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A CHARACTERIZATION OF ALMOST-EINSTEIN

MEAL HYPERSUMFACES OF QUATEMNIONIC

PMOJECTIVE SPACE

By

Juan de Dios Perez

Abstract. Almost-Einstein real hypersurfaces of quaternionic

projective space, as defined in [3], can be characterized by a

condition involving theircurvature and Ricci tensors.

1. Introduction

Let M be a connected real hypersurface of a quaternionic projective space

QPm, m > 3, with metric g of constant quaternionic sectional curvature 4. let £

be the unit local normal vector field on M and {/h/2,/3} a local basis of the

quaternionic structure of QPm, [2]. Then £/,･= -/;£, /= 1,2,3, are tangent to

M. Let us denote by D1 = Span{C/i, U2, U3} and by D its orthogonal com-

plement in TM.

Let -4 be the Weingarten endomorphlsm of M and S its Ricci tensor. M is

said to be almost-EInstein, [3],if

(1.1)
3

SX = aX + b J^ d(AXi ud ui

1=1

for any X e TM, where a and b are constant.In [3] we studied such real

hypersurfacesobtaining

Theorem A. Let M be an almost-Einsteinrealhypersurfaceof QPm, m > 2.

Then it is an open subset of one of thefollowing:

i) a geodesichypersphere.

ii)a tube of radius r over QPk, 0 < k < m ―1, 0<r< n/2 and

cot2(r)= {4k + 2)/(4m - 4k - 2).

iii)a tube of radius r over CPm, 0 < r < k/4 and cot2(2r)= ＼/{m- 1).
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Among the real hypersurfacesappearing in Theorem A, only the geodesic

hyperspheres of radius r, 0 < r < %/2 and cot2(r)= 1/(2m) are Einstein.

Recently, in [4] we studied real hypersurfaces of QPm, m>2, such that

o(R(X, Y)SZ) ―0, for any X, Y,Z tangent to M, where a denotes the cyclic

sum and R the curvature tensor of M. Concretely we obtained

Theorem B.

a(R(X, Y)SZ) = 0

A

for

real hypersurface M of QPm, m>2, satisfies

any X, Y, Z tangent to M if and only if it is Einstein.

In the present paper we propose to study a weaker condition than the one

appearing in Theorem B. Concretely we shall consider real hypersurfaces M of

QPm, m>3, satisfying

(1.2) a(R(X, Y)SZ) = 0 for any X, Y, Z e D

It is easy to see, bearing in mind the firstidentity of Bianchi, that all almost-

Einstein real hypersurfaces of QPm satisfy(1.2). Our purpose is to obtain the

converse. That is, we shall prove the following

Theorem. A real hypersurface M of QPm, m>3, satisfies(1.2) if and only

if it is almost-Einstein.

2. Preliminaries

Let X be a vector field tangent to M. We write JtX = tyX+fi(X)£,

i― 1,2,3, where >(-X denotes the tangential component of JtX and ft(X) ―

g(X, Uj). From this,[3], we have

(2.1) g(<l>tX,Y)+g(X,<l>iY)=O, <D,Oi = 0, <S>jUk= -%C/y- = U,

for any X, Y tangent to M, i― 1,2,3, (j,k,t) being a cyclic permutation of

(1, 2, 3). We also obtain

(2.2) >;<%X = -O/O/JT = <bkX

for any X e D, where (i,j,k) is a cyclic permutation of (1, 2, 3).

From the expression of the curvature tensor of QPm, [2], the equation of

Gauss is given by

3
(2.3) R(X, Y)Z = g( Y, Z)X - g(X, Z)Y + £{0(<D, Y, Z)Q>tX - g{<btX, Z)Of Y

+ 2g{X, % Y)<t>tZ}+ g(A Y, Z)AX - g(AX, Z)A Y
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for any X, Y, Z tangent to M. This implies that the Ricci tensor of M has the

followingexpression:

(2.4)
3

SX = (4m + 1)X - 3 J2 Mx) ui + HX

for any X tangent to M, where H = (traceA)A ―A2

3. Proof of the Theorem

Along thisparagraph M willdenote a real hypersurface of QPm, m>3,

satisfying(1.2).

From (2.4) and the firstidentity of Bianchi, (1.2)is equivalent to have

a(R(X, Y)HZ) = 0 for any X, Y, Z e D.

Let {E＼,...,Is4W_4}be a local orthonormal frame of D at any point of M.

The followingcomputations are made locallyon a neighbourhood of any point

of M.

If from (2.3) we develop a(R(X, Y)HZ) = 0 and take Z = Ej} Y = <S>xEb

j = 1,...,Am ―4, we have

(3.1) - (g(Ej,HEj) + gim^H^Ej))R^ - (g(R3Ej,HEj)

+ g(R2Ej,HQiEjfifyX + (g^iEj, HEj) - g{^Ej, HRxEj))^X

+ 2<$>XHX + (g^X, HEj) - g(HX, OiEj))Ej + {g{HX, Ej)

+ g(^X, HQiEjWiEj + (2g(HX, R3Ej) + g(R2X, H<S>xEj)

- g{d>3XtHEj))R2Ej + {g{R2X, HEj) + g(R3X, H^Ej)

- 2g(HX, R2Ej))<S>3Ej- 2g(X, E^HEj

- 2g(X, <H3Ej)<i>2HEj+ 2g(X, R2Ej)R3HEj

+ 2g(R1X, EjWiHOiEj + 2g(R2X, Ej)R2HmxEj

+ 20( >3X,Ej)R3HRiEj = 0

for any X e D.

Now we prepare the following Lemmas

Lemma 1. g{HX, tyX) = 0 for any X e D, i = 1,2,3
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Proof. We take the scalarproduct of (3.1)and X and take summation on

j. Then we obtain

(3.2) (8m - ＼6)g(^iHX, X) = 0

for any X e D. As m > 3, (3.2) implies g(HX,RiX) = 0.

If we develop a(R(X, Q>tEj)HEj) = 0, / = 2,3, we also obtain g(HX, d>2X) =

gf(^fX, >3X) = 0, finishing the proof.

Let us denote by Q{X) = Span{X,#iX,#2X,#3X} for any X eTM.

Lemma 2. g(X,HZ) = 0 /or a/iy am* X,Z e D ≪icA rAar g(AT) 1 g(Z).

Proof. Let us consider X,Y e D. From Lemma 1 and polarization we

have

(3.3) g(HOtX, Y) = giptHX, Y) i = 1,2,3

for any X, Y e D. Taking in (3.3) 7 = O,-Z, i = 1,2,3 we obtain

(3.4) g{H<S>iX,<t>iZ) = g(HX,Z) i = 1,2,3

Take the scalar product of (3.1) and Z and then summation on j. We have

(3.5)

g(HQ>iX, Z) + (4m - ^g^HX, Z) + g{R2X, Hd^Z) - g(RiX, Hd>2Z) = 0

for any unit X,ZeD such that Q(X) 1 Q{Z). If in (3.5) we exchange Z by 0>＼Z

and apply (3.4) we obtain

(3.6) (4m-4)g(HX,Z)=0

Now as m > 3 the result follows.

Lemma 3. ^(ifJT,X) = g{HY, Y) for any nonnull X,YeD.

Proof. Let us take a unit X eD and consider the scalar product of (3.1)

and >iX. After taking summation on j we have

(3.12) (8m - H)g(HX,X) +2g(H^lX^iX) +2g(H^2X,^2X)

+ 2g(HR3X, #3if) - X>(i?;,HEj) + g^Ej,H<S>xEj)} = 0

j

If in (3.12) we change X by *PiX and substract we have

(3.13) {%m-＼ )g{HX,X) = (8m - ^(JJdhl^jX)
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As m > 3, we obtain g(HX,X) = g(HQ>＼X,<l>iX).Similarlywe can obtain

(3.14) g(HX,X) = giHOiX^X) i= 1,2,3

Now from (3.12) and (3.14) we get

(3.15) (4m - 4)g{HX, X) = £ g(HEj, Ej)

j

and this finishes the proof.

Lemma 4. g(HUhX) = 0. i = 1,2,3,for any XeD.

211

Proof. Let us take the scalar product of (3.1) and U＼ and sum on/. Thus

we have

(3.16) g(<S>2X,HU2) + g(R3X,HU3) = 0

Similarly we can obtain

(3.17) g(<l>lX,HUl)+g{<l>3X,HU3)=0

and

(3.18) g(<l>lX,HUi)+g(<l>2X,HU2)=0

From (3.16), (3.17) and (3.18) we get

(3.19) g(<l>tX,HUt)=0, i= 1,2,3

and changing X by <J>iX we obtain the result.

Now we have that any JeD is principal for H and has the same

eigenvalue. Moreover g(HD,DL) = {0}. But HA = AH. Thus we can find an

orthonormal basis of TXM, for any x e M, such that it diagonalizes simul-

taneously both H and A. But from the above Lemmas we must have

g(AD,D±) = {0}. Thus M, [1], must be congruent to an open subset of either

a geodesic hypersphere or a tube of radius r, 0 < r < n/2, over QPk,

ke{l,...,m ―2} or a tube of radius r, 0 < r < n/4, over CPm.

All geodesic hyperspheres only have a principal curvature on D, [3]. Thus

from the firstidentity of Bianchi they satisfy (1.2).

A tube of radius r, 0 < r < n/2, over QPk, k e {1,... ,m - 2}, has two

distinct principal curvatures on D, cot(r) with multiplicity 4(m ―k ―1) and

―tan(r) with multiplicity4k, and a unique principal curvature on D1, 2 cot(2r),

[3]. Let us suppose that it satisfies(1.2). Thus from Lemma 3 every vector
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field of D must have the same eigenvalue for H. Take X e D such

that AX = cot{r)X and ZeD such that AZ = -tan(r)Z. Then HX =

((4m -4k-2) cot2r - (4fc+ 3))X and #Z = ((4& + 2) tan2 r - (Am - 4k - 1))Z.

This implies that cot2(r) = (4k + 2)/(4m -4k-2).

A similar argument applied to a tube of radius r, 0 < r < n/4, over CPm,

whose principal curvatures are cot(r) and ―tan(r) on D both with multiplicity

2(m ―1) and 2 cot(2r) with multiplicity 1 and -2 tan(2r) with multiplicity 2 on

D1 implies that (1.2) is satisfied only if cot2(2r) = l/(m - 1).

Thus we have proved that a real hypersurface of QPm, m>3, satisfies(1.2)

if and only if it is one appearing in Theorem A. This finishes the proof.
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