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A CHARACTERIZATION OF ALMOST-EINSTEIN
REAL HYPERSURFACES OF QUATERNIONIC
PROJECTIVE SPACE

By

Juan de Dios PEREZ

Abstract. Almost-Einstein real hypersurfaces of quaternionic
projective space, as defined in [3], can be characterized by a
condition involving their curvature and Ricci tensors.

1. Introduction

Let M be a connected real hypersurface of a quaternionic projective space
QP™ m > 3, with metric g of constant quaternionic sectional curvature 4. let ¢
be the unit local normal vector field on M and {Ji,/>,J3} a local basis of the
quaternionic structure of QP™, [2]. Then U; = —J;¢, i =1,2,3, are tangent to
M. Let us denote by D' = Span{U;, U, Us} and by D its orthogonal com-
plement in TM.

Let 4 be the Weingarten endomorphism of M and S its Ricci tensor. M is
said to be almost-Einstein, [3], if

3
(1.1) SX=aX+b ) g(4X,U)U;

i=1
for any X € TM, where a and b are constant. In [3] we studied such real
hypersurfaces obtaining

THEOREM A. Let M be an almost-Einstein real hypersurface of QP™, m > 2.
Then it is an open subset of one of the following:

1) a geodesic hypersphere.

ii) a tube of radius r over QPF, O<k<m-1, O0<r<n/2 and
cot’(r) = (4k +2)/(4m — 4k — 2).

iii) @ tube of radius r over CP™, 0 <r < n/4 and cot*(2r) =1/(m —1).
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Among the real hypersurfaces appearing in Theorem A, only the geodesic
hyperspheres of radius r, 0 < r < n/2 and cot’(r) = 1/(2m) are Einstein.

Recently, in [4] we studied real hypersurfaces of QP™, m > 2, such that
o(R(X,Y)SZ) =0, for any X,Y,Z tangent to M, where ¢ denotes the cyclic
sum and R the curvature tensor of M. Concretely we obtained

THEOREM B. A real hypersurface M of QP"™, m>2, satisfies
o(R(X,Y)SZ) =0, for any X,Y,Z tangent to M if and only if it is Einstein.

In the present paper we propose to study a weaker condition than the one
appearing in Theorem B. Concretely we shall consider real hypersurfaces M of
QOP™ m > 3, satisfying

(1.2) o(R(X,Y)SZ)=0 foranyX,Y,ZeD

It is easy to see, bearing in mind the first identity of Bianchi, that all almost-
Einstein real hypersurfaces of QP™ satisfy (1.2). Our purpose is to obtain the
converse. That is, we shall prove the following

THEOREM. A real hypersurface M of QP™, m > 3, satisfies (1.2) if and only
if it is almost-Einstein.

2. Preliminaries

Let X be a vector field tangent to M. We write J;.X = ®.X + fi(X)¢,
i=1,2,3, where ®;X denotes the tangential component of J;.X and fi(X) =
g(X,U;). From this, [3], we have

(2.1) g(@:X,Y) +g(X,®,Y)=0, ®U;=0, ®U=-OU =0,

for any X,Y tangent to M, i=1,2,3, (j,k,t) being a cyclic permutation of
(1, 2, 3). We also obtain

(2.2) DX = 0,0, X = DX

for any X e D, where (i,j, k) is a cyclic permutation of (1, 2, 3).
From the expression of the curvature tensor of QP™, [2], the equation of
Gauss is given by

(23) R(X,Y)Z=g(Y,Z)X —g(X,Z)Y + i{g(q),y, Z)®.X — g(®:X,Z)D;Y
i=1

+29(X,®;Y)0,Z} + g(AY,Z)AX — g(AX,Z)AY
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for any X, Y,Z tangent to M. This implies that the Ricci tensor of M has the
following expression:

w

(2.4) SX =(@m+7)X -3 fi(X)Ui+ HX

i=1

for any X tangent to M, where H = (trace 4)4 — 4.

3. Proof of the Theorem

Along this paragraph M will denote a real hypersurface of QP™
satisfying (1.2).

From (2.4) and the first identity of Bianchi, (1.2) is equivalent to have
o(R(X,Y)HZ) =0 for any X,Y,Ze D.

Let {Ey,..., E4m—4} be a local orthonormal frame of D at any point of M.
The following computations are made locally on a neighbourhood of any point
of M.

If from (2.3) we develop o(R(X,Y)HZ) =0 and take Z =E;, Y = ®E;,
j=1,...,4m —4, we have

m>3,

2

(1) —(9(E, HE) + g(® E;, HOE))®, X — (g(®sE;, HE)
+ 9(®2E), HO\E})) DX + (9(®: ), HE)) — g(®3E;, HO,E)) s X
+ 201 HX + (g(®1.X, HE)) — g(HX, ®,E)))E; + (9(HX , ;)
+ (@1 X, HO\E)))®1E; + (29(HX, 0:E)) + g(®:X, HD| E)
~ 9(@3X, HE))®:E) + (¢(D2X, HE) + g(®3X, HO, E))
— 29(HX, ®:E))0sE; — 2g(X, E;)®, HE;
— 2g(X, @3 E;) O, HE; + 2g(X, ®, E;) D3 HE;
+2g(®1 X, E;) @ H®\ E; + 29(0, X, E;)©, HO, E
+29(D3 X, E))®3 HD E; = 0

for any X € D.
Now we prepare the following Lemmas

Lemma 1. g(HX,®,X) =0 for any Xe D, i=1,2,3.
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Proor. We take the scalar product of (3.1) and X and take summation on
j. Then we obtain

(3.2) (8m — 16)g(®HX, X) =0

for any X e D. As m >3, (3.2) implies g(HX,®;X) = 0.

If we develop o(R(X,®;E;)HE;) =0, i = 2,3, we also obtain g(HX,®,X) =
g(HX,®3;X) =0, finishing the proof.

Let us denote by Q(X) = Span{X,® X,®,X,®;3X} for any X e TM.

LEMMA 2. g(X,HZ)=0 for any unit X,Z € D such that Q(X) L Q(Z).

Proor. Let us consider X,Y € D. From Lemma 1 and polarization we
have

(3.3) g(H®; X, Y) =g(®;HX,Y) i=1,2,3

for any X, Y e D. Taking in (3.3) Y =®,Z, i=1,2,3 we obtain

(3.4) g(HO,X,®;Z) = g(HX,Z) i=1,2,3

Take the scalar product of (3.1) and Z and then summation on j. We have

(3.5)
g(H® X, Z) + (4m — T)g(®1HX, Z) + g(P2X, HP3Z) — g(Q3X, HD,Z) = 0

for any unit X, Z € D such that Q(X) L Q(Z). If in (3.5) we exchange Z by ®Z
and apply (3.4) we obtain

(3.6) (4m — 4)g(HX,Z) =0

Now as m > 3 the result follows.

LemMa 3. g(HX,X)=g(HY,Y) for any nonnull X,Y e D.

Proor. Let us take a unit X € D and consider the scalar product of (3.1)
and @, X. After taking summation on j we have

(3.12)  (8m —14)g(HX,X) + 2g(H®, X, @, X) + 2g(HD, X, ®, X)

+29(HD:3X, ®3X) — > _{g(E;, HE)) + g(®1 Ej, HD, E;)} = 0

J
If in (3.12) we change X by ®;X and substract we have

(3.13) (8m — 16)g(HX, X) = (8m — 16)g(H® X, @, X)
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As m >3, we obtain g(HX,X) =g(H® X,®,X). Similarly we can obtain
(3.14) g(HX,X) = g(HO;X,®;X) i=1,2,3
Now from (3.12) and (3.14) we get

(3.15) (4m —4)g(HX,X) =) " g(HE;, E))
J
and this finishes the proof.
LeMMa 4. g(HU, X) =0, i=1,2,3, for any X € D.

PROOF. Let us take the scalar product of (3.1) and U; and sum on j. Thus
we have

(316) g(d)zX,HUz) +g((1>3X,HU3) =0

Similarly we can obtain

(3.17) g(®1 X, HUy) + g(®3X,HU3) =0
and
(3.18) g(@1 X, HUy) + g(O: X, HU,) =0

From (3.16), (3.17) and (3.18) we get
(319) g((DIX, HU,) = O, i= 1,2, 3

and changing X by ®;X we obtain the result.

Now we have that any X e D is principal for H and has the same
eigenvalue. Moreover g(HD,D') = {0}. But HA = AH. Thus we can find an
orthonormal basis of TxM, for any x e M, such that it diagonalizes simul-
taneously both H and 4. But from the above Lemmas we must have
g(AD,D*) = {0}. Thus M, [1], must be congruent to an open subset of either
a geodesic hypersphere or a tube of radius r, 0 <r<m/2, over QP
ke{l,...,m—2} or a tube of radius r, 0 <r < n/4, over CP™.

All geodesic hyperspheres only have a principal curvature on D, [3]. Thus
from the first identity of Bianchi they satisfy (1.2).

A tube of radius r, 0 <r< /2, over QP ke{l,...,m—2}, has two
distinct principal curvatures on D, cot(r) with multiplicity 4(m —k — 1) and
—tan(r) with multiplicity 4k, and a unique principal curvature on D", 2 cot(2r),
{3]. Let us suppose that it satisfies (1.2). Thus from Lemma 3 every vector
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field of D must have the same eigenvalue for H. Take X eD such
that 4X =cot(r)X and ZeD such that AZ = —tan(r)Z. Then HX =
((4m — 4k — 2) cot’r — (4k +3))X and HZ = ((4k +2) tan? r — (4m — 4k — 1)) Z.
This implies that cot?(r) = (4k + 2)/(4m — 4k — 2).

A similar argument applied to a tube of radius r, 0 < r < n/4, over CP™,
whose principal curvatures are cot(r) and —tan(r) on D both with multiplicity
2(m — 1) and 2 cot(2r) with multiplicity 1 and —2 tan(2r) with multiplicity 2 on
D' implies that (1.2) is satisfied only if cot?(2r) = 1/(m —1).

Thus we have proved that a real hypersurface of QP™, m > 3, satisfies (1.2)
if and only if it is one appearing in Theorem A. This finishes the proof.
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