injective by [8, Theorem 1]. This contradicts with (†). So $f_1J^2f_2 = 0$. Hence f_1Jf_1 is simple as a right f_1Rf_1 -module. Therefore $S(f_iR) \cong f_1R/f_1J$ for any $i = 1, \ldots, n$ and $|f_nR| = 2$ since f_jR is not injective for any $j = 2, \ldots, n$ by (†). In consequence, R is a strongly serial ring.

Next suppose that $f_1Jf_1=0$. Then we note that $f_iJf_i=0$ for any $i=1,\ldots,n$ since $|f_1R|\geq |f_iR|$. Let k be an integer with $S(f_1R)\cong f_kR/f_kJ$. Then we claim that $S(f_jR)\cong f_kR/f_kJ$ for any $j=1,\ldots,k-1$ and $|f_{k-1}R|=2$. Assume that $S(f_{k-1}R)\not\cong f_kR/f_kJ$. Then there exists an integer $t\geq 2$ with $f_{k-1}J\cong f_kR/f_kJ^t$ since $f_{k-1}J/f_{k-1}J^2\cong f_kR/f_kJ$. On the other hand, $S(f_1R)$ ($\cong f_kR/f_kJ$) is almost projective because R is right SAH. But it is not projective since R is a serial ring in the second category. So f_kR/f_kJ^t is injective for any $i=2,\ldots,|f_kR|$ by [8, Theorem 1]. Therefore $f_{k-1}J$ ($\cong f_kR/f_kJ^t$) is injective since $t\geq 2$. This contradicts with $f_{k-1}J\subset f_{k-1}R$. So $S(f_{k-1}R)\cong f_kR/f_kJ$. Hence $S(f_jR)\cong f_kR/f_kJ$ for any $j=1,\ldots,k-1$ and $|f_{k-1}R|=2$ hold since $S(f_1R)\cong f_kR/f_kJ$ and $f_1Jf_1=0$. Moreover, let $S(f_kR)\cong f_lR/f_lJ$ for some l. Then we obtain that $S(f_jR)\cong f_lR/f_lJ$ for any $j=k,\ldots,l-1$ and $|f_{l-1}R|=2$ by the same argument as f_1R . Continue this argument, we see that R is a strongly serial ring.

Conversely, assume that R is a strongly serial ring in the second category. We can show that R is right SAH by the same way as the case that R is a strongly serial ring in the first category (see the proof of [7, Theorem 3]).

The purpose of this section is to show the following theorem.

Theorem 2. A ring R is right SAH if and only if R satisfies $(*^{\sharp})_{l}$.

To complete the proof, we give a lemma.

LEMMA 3. Let R be a ring in [4, Theorem B (iii)] and we use the same

notations as in it. Put $E_s := E(Rh_s/Jh_s)$ and $E_j^{(l)} := E(Rf_j^{(l)}/Jf_j^{(l)})$ for any s = $1, \ldots, m, l = 1, \ldots, k$ and $j = 1, \ldots, n_l$. Then the following hold for each s, l

- (1) $HRh_s = Rh_s$, $HRf_i^{(l)} = Rf_i^{(l)}$, $HE_s = E_s$ and $E(H_{RH}Rh_s/Jh_s) = E_s$ for any
- (2) $E_i^{(l)} \cong Rf_i^{(l)}/J^uf_{j'}^{(l)}$ for some positive integers $j' \ (\geq \alpha_l + 1)$ and u and they
- are uniserial left R-modules.

 (3) $S_l E_j^{(l)} = E_j^{(l)}$ and $E(S_l R S_l R f_j^{(l)} / S_l J f_j^{(l)}) = E_j^{(l)}$.

 (4) If $E_j^{(l)} / N$ is an almost injective left R-module for some submodule N of $E_j^{(l)}$, then it is almost injective also as a left $S_l R S_l$ -module.
- (5) If R satisfies $(*^{\sharp})_{l}$, then so does $S_{l}RS_{l}$.
- PROOF. (1). $HRh_s = Rh_s$, $HRf_i^{(l)} = Rf_i^{(l)}$ and $HE_s = E_s$ by [4, Theorem 3.3 (a'), (b')]. So E_s is considered as a left HRH-module. And further we can easily see that E_s is injective also as a left HRH-module by [4, Lemma 3.1 and Theorem 3.3 (a'), (b')] using Baer's criterion and Azumaya's theorem (see, for instance, [1, 16.13. Proposition (2)]), i.e., $E({}_{HRH}Rh_s/Jh_s) = E_s$.
 - (2). By (**) in the proof for "if" part of [4, Theorem 4.1].
- (3). $S_l E_j^{(l)} = E_j^{(l)}$ by (2) and [4, Lemma 3.1 and Theorem B (iii)(b)]. So $E_j^{(l)}$ is considered as a left $S_l R S_l$ -module. And further we can easily see that $E_j^{(l)}$ is $S_l R f_i^{(l)}$ -injective for any $i = 1, \ldots, n_l$ by [4, Theorem 3.3 (a'), (b')]. Therefore $E_i^{(l)}$ is injective as a left S_lRS_l -module using Baer's criterion and Azumaya's theorem
- (see, for instance, [1, 16.13. Proposition (2)]), i.e., $E(s_i,RS_i,S_l,Rf_j^{(l)}/S_l,S_l,f_j^{(l)}) = E_j^{(l)}$. (4). If $E_j^{(l)}/N$ is injective as a left R-module, it is also injective as a left S_lRS_l -module by (3). Assume that a (uniserial) left R-module $E_i^{(l)}/N$ is almost injective but not injective. Then there is a positive integer p such that annost injective out not injective. Then there is a positive integer p such that $J^p E(E_j^{(l)}/N) = E_j^{(l)}/N$ and $J^i E(E_j^{(l)}/N)$ is projective for any i = 0, ..., p-1 by [8, Theorem 1^{\sharp}]. Let j'' be an integer with $J^{p-1}E(E_j^{(l)}/N) \cong Rf_{j''}^{(l)}$. We note that $\{Rf_{n_l}^{(l)}, Rf_{n_{l-1}}^{(l)}, ..., Rf_1^{(l)}\}$ is a Kupisch series of left R-modules by [4, Lemma 3.4 (1)]. So $J^i E(E_j^{(l)}/N) \cong Rf_{j''+p-1-i}^{(l)}$ for any i = 0, ..., p-1. Further $j'' \ge \alpha_l + 1$ from (2) since $J^i_{j''} = J^p E(E_j^{(l)}/N) = E_j^{(l)}/N$. Therefore $J^i E(E_j^{(l)}/N)$ is projective also as a left $S^i_{j''} = J^i_{j''} = J^i_{j''$ tive also as a left S_lRS_l -module for any i = 0, ..., p-1 by [4, Lemma 3.1 and Theorem B (iii)(b)] since $j'' + p - 1 - i \ge j'' \ge \alpha_l + 1$. Hence $E_j^{(l)}/N$ is almost injective also as a left S_lRS_l -module by (3) and [8, Theorem 1^{\sharp}].
 - (5). By (3) and (4).

PROOF OF THEOREM 2. (\Rightarrow) . We may assume that R is an indecomposable ring in (i), (ii) or (iii) of Theorem A.

Suppose that R is a hereditary ring, then it is well known that $(*^{\sharp})_l$ holds (see, for instance, [4, §1 Preliminaries]).

Suppose that R is a strongly serial ring with a Kupisch series $\{f_{1,1}R, f_{1,2}R, \dots, f_{1,\beta_1}R, f_{2,1}R, \dots, f_{m,\beta_m}R\}$, where $P(R) = \{f_{i,j}\}_{i=1,j=1}^{m \beta_i}$ and $f_{i,j}R$ is injective iff j = 1. Let E be an injective left R-module and let N be a proper submodule of E. First we consider that E is indecomposable. Then $E/N \cong Rf_{m,\beta_m}/J^v f_{m,\beta_m}$ or $\cong Rf_{u,1}/J^v f_{u,1}$ by Lemma 1 (5), where u and v are positive integers. If $v \ge 2$ or $E/N \cong Rf_{m,\beta_m}/Jf_{m,\beta_m}$, then E/N is injective again by Lemma 1 (5). Assume that $E/N \cong Rf_{u,1}/Jf_{u,1}$ for some $u \in \{1, \dots, m-1\}$. Then $E/N \cong S(Rf_{u+1,1})$ by Lemma 1 (4). And $E(E/N) \cong Rf_{u+1,1}$ with $J^{\beta_u}E(E/N) =$ E/N and $J^{j}E(E/N) \cong Rf_{u,\beta_{u}-j+1}$, i.e., it is projective, for any $j=1,\ldots,\beta_{u}-1$ by Lemma 1 (3), (4), (5). Therefore E/N is almost injective by [8, Theorem 1^{\sharp}]. If $E/N \cong Rf_{m,1}/Jf_{m,1}$ and $|f_{m,\beta_m}R| = 1$ (resp. = 2), then $E/N \cong S(Rf_{m,\beta_m})$ (resp. $\cong S(Rf_{1,1})$). And we can see that E/N is almost injective by the same way as the case that $E/N \cong Rf_{u,1}/Jf_{u,1}$ for some $u \in \{1, \dots, m-1\}$. In consequence, E/N is (injective or) almost injective, if E is indecomposable. Next we consider that E is not indecomposable. Since R is a serial ring, we can represent $N = \bigoplus_{i \in I} N_i$, where N_i is a nonzero uniserial submodule of N for any $i \in I$. There is a direct summand E' of E with $E = E' \oplus (\bigoplus_{i \in I} E(N_i))$. Then $E/N \cong E' \oplus$ $(\bigoplus_{i\in I} E(N_i)/N_i)$. Therefore E/N is a direct sum of an injective module and finitely generated almost injective modules because a uniserial module $E(N_i)/N_i$ is (injective or) almost injective for any $i \in I$ by the case that E is indecomposable.

Suppose that R is a ring in Theorem A (iii). Let E be an injective left R-module and let N be a submodule of E. We may assume that $E=\bigoplus_{s=1}^m E(Rh_s/Jh_s)^{u_s}) \oplus (\bigoplus_{l=1,j=1}^k E(Rf_j^{(l)}/Jf_j^{(l)})^{v_j^l})$, where u_s and v_j^l are nonnegative integers. Put $E_1:=\bigoplus_{s=1}^m E(Rh_s/Jh_s)^{u_s}$ and $E_2:=\bigoplus_{l=1,j=1}^k E(Rf_j^{(l)}/Jf_j^{(l)})^{v_j^l}$. For each i=1,2, let $\pi_i:E\to E_i$ be the projection with respect to $E=E_1\oplus E_2$ and put $N^i:=\pi_i(N)$ and $N_i:=N\cap E_i$. Then there is an isomorphism $\eta:N^1/N_1\to N^2/N_2$ with $N=\{x+y_x\mid x\in N^1,\,y_x\in N^2 \text{ with }y_x+N_2=\eta(x+N_1)\}+N_1+N_2$ (see, for instance, $[6,\ p449]$ or $[3,\ p54]$). And we claim that there exists a homomorphism $\eta':N^1/N_1\to N^2$ such that $v_2\eta'=\eta$, where $v_2:N^2\to N^2/N_2$ is the natural epimorphism. Let H and S_l as in Theorem A (iii). By Lemmas 3 (1), (3) $HN^1=N^1$ and $(\sum_{l=1}^k S_l)N^2=N^2$. So we can represent $N^1/N_1\stackrel{\mathcal{N}}{\cong} N^2/N_2\cong \bigoplus_{l=1}^k (Rf_1^{(l)}/Jf_1^{(l)})^{w_l}$ by the definitions of H and S_l , where w_1,\ldots,w_k are non-negative integers. On the other hand, $(\sum_{l=1}^k f_1^{(l)})N^2\subseteq (\sum_{l=1}^k f_1^{(l)})E_2\subseteq S(E_2)$ by $[4,\ Theorem\ 3.3\ (a')]$ since $(\sum_{l=1}^k S_l)E_2=E_2$ from Lemma 3 (3). Hence there exists a homomorphism $\eta':N^1/N_1\to N^2$ such

that $v_2\eta'=\eta$. Then we note that $N=\{x+y_x\,|\,x\in N^1,\,y_x\in N^2 \text{ with }y_x+N_2=\eta(x+N_1)\}+N_1+N_2=\{x+\eta'(x+N_1)\,|\,x\in N^1\}+N_2.$ Let $v_1:N^1\to N^1/N_1$ be the natural epimorphism and put $\psi:=\eta'v_1.$ Then we obtain a homomorphism $\tilde{\psi}:E_1\to E_2$ with $\tilde{\psi}|_{N^1}=\psi.$ Put $E_1(\tilde{\psi}):=\{x+\tilde{\psi}(x)\,|\,x\in E_1\}$ and $N^1(\tilde{\psi}):=\{x+\tilde{\psi}(x)\,|\,x\in N^1\}.$ Then $E=E_1(\tilde{\psi})\oplus E_2$ and $N=N^1(\tilde{\psi})\oplus N_2$ hold because $N=\{x+\eta'(x+N_1)\,|\,x\in N^1\}+N_2=\{x+\tilde{\psi}(x)\,|\,x\in N^1\}+N_2.$ Therefore $E/N\cong (E_1(\tilde{\psi})/N^1(\tilde{\psi}))\oplus E_2/N_2\cong E_1/N^1\oplus E_2/N_2$ since the restrictions of π_1 induce isomorphisms $E_1(\tilde{\psi})\cong E_1$ and $N^1(\tilde{\psi})\cong N^1.$ Now E_1/N^1 is injective by Lemma 3 (1) and Theorem A (iii)(z). And E_2/N_2 is a direct sum of (uniserial) almost injective modules by Lemma 3 (3), Theorem A (iii)(x) and the case that R is a strongly serial ring. In consequence, E/N is a direct sum of an injective module and finitely generated almost injective modules.

 (\Leftarrow) . We may assume that R is an indecomposable ring satisfying $(*^{\sharp})_l$. And we show that R is a ring in either (i), (ii) or (iii) of Theorem A.

R satisfies the condition $(\sharp)_I$. So we may assume that R is a ring in either (i), (ii) or (iii) of [4, Theorem B] by [4, Theorem 4.1].

Suppose that R is a serial ring in the first category. Let $P(R) = \{g_{i,j}\}_{i=1,j=1}^{m, \gamma_i}$ such that $\{Rg_{1,1}, Rg_{1,2}, \dots, Rg_{1,\gamma_1}, Rg_{2,1}, \dots, Rg_{m,\gamma_m}\}$ is a Kupisch series and $Rg_{i,j}$ is injective iff j=1. If m=1, then clearly R is a strongly serial ring. Assume that $m \geq 2$. For each $i=2,\dots,m$, $Rg_{i,1}/Jg_{i,1}$ is almost injective by $(*^{\sharp})_l$. But it is not injective since there is a monomorphism: $Rg_{i,1}/Jg_{i,1} \rightarrow Rg_{i-1,\gamma_{i-1}}/J^2g_{i-1,\gamma_{i-1}}$. Put $p:=|E(Rg_{i,1}/Jg_{i,1})|$. Then $J^{p-1}E(Rg_{i,1}/Jg_{i,1})=Rg_{i,1}/Jg_{i,1}$ and $J^jE(Rg_{i,1}/Jg_{i,1})$ is projective for any $j=0,\dots,p-2$ by [8, Theorem 1^{\sharp}]. So, in particular, $|J^{p-2}E(Rg_{i,1}/Jg_{i,1})|=2$ and $J^{p-2}E(Rg_{i,1}/Jg_{i,1}) \cong Rg_{i-1,\gamma_{i-1}}$ because $Jg_{i-1,\gamma_{i-1}}/J^2g_{i-1,\gamma_{i-1}}\cong Rg_{i,1}/Jg_{i,1}$. Therefore $|Rg_{i-1,\gamma_{i-1}}|=2$. Further $|Rg_{m,\gamma_m}|=1$ since R is a serial ring in the first category. Hence R is a strongly serial ring.

Next suppose that R is a serial ring in the second category. By the same argument as the case that R is a serial ring in the first category with $m \ge 2$, we see that R is a strongly serial ring.

Last suppose that R is a ring in [4, Theorem B (iii)] and we use the same notations as in it. By Theorem A and [4, Lemma 3.1] we only show that S_lRS_l is a strongly serial ring and $\alpha_l = 1$ for any $l = 1, \ldots, k$. A serial ring S_lRS_l satisfies $(*^{\sharp})_l$ by Lemma 3 (5). So S_lRS_l is a strongly serial ring by the above case. Next we show that $\alpha_l = 1$. $Rf_{\alpha_l}^{(l)}$ has a simple subfactor which is isomorphic to Rh_s/Jh_s for some $s \in \{1, \ldots, m\}$ by the definition of α_l . Therefore there exist a submodule N of $Rf_{\alpha_l}^{(l)}$ and a nonzero homomorphism $\phi: N \to Rh_s/Jh_s$. Put $E_s := E(Rh_s/Jh_s)$ and let $\tilde{\phi}: Rf_{\alpha_l}^{(l)} \to E_s$ be an extension homomorphism of ϕ . Then we claim

that $\tilde{\phi}(f_{\alpha_l}^{(l)}) \in E_s - J(E_s)$. Let $\bigoplus_{i=1}^p Re_i$ be the projective cover of E_s , where $\{e_1,\ldots,e_p\} \subseteq P(R)$. Then $h_sRe_i \neq 0$ for any $i=1,\ldots,p$. So $e_i \notin \{f_{\alpha_l+1}^{(l)},\ldots,f_{n_l}^{(l)}\}$ because $h_sR(f_{\alpha_l+1}^{(l)}+\cdots+f_{n_l}^{(l)})=0$ by the definition of α_l . On the other hand, if $g \in P(R)$ with $f_{\alpha_l}^{(l)}Jg \neq 0$, then $g \in \{f_{\alpha_l+1}^{(l)},\ldots,f_{n_l}^{(l)}\}$ by [4, Theorem 3.3 (a')]. Hence $f_{\alpha_l}^{(l)}Je_i=0$ for any $i=1,\ldots,p$, i.e., $f_{\alpha_l}^{(l)}J(E_s)=0$. Therefore $\tilde{\phi}(f_{\alpha_l}^{(l)}) \in E_s - J(E_s)$. So we have a submodule X of E_s with $E_s/X \cong Rf_{\alpha_l}^{(l)}/Jf_{\alpha_l}^{(l)}$. Therefore $Rf_{\alpha_l}^{(l)}/Jf_{\alpha_l}^{(l)}$ is almost injective by $(*^\sharp)_l$. But $Rf_{\alpha_l}^{(l)}/Jf_{\alpha_l}^{(l)}$ is not injective by Lemma 3 (2). Hence, put $E_{\alpha_l}^{(l)}:=E(Rf_{\alpha_l}^{(l)}/Jf_{\alpha_l}^{(l)})$ and $q:=|E_{\alpha_l}^{(l)}|$, then $J^{q-1}E_{\alpha_l}^{(l)}\cong Rf_{\alpha_l}^{(l)}/Jf_{\alpha_l}^{(l)}$ and $J^iE_{\alpha_l}^{(l)}$ is projective for any $i=0,\ldots,q-2$ by [8, Theorem 1^\sharp]. So, in particular, $S(Rf_{\alpha_l+1}^{(l)})\cong Rf_{\alpha_l}^{(l)}/Jf_{\alpha_l}^{(l)}$ since $\{Rf_{n_l}^{(l)},Rf_{n_l-1}^{(l)},\ldots,Rf_1^{(l)}\}$ is a Kupisch series of left R-modules by [4, Lemma 3.4 (1)]. But $S(Rf_{\alpha_l+1}^{(l)})\cong Rf_1^{(l)}/Jf_1^{(l)}$ by [4, Lemma 3.4 (2)]. Hence $\alpha_l=1$.

A right SAH ring does not always satisfy $(*^{\sharp})_r$ and a ring satisfying $(*^{\sharp})_r$ is not always a right SAH ring. Now we give an example.

Example 4. Consider a factor ring

$$R := \begin{bmatrix} D & D & 0 & D & \bar{0} & \bar{0} \\ 0 & D & 0 & D & \bar{0} & \bar{0} \\ 0 & 0 & D & D & \bar{0} & \bar{0} \\ 0 & 0 & 0 & D & D & \bar{0} \\ 0 & 0 & 0 & D & D & D \\ 0 & 0 & 0 & 0 & D & D \end{bmatrix},$$

where D is a division ring. And we consider that R is a ring by the ordinary addition and the multiplication of matrices. Put $H := e_1 + e_2 + e_3 + e_4$ and $S_1 := e_4 + e_5 + e_6$, where e_i is the (i, i)-matrix unit for any i.

Then HRH is a hereditary ring and S_1RS_1 is a strongly serial ring in the first category. And R is a ring in Theorem A(iii), i.e., R is a right SAH ring.

But we claim that R does not satisfies $(*^{\sharp})_r$. e_4R is an injective right R-module with $e_4R/S(e_4R) \cong e_4R/e_4J$. And $e_4R/S(e_4R)$ is not injective. Further $e_4R/S(e_4R)$ is not almost injective by [8, Corollary 1^{\sharp}] since $e_1R \oplus e_3R$ is a projective cover of $E(e_4R/e_4J)$.

By Theorem 2 R satisfies $(*^{\sharp})_{I}$ but is not a left SAH ring.

3. Stronger Conditions than that of a SAH Ring

The following is a structure theorem of an artinian ring which satisfies $(**)_r$ and $(***)_r$ which are stronger conditions than that of a right SAH ring:

THEOREM B ([7, Theorem 4]). For a ring the following are equivalent:

- (a) It satisfies $(**)_r$;
- (b) it satisfies $(***)_r$;
- (c) it is a direct sum of the following rings:
 - (i) Hereditary rings which are not serial;
 - (ii) serial rings with the radical square zero;
 - (iii) rings R in Theorem A (iii) such that HRH is not a serial ring and $J(S_lRS_l)^2 = 0$ for any l = 1, ..., k, where H and S_l are as in Theorem A (iii).

The purpose of this section is to show the following theorem.

Theorem 5. For a ring R the following are equivalent:

- (a) R satisfies $(**)_r (\Leftrightarrow (***)_r)$;
- (b) R satisfies $(**^{\sharp})_i$;
- (c) R satisfies $(***^{\sharp})_{l}$.

To complete the proof, we give a lemma.

LEMMA 6. Let R be a ring in [4, Theorem B (iii)] and we use the same notations as in it.

- (1) Suppose that $\alpha_l = 1$. And let M be an indecomposable left R-module with HM = M. Then the following hold.
 - (i) $Rf_1^{(l)}/Jf_1^{(l)}$ is injective as a left HRH-module but not injective as a left R-module for any l.
 - (ii) If M is injective or finitely generated almost injective as a left R-module, then M is injective or finitely generated almost injective also as a left HRH-module.
 - (iii) If M is finitely generated almost injective but not injective as a left HRH-module, then M is finitely generated almost injective but not injective also as a left R-module.
- (2) Suppose that $\alpha_l = 1$. If R satisfies $(**^{\sharp})_l$, then HRH also satisfies $(**^{\sharp})_l$.
- (3) Let M be an indecomposable left R-module with $S_lM = M$ for some l. Then M is almost injective but not injective as a left R-module if and only if M is almost injective but not injective as a left S_lRS_l -module.
- (4) If R satisfies $(**^{\sharp})_l$, then S_lRS_l also satisfies $(**^{\sharp})_l$ for any $l=1,\ldots,k$.

PROOF. Put $E_s := E(Rh_s/Jh_s)$ and $E_j^{(l)} := E(Rf_j^{(l)}/Jf_j^{(l)})$ for any s = 1, ..., m, l = 1, ..., k and $j = 1, ..., n_l$.

- (1)(i). Since $\alpha_l = 1$, $H = \sum_{s=1}^m h_s + \sum_{l=1}^k f_1^{(l)}$. So we can easily see that $Rf_1^{(l)}/Jf_1^{(l)}$ is injective as a left HRH-module by [4, Lemma 2.3 and Theorem 3.3 (a'), (b')] using Baer's criterion. And $Rf_1^{(l)}/Jf_1^{(l)}$ is not injective as a left R-module by Lemma 3 (2).
- (ii). First assume that M is injective as a left R-module. Then $M \cong E_s$ for some s by (i) since HM = M. Therefore M is injective also as a left HRH-module by Lemma 3 (1).

Next assume that M is finitely generated almost injective but not injective as a left R-module. Then $S(_RM)$ is simple by $[8, \text{ Theorem } 1^{\sharp}]$. And $S(_RM) \cong Rf_1^{(l)}/Jf_1^{(l)}$ for some l or $\cong Rh_s/Jh_s$ for some s since HM = M. If $S(_RM) \cong Rf_1^{(l)}/Jf_1^{(l)}$ for some l, then M is simple, i.e., $M \cong Rf_1^{(l)}/Jf_1^{(l)}$, by [4, Theorem 3.3 (a'), (b')] since $\alpha_l = 1$. Therefore M is injective as a left HRH-module by (i). So we consider that $S(_RM) \cong Rh_s/Jh_s$ for some s. Then there exists a positive integer p such that $M \cong J^pE_s$ and J^iE_s is projective as a left R-module for any $i = 0, \ldots, p-1$ by $[8, \text{ Theorem } 1^{\sharp}]$. And $J^jE_s = J(HRH)^jE_s$ for any $j = 0, \ldots, p-1$ by Lemma 3 (1). So M is almost injective but not injective as a left RRH-module by $[8, \text{ Theorem } 1^{\sharp}]$.

- (iii). $S(_{HRH}M)$ is simple by [8, Theorem 1[‡]]. But $S(_{HRH}M) \ncong HRf_1^{(l)}/HJf_1^{(l)}$ (= $Rf_1^{(l)}/Jf_1^{(l)}$) for any l by (i) because M is not injective as a left HRH-module. So $S(_{HRH}M) \cong HRh_s/HJh_s$ for some s since HM = M. Then there is a positive integer p such that $M \cong J(HRH)^p E_s$ and $J(HRH)^i E_s$ is projective as a left HRH-module for any $i = 0, \ldots, p-1$ by [8, Theorem 1[‡]] and Lemma 3 (1). And $J(HRH)^j E_s = J^j E_s$ for any $j = 0, \ldots, p$ and $J(HRH)^i E_s$ is projective also as a left R-module for any $i = 0, \ldots, p-1$ by Lemma 3 (1). So M is almost injective but not injective as a left R-module by [8, Theorem 1[‡]].
- (2). Let M be an injective or finitely generated almost injective left HRHmodule. We may assume that M is indecomposable and not simple.

Assume that M is injective as a left HRH-module. Then $M \cong E_s$ for some s by [4, Theorem 3.3 (a'), (b')] and Lemma 3 (1) since $\alpha_l = 1$ and M is not simple. Therefore M is injective also as a left R-module. So M/S(M) is a direct sum of an injective left R-module and finitely generated almost injective left R-modules by $(**^{\sharp})_l$. Hence M/S(M) is a direct sum of an injective left R-module and finitely generated almost injective left R-modules by (1)(ii).

Next assume that M is finitely generated almost injective but not injective as a left HRH-module. Then M is almost injective as a left R-module by (1)(iii). So

M/S(M) is a direct sum of an injective left *R*-module and finitely generated almost injective left *R*-modules by $(**^{\sharp})_l$. Hence M/S(M) is a direct sum of an injective left *HRH*-module and finitely generated almost injective left *HRH*-modules by (1)(ii).

(3). First we note that M is a uniserial left R- and S_lRS_l -module since $S_lM = M$, M is indecomposable and a ring S_lRS_l is serial.

Assume that M is almost injective but not injective as a left R-module. Then S(M) is simple by [8, Theorem $1^{\sharp}]$. So $E(M) \cong E_j^{(l)}$ for some j since $S_lM = M$. And there exists a positive integer p such that $M \cong J^p E_j^{(l)}$ and $J^i E_j^{(l)}$ is projective as a left R-module for any $i = 0, \ldots, p-1$ by [8, Theorem $1^{\sharp}]$. Now $S_l E_j^{(l)} = E_j^{(l)}$ by Lemma 3 (3). And $S_l \cdot S(Rf_l^{(l)}) \neq S(Rf_l^{(l)})$ for any $t \in \{1, \ldots, \alpha_l\}$ by [4, Lemma 3.1 and Lemma 3.4 (1)]. So there is $j_i \in \{\alpha_l + 1, \ldots, n_l\}$ with $J^i E_j^{(l)} \cong Rf_{j_i}^{(l)}$ for any $i = 0, \ldots, p-1$. Therefore $J^i E_j^{(l)} \cong S_l Rf_{j_i}^{(l)}$, i.e., $J^i E_j^{(l)}$ is projective also as a left $S_l RS_l$ -module, by [4, Theorem B (iii)(b) and Lemma 3.1] since $j_i \geq \alpha_l + 1$. Hence M is almost injective but not injective as a left $S_l RS_l$ -module by [8, Theorem $1^{\sharp}]$ and Lemma 3 (3).

We can show the converse by the same way.

(4). By the same way as the proof of (2) we can show using (3) and Lemma 3 (3).

PROOF OF THEOREM 5. We may assume that R is an indecomposable ring. (a) \Rightarrow (c). We may assume that R is a ring in either (i), (ii) or (iii) in Theorem B (c).

Suppose that R is a hereditary ring which are not serial. Then Rg is not injective for any $g \in P(R)$ by [7, Corollary 3]. Therefore every finitely generated almost injective left R-module is injective by [8, Theorem 1^{\sharp}]. So $(***^{\sharp})_l$ holds since R is a hereditary ring.

Suppose that R is a serial ring with $J^2=0$. Let $\{Rf_1,Rf_2,\ldots,Rf_n\}$ be a Kupisch series with $\{f_1,f_2,\ldots,f_n\}=P(R)$. If R is a serial ring in the first (resp. second) category, then $\{Rf_j,Rf_1/Jf_1\}_{j=1}^{n-1}$ (resp. $\{Rf_j\}_{j=1}^n$) is a basic set of indecomposable injective left R-modules. So $\{Rf_j,Rf_n,Rf_j/Jf_j\}_{j=1}^{n-1}$ (resp. $\{Rf_j,Rf_j/Jf_j\}_{j=1}^n$) is a basic set of finitely generated almost injective left R-modules by $[8, \text{ Theorem } 1^{\sharp}]$. Therefore because R is a serial ring with $J^2=0$, every factor module of a finitely generated almost injective module is represented as $\bigoplus_{j=1}^{n-1} ((Rf_j)^{u_j} \oplus (Rf_n)^{u_n} \oplus (Rf_j/Jf_j)^{v_j})$ (resp. $\bigoplus_{j=1}^n ((Rf_j)^{u_j} \oplus (Rf_j/Jf_j)^{v_j})$), where u_j, u_n, v_j are non-negative integers. Hence $(****^{\sharp})_l$ holds.

Last suppose that R is a ring in Theorem B (c)(iii). We use the same notations as in Theorem A (iii). It is obvious that S_lRS_l is a serial ring in the first category

- $(c) \Rightarrow (b)$. Clear.
- (b) \Rightarrow (a). Since R satisfies $(**^{\sharp})_l$, it satisfies $(\sharp)_l$, i.e., R is a right almost hereditary ring by [4, Theorem 4.1]. So we may assume that R is a ring in either (i), (ii) or (iii) of [4, Theorem B]. And we show that it is a ring in either (i), (ii) or (iii) of Theorem B (c).

Suppose that R is a hereditary ring. Assume that Rg is not injective for any $g \in P(R)$, then R is not serial, i.e., R is a ring in Theorem B (c)(i). Assume that there is $f \in P(R)$ with Rf injective, then R is a serial ring by [7, Corollary 3].

Suppose that R is a serial ring. Assume that there exists $f \in P(R)$ with $|Rf| \ge 3$. Then further we may assume that Rf is injective. Jf is almost injective by $[8, \text{ Theorem } 1^{\sharp}]$. And Jf/S(Rf) is also almost injective by $(**^{\sharp})_l$. But Jf/S(Rf) is not injective since there is an inclusion map: $Jf/S(Rf) \to Rf/S(Rf)$. Therefore there exist $e \in P(R)$ and a positive integer p such that $Re \cong E(Jf/S(Rf))$, $J^p e \cong Jf/S(Rf)$ and $J^i e$ is projective for any $i = 0, \ldots, p-1$ by $[8, \text{ Theorem } 1^{\sharp}]$. So, in particular, $J^{p-1}e$ is projective. But $J^{p-1}e \cong Rf/S(Rf)$, a contradiction.

Suppose that R is a ring in [4, Theorem B (iii)]. And let H and S_l as in it. Then S_lRS_l satisfies $(**^\sharp)_l$ for any $l=1,\ldots,k$ by Lemma 6 (4). Therefore $J(S_lRS_l)^2=0$ from the previous case that R is a serial ring. So $\alpha_l=1$ since $E(Rf_1^{(l)}/Jf_1^{(l)})\cong Rf_j^{(l)}/J^uf_j^{(l)}$ for some $j\ (\geq \alpha_l+1)$ and u by Lemma 3 (2). Therefore HRH also satisfies $(**^\sharp)_l$ by Lemma 6 (2). Hence HRH is not serial or serial with $J(HRH)^2=0$ by the previous two cases. In consequence, R is a ring in Theorem B (c)(ii) or (iii).

References

- [1] F. W. Anderson and K. R. Fuller: Rings and categories of modules (second edition), Graduate Texts in Math. 13, Springer-Verlag (1991).
- [2] M. Auslander: On the dimension of modules and algebras (III), global dimensions, Nagoya Math. J. 9 (1995), 66-77.
- [3] Y. Baba and M. Harada, On almost M-projectives and almost M-injectives, Tsukuba J. Math. **14** No. 1 (1990), 53–69.
- [4] Y. Baba and H. Miki: Symmetry of almost hereditary rings, Math. J. of Okayama Univ. 42 (2000), 29-54.
- [5] M. Harada: Hereditary semi-primary rings and tri-angular matrix rings, Nagoya Math. J. 27 (1966), 463-484.
- [6] —— and A. Tozaki: Almost M-projectives and Nakayama rings, J. Algebra 122 (1989), 447-474.
- [7] —: Almost hereditary rings, Osaka J. Math. **28** (1991), 793–809.
- [8] ----: Almost projective modules, J. Algebra **159** (1993), 150–157.
- [9] ——: Almost projective modules, 3. Algebra 25 (1757).

 [9] ——: Almost QF rings and almost QF[#] rings, Osaka J. Math. 30 (1993), 887–892.
- [10] I. Murase: On the structure of generalized uni-serial rings I, Sci. Paper College Gen. Ed. Univ. Tokyo 13 (1963), 1-21.
- [11] J. J. Rotman: An introduction to homological algebra, Academic Press (1979).
- [12] R. Wisbauer: Foundations of module and ring theory, Gordon and Breach Science Publishers (1991).

Department of Mathematics Osaka Kyoiku University Kashiwara Osaka 582-8582 Japan