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CONSTRUCTING APPROXIMATE INVERSE SYSTEMS OF

METRIC SPACES

By

M. G. Charalambous

Abstract. We formulate a theorem which provides a sufficient

condition under which we can construct new approximate inverse

systems from old. The result is at the heart of many constructions

in the theory of approximate inverse systems and offers a unified

approach to several important resultsin Topology such as Brown's

approximation theorem, McCord's embedding theorem and results

on expansion of Tl-likespaces into inverse limits of spaces from II.

1. Definitions and Background

The spaces considered in this paper, unless otherwise indicated, are metric

and the maps between them are uniformly continuous. The symbol d as a rule

denotes a metric on the space indicated by the context. For functions /, g :

X ―>･Y into a metric space, however, d(f, g) denotes the supremum of the set

{d(f(x),g(x)) : x e X}, which may take the value oo. Moreover, for a non-empty

subset A of a metric space X and a point x of X,d(x,A) denotes the infimum of

the set {d(x,a) : ae A}.

An approximate inverse system, usually abbreviated to AIS, of metric spaces

(and uniformly continuous maps) (Xa,pap,A) consists of a directed set A with

respect to a transitiveand anti-reflexiverelation <, a metric space Xa for each ot

in A and, for a < /?in A, a uniformly continuous map pap :Xp~^X% satisfying

the following condition.

(AIS) For each a in A and each positive e, there is a' in A such that oc< a'

and, for a' < p < y, d(pay, pafipfi7)< e.

The limit space X of an AIS (Xa,px^A) of metric spaces is the subspace of

the product fTl^a : oce A} consisting of all points (xx) such that each xa is the
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limit of the net {pap{xp)
■
oc< /?}.Of course, if A is uncountable, the limit space

X may not be metrizable. The map pa : X ―>Xa that sends (xa) to xa will be

referred to as the v.thcanonical projection. It is important to bear in mind that

the uniform covers of X are those that can be refined by one of the form p~x{°Ua),

where %^ is a uniform cover of Xa and a ranges over any given cofinal subset of

A [3, proposition 4].

Approximate inverse systems of uniform spaces, satisfying the appropriate

modification of (AIS), were first considered in [3], following the introduction

of approximate inverse systems of compacta by Mardesic and Rubin in [8].

Mardesic and Watanabe generalised approximate systems to arbitrary topological

spaces [12]. The approximate systems studied in [8 and 12] were required to

satisfy,apart from an appropriate modification of {AIS), two extra conditions

stipulating the existence of normal coverings (meshes) with certain properties.

Such systems are now called gauged approximate systems and the term ap-

proximate inverse systems is used for systems satisfying only the appropriate

modification of (AIS) [7]. The much simpler notion of approximate inverse

system is quite an adequate tool, however, in a variety of topological situations.

In fact,with each AIS of topological spaces one can associate an induced gauged

AIS consisting of the same spaces and maps and sharing the important properties

of the original AIS [7, 16]. In particular, the two systems have the same limit

space.

Let (Xa,p^,A), (Ya,qap,A) be approximate inverse systems of metric spaces

with limit spaces X, Y and canonical projections palqa- In this paper, a map

(hx) :(X^p^^A) ―>(Ya,,qap,A) will mean a collection of maps ha : Xa ―>Ya,

a e A, such that for each a in A and each positive s, there is a' in A such that

a < a' and, for a' < /?,d(hapap,qaphp) < e. In such a case, there is an induced

map h : X ―> Y that sends (xa) to (/2a(xa)).That (/ia(xa))is a point of Y follows

from the continuity of ha and the inequality

d(haL(xa),qaphp(xp)) < d^x^.Kp^xp)) + d{hapap{xp),qaphp({xp)).

That h is uniformly continuous follows from the equality qah = hapa. Evidently,

if each hx is the identity on Xx, then h is the identity on X. Furthermore, if each

ha is an embedding, then so is h. For if °Mis a uniform cover of X, it is refined

by ^'(^a) for some a in A and some uniform cover °Uaof Xa. As ha is an

embedding, ^ is refined by A"1^) for some uniform cover f^ of Ya. Hence %

is refined by h~l(q~l(f^)) = PZ^iK.1^^)), and h is an embedding.

Recall that an AIS (Xa,pap,A) is called cofiniteif |a|, the number of

predecessors of a in A, is finitefor each element a of A.
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2. A General Result

Theorem 1. Let {Xa,pxp,A) be a cofinite AIS of metric spaces and uniformly

continuous maps. Let i/a, a e A, be a non-empty collection of maps with domain

Xa and Qap,cc < fi, a collection of maps with the following property.

(*) For a fixed /?in A and s > 0, given for each a < /?,a map ha : Xa ―>･Pa in

Ha, there exist a map hp : Xp ―> Pp in Hp and, for each a < ft, a map qap : Pp ―>■

Pa In Qap such that d(qttphp,hxpafi) < s.

Then there are, for each a in A, a positive real number sa and a map Aa : Xa ―>

Pa in Ha and, for each J3 > a, a map qap : Pp ―> Pa in Qap such that, if Yx =

{x e Px : d(x,ha(X0L)) < sa], then qap maps Yp into Ya, (7a,^ayj,^) is an AIS and

{hg) is a map from {X^.p^.A) to {Yaiqap,A). For |a| =0,Aa and ea may be

chosen arbitrarily.

Proof. By induction on |/?|,we choose, for each /? in A, a positive real

number sp and maps hp : Xp ―>P^ in Hp and ^ra/9: Pp ^ Pa in <Qa/jfor each a < ft

such that

(1) d(qaphp,hapap) <min{2
m,sa/2}

and

(2) d(x,y) < 2ep in Pp =* d{qxfi{x),qxfi(y)) < min{2-^l,ea/2} in Pa.

If ＼p＼= 0, we choose hp and sp arbitrarily. Assuming we have chosen ss,hs and

qys with the above properties, where a and /? have been replaced by y and S,

respectively, for |y| and ＼S＼< |/?|,using (*) with s ― min{2~^l,£a/2 : a < /?}, we

first choose maps hp : Xp ―> Pp in ify and ^a/j: Pp -^ Pa in gay5 for each a < /?

that satisfy (1). Then, by the uniform continuity of qap, we can choose sp > 0

such that (2) is satisfied. This completes the construction of £a,/?aand qap.

Let y be a point of Yp. Then d(y,hp(x)) < 2sp for some point x of Xp. By (2)

and (1), respectively, we have

(3) d(qOip(y),qa,php(x)) < sa/2 and

(4) d(qxphp(x)ihapxp{x)) < eJ2.

Hence d{qaLp{y),hapaLp{x)) < eaj and d(qap(y),h0l(X0l)) < ea. This assures that ^

maps Fy? into Fa,. as required.

We next verify (^/S) for the system {Y^q^p.A). Given a in A and £ > 0,

because (Xa,^ajg,^4) is an AIS and /ia is uniformly continuous, there is a' in

A such that a < a', 2"1*'1< e/5 and for ocf< B < y,



438

(5)

M. G. Charalambous

d(hap hzp^ppp) <s/2

For y in Yy,x in Xy and cc'< fi< y, we have by the triangle inequality,

(6) d(qay(y),qapqPy{y))

< d{qOiY{y),qayh7(x))+ ^(^/^(Y) A/^(x))

+ d{hapay{x),KpOLpPpy{x)) + d(hxpxppP7{x), q≪phpppy(x))

+ d(qaphpppy(x), qapqpyhy{x)) + d(qapqpyhy{x),qapqp7{y)).

Let us examine the terms of the right hand side of (6). By (5), the third term

is less than e/2. By (1), the second and fourth terms are smaller than 2~W <

2-|a'H < e/io. By (1), we also have that d(hpppy(x), qpyhy(x)) < sp and hence, by

(2),the fifthterm is less than e/10. Choosing x so that d(y,hy(x)) < 2ey, we have,

by (2), that the firstterm is also smaller than e/10. Also, applying (2) twice, we

have d(qpyhy(x),qpy(y)) <2sp, and hence the sixth term is also less than e/10.

Thus, d(qay(y),qOipqpy(y))< e for all a' < fi< y and all y in Yy, and hence

(Ya,qafi,A) is an AIS.

Finally, given a in A and e > 0, choose a' in A such that cc< a' and 2~la'<

e. Then, by (1), for a' < fi,d(qaphp,hapixp) < 2~^ < e. Hence (ha) is a map from

(XxjPxpjA) to (Ya,qap,A), and this concludes the proof of the theorem.

3. Brown's Theorem for Approximate Systems of Complete Metric Spaces

We next note a generalisation to countable approximate systems of [3,

proposition 8], which is repeatedly appealed to in the sequel.

Proposition 1. Let (X^py^A) be a countable AIS of complete metric spaces

with limit space X. Then there is a uniform isomorphism n : X ―> Y onto the limit

space of an inverse system (X(,7Cy,M), where M is a cofinal sequence of A and

Kg = pij whenever j is an immediate successor of i in M. Given m in A and e > 0,

M can be chosen so that m is its first element and d(pmlqn) < s, where pm :

X ―*Xm and q : Y ―>■Xm are the canonical projections.

Proof. When A = N, the set of positiveintegers,the resultis [3, proposition

8].In the general case, consider a cofinal sequence B of A containing m. As each

Xi is complete, by [3, proposition 7], the map that sends the point (xj)ieA of the

limit space of (X,-,/?y,^)to the point (xi)ieB of the limit space of the approximate

inverse sequence (X^py, B) is an isomorphism. It sufficestherefore to apply [3,

proposition 8] to (Xj,p^,B).
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Let / : X ―> Y be a function between metric spaces and Jrifa collection of

functions whose domain and range contain X and Y, respectively. We say that

/ can be approximated by elements of 2te if for each positive e there is some

member h in Jf such that d(f(x),h(x)) < s for each jcin X. We say that / is

a near isomorphism if it can be approximated by uniform isomorphisms from

X to Y. As continuous functions on compact spaces are uniformly continuous,

the notion of near isomorphism generalizes to metric spaces the term near

homeomorphism of compact metric spaces. The composite of near isomorphisms is

again a near isomorphism.

The following theorem generalizes to countable approximate inverse limits of

complete metric spaces the result known as Brown's approximation theorem [2,

theorem 4]. Several proofs existin the literature for the case of inverse sequences

of compact metric spaces fl, 11, 141.

Theorem 2. Let (Xi,ftj-,A)be a countable AIS of complete metric spaces and

near isomorphisms with limit space X. Then X is isomorphic to each X＼.In fact,

each canonical projection pt : X ―>Xj is a near isomorphism.

Proof. Let B be a cofinal sequence of A,Z the limit space of (Xi,fy,B) and

gi : Z ―*■X{ the canonical projection. As seen in the proof of proposition 1, we

have an isomorphism a : X ―>Z such that p{ = g;<7,i e B. As the firstelement

of B can be chosen arbitrarily,it can be seen that it sufficesto prove the result

when A = N. Then, in an obvious manner, theorem 1 supplies an AIS (Xi,ptj,N)

of complete metric spaces and isomorphisms and a map (hi) from (Xj,fj,N) to

(Xj,ptj,N), where /?,is the identity on X,- for each /in N. This special nature of

(hi) assures that the limit space of (X^p^N) is X. Given m in A and e > 0, by

proposition 1, there is a subsequence M = {m,m2,mi,...} of N, an inverse

system (X,,^,y,M) with limit space Y and a uniform isomorphism n : X ―> Y,

such that ny = py whenever j is an immediate successor of / in M and

d(pm,qn) < s, where q : Y ―>Xm is the canonical projection. Evidently, being the

composite of isomorphisms, each ny is an isomorphism. Hence each projection

Y ― Xm is an isomorphism. Therefore X is isomorphic to Xm and, in fact,pm :

X ―>Xm is a near isomorphism.

The following example shows that in theorem 2 the assumption of com-

pletenessis not redundant. It also shows that,in sharp contrast to what happens

with inverse sequences, an approximate inverse sequence of infinitemetric spaces

and isomorphisms may have empty limit.
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Example 1. Let Q = {q＼,qi,-- ･} be the set of all rationals in the interior

(0,1) of the unit interval / = [0,1]. Recall that if A, B are countable dense subsets

of nontrivial open intervals I＼,h, respectively, then there is a strictly increasing

/ : I＼ ―>Ii that takes A onto B. Thus, given q in Q, there is an isomorphism

/:/―/ that takes Q onto Q ―{q}. Then, given e > 0, by considering an open

interval / around q of length e, we can construct an isomorphism g : / ―>/ such

that g takes Q ―{q} onto Q, J onto / and leaves every point outside J fixed.

Clearly, d(f,gf) < s and the restriction f＼Q : g ―> Q is a near isomorphism.

We can, therefore, construct by induction injective near isomorphisms ft : Q

-+Q, is N, such that MQ) = Q-{qi} and ft{Q) = f;,l(Q - {qt}) for / > 1,

where, for n < m, fnm denotes the composite of fn,fn+＼,
■■■

,fm-＼- Consider now

the inverse sequence (X{,fy,N), where Xt = Q. Its limit is readily seen to be

empty. As each ftjis a near isomorphism, by theorem 1, there is an approximate

inverse sequence (X;, qy, N) such that each qy is an isomorphism Q ―> Q and yet

its limit space is empty.

4. McCord's Embedding Theorem for Approximate Systems

Theorem 3. Let (Xj,Py,A) be a countable AIS of metric spaces with limit

space X. For each i in A, let Ej be a metric space containing Xj and n＼ the

collectionof all complete neighbourhoods of Xt in Et. Suppose that each ptJ-can be

approximated by elements of Qy, the family of all uniform embeddings of members

of nj into members of **/.Then, for each i in A, the canonical projection

Pi : X ―>■Xj can be approximated by embeddings of X into elements of nt.

Proof. By [3, proposition 7], for any cofinal subset B of A, the map that

sends the point (xi)ieA of X to the point (xi)jeB of the limit space of the

approximate inverse sequence (Xj,py,B) is an embedding. As A is countable, it

contains a cofinal sequence B. Thus, we see that we may assume that A = N.

Then, in theorem 1, letting Hi consist of all restrictions of the inclusion hi :

Xj ―>･Ej to members of ^,, we see that (*) is satisfied. Thus, we obtain an AIS

(Yi,qy,N), where Yj is a member of n{ and qy belongs to Qy, and a map

(hj) : (Xj,py,N) ― (Yi,qy,N). Consequently, X is a subspace of the limit Y of

(Y(,qy,N) and each canonical projection qt : 7 ―> F; extends the canonical

projection /?,･: X ―>･X,. Because each Y,-is complete, given m in .4 and e > 0, by

proposition 1, there is a subsequence M = {w,m2,W3,...} of N, an inverse

system (Yi:ny,M) with limit space Z and a uniform isomorphism n : F ―> Z,

such that Try = <7,ywhenever y is an immediate successor of /in M and d(qm,qn) <
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e, where q : Z ―>■Ym is the canonical projection. Evidently, being the composite

of embeddings, each ny is an embedding. Hence q is an embedding and pm :

X ―>Xm can be approximated by embeddings of X into Ym.

Corollary 1. Let (Xj,ptj,A) be a countable AIS with limit space X.

Suppose that each X, is a subspace of a metric space Ft and each py can be

approximated by injectivecontinuous functions from compact neighbourhoods of Xj

into compact neighbourhoods of X;. Then X is embeddable in each i7,.

Proof. Apply theorem 3,lettingE{ be a compact neighbourhood of X{ in Ft

and noting that a compact space is complete and an injectivecontinuous function

on a compact space is a uniform embedding.

Corollary 2. Let (Xi,pt:,A) be a countable AIS of compact subspaces of

a locally compact metric space E with limit space X. Suppose that each ptj can

be approximated by injective continuous functions from neighbourhoods of Xj into

F. Thpn Y i.vpmhpddahlp in F.

Proof. Because E is locally compact and Xt is compact, each neigh-

bourhood of Xi contains both a compact neighbourhood of Xj as well as an

e-neighbourhood of X{ for some positive s. This readily implies that each ptj can

be approximated by injective continuous functions from compact neighbourhoods

of Xj into compact neighbourhoods of Xt. The result, therefore, follows from

corollary 1.

The specialcase of corollary 2 for inverse sequences is the important theorem

of McCord [13, theorem 21.

5. II-Like Spaces

In the sequel, n denotes a class of metric spaces. We calla uniform space X

U-Iike if every uniform cover of X can be refined by one of the form f~x{ftt),

where % is a uniform cover of an element P of II and / : X ―>P is a dense map,

i.e.,f{X) is dense in P. In the most interesting case when X is compact, this

definitionagrees with the original definition of II-likein [9],which requires that

the map / be onto. If the map / in the above definitionis not necessarily dense,

we call X weakly U-like. We will call a space X weakly U-approximable if it

satisfiesthe following condition.
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(**) There is a family 3F consisting of dense maps from X into members of II

such that

(i) every uniform cover of X can be refined by one of the form g~l(<%), where

g : X ―>■P is a member of J5" and ^ is a uniform cover of P, and

(ii)given £> 0 and a finitenumber of maps ft : X ―>Pt in J^, there exist a

map / : X ―>P in #" and maps p( : P ―>P( such that */(/･,/?,-/)< £.

The term Yl-approximable space will mean a space X that satisfiesthe version

of (**) where the maps pt are surjective.

If X is the limit space of an AIS (Xa, pap, A) and 3F consists of the canonical

projections pa : X ―>Xa, then ^ satisfies(**) except that its elements may not be

dense [3, propositions 2 and 4]. The following result may be seen as a partial

converse.

Theorem 4. A Hausdorff weakly Ti-approximable space X is embeddable as

a dense subspace in the limit of a cofiniteAIS {Ya,qap,A) consisting of members

of IT, where the cardinalityof A may be taken to be equal to the uniform weight

of X. If X is complete, the embedding is an isomorphism. If X is U-approximable,

the bonding maps may be taken to be surjective.

Proof. Let A denote the set of finitesubsets of a base B of uniform covers

of X, and identify a singleton in A with the corresponding member of B. In A,

write a < /?iffa is a subset of /?.Then (Xa, /?a^,A), where each Xa is X and each

/?a^is the identity on X, is a cofinite^/S. In theorem 1, for a in B, we let Ha

consist of a single member ha : X ―>P of #" into a member P of II that contains

a uniform cover $11such that h~x{^l)refinesa. Otherwise, we let Ha = J*＼Finally,

we let ()a£consist of all maps with domain and range members of EL Condition

(**) assures that condition (*) is satisfied,and theorem 1 produces an AIS

{Yaiqa^A) consisting of spaces from II and maps from Q^p, and a map (h^)

from (Xa,p^,A) to (Ya,qap,A), where each hx is dense. We therefore have a

map h : X ―> Y such that qji = Aa, where Y is the limit of {Ya,qap,A) and ^a

denotes the canonical projection from Y onto Ya. Now the uniform covers of Y

of the form q~l(°ll),where °Uis a uniform cover of Fa and a ranges over any

cofinal subset of A, constitute a base for the uniform covers of Y [3, proposition

4]. Hence the choice of ha for a in B guarantees that h is an embedding, and,

because each hx is dense, so is h. Hence, if X is complete, then h is an iso-

morphism. Of course, B may be taken to be of minimal cardinality as a uniform

base of X, in which case the cardinality of A equals the uniform weight of X. If
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X Is Il-approximable, Q^ may be taken to consistof allsurjectivemaps with

domain and range members of II, in which case allbonding maps qap willbe

suriective.

Theorem 5. Let U consistof complete metric spaces. Then a complete,

weakly U-approximable metric space X is thelimit of an inverse sequence con-

sistingof members ofU. If X is U-approximable, the bonding maps may be taken

to be suriective.

Proof. By theorem 4, X is the limit of a countable AIS (Xi,py,A) con-

sistingof members of II. By proposition 1, X is the limit space of an inverse

sequence (Xhny,M), where Mis a cofinalsubset of A and ny = py whenever j

is an immediate successor of / in M. If X is Il-approximable, by theorem 4,

the bonding maps py may be taken to be surjective.Then, the bonding maps ny

of the sequence, being composites of surjectivemaps, are surjective.

Remark 1. If n is the class of all compact polyhedra of dimension <n,

then any compact Hausdorff space X with dim X < n is Il-approximable [6,

lemma 2; 8, 9, example 2]. In this case, theorem 5 yields a version of Freu-

denthal's original result that a compact metric space X with dim X < n can be

expanded into an inverse sequence of members of II with surjectivebonding maps

[5]. Also, Theorem 4 shows that a compact Hausdorff space X with dimX < n

can be expanded into an AIS consisting of members of II and surjectivebonding

maps [8, theorem 5].

If n is a class of compact polyhedra with no isolated points, every compact

Hausdorff Il-like space is Il-approximable [10, lemma 2], and theorem 4 shows

that every compact Hausdorff Il-like space can be expanded into an AIS

consisting of members of II and surjective bonding maps [10, theorem 3].

Theorem 5 provides an expansion theorem for compact metric Il-like spaces into

inverse sequences of members of II and surjective bonding maps.

Propositions 11, 12 and corollaries 4, 5 of [3] constitute applications of

theorems 4, 5 to topologically complete spaces. Note the minor corrections of

these results made in [4].

For any class II of compact polyhedra, any Il-like continuum is Il-

approximable [9, lemma 4], and theorem 5 yields theorem 1 of [9] that a Il-like

continuum can be expanded into an inverse sequence of members of II with

surjective bonding maps. There is an analogous expansion into an inverse se-

quence result due to Pasynkov [15, proposition 2]if U is a weakly hereditary class
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of compact polyhedra. This means that for each P in II and each £> 0, there is a

triangulation K of P of mesh < e such that any subpolyhedron of P with respect

to K belongs to II. Pasynkov's theorem is also a consequence of theorem 5, as

can be seen from the following result.

Proposition 2. For each weakly hereditary class of compact polyhedra U,

every weakly U-like space X is U-approximable.

For the proof, we require some preliminaries. Let a polyhedron P be the

realization of some finitesimplicial complex K. Let a he a point of P. Then the

projection pa : P ―{a} ―*P is defined as follows: on a simplex s of K, pa is

the identity when a $ s and, when ae s,pa is the projection from a into the boun-

dary of s. Evidently, pa is continuous and, in fact, uniformly continuous on the

complement of any neighbourhood of a. For continuous functions fx,f2 : X ―>P,

write /*!< f2 if /i(*) is contained in the carrier of f2(x) for each x in X.

Evidently, < is transitive.

Lemma 1. Let f: X ―>P be a continuous (resp. uniformly continuous)

function into the realization P of some finite simplicial complex K. Then there

is a continuous (resp. uniformly continuous) g : X ―>Q onto a subpolyhedron Q of

P with respect to K such that g < f and every continuous (resp. uniformly

continuous) h : X ―>Q with h < g is surjective(resp. dense).

Proof. For a map q : X ―>P, let n(q) denote the number of simplices

contained in the smallest subpolyhedron of P containing q{X). Clearly, p < q

implies n(p) <n(q). Let m = min{n(q) : q < /}. Evidently, for some g : X ―>P

with g < f,n(g) = m. Let Q be the smallest subpolyhedron of P containing

g(X), and consider h : X ―>Q with h < g. Suppose h is not onto Q and pick a in

Q ―h(X). Then pah < h < g < f and n(pah) < n{g) = m. For a cannot be an

isolated vertex of Q, a belongs to a proper simplex s of Q and pa collapses

s
~
{a} onto a proper face of s. It follows that h is onto Q.

The uniform case is similar.If in the above argument h(X) is not dense in

Q, we choose a in the interior of Q ―h(X) so that pa is uniform on h(X).

In the sequel, a special triangulation K of an element P of II will mean a

triangulation such that every subpolyhedron of P with respect to K belongs to II.

Proof of proposition 2. Let X be weakly II-like.Let !F consist of all dense

maps / : X ―>P, such that P is in II,P is the realisation of some special tri-

angulation K and every map g : X ―>P with g < f is dense.
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Any uniform cover if of X has a refinement of the form f~x{%＼ where

/ : X ―>･P is a map into a member P of II and % is a uniform cover of P. Let

K be a special triangulation of P such that the cover "V consisting of the stars of

the vertices of K refines °U.By lemma 1, there is a subpolyhedron Q of P and a

map g : X ― Q in #" with g<f. Then, for any vertex y of P, gf~1(st(y))is

contained in f~l(st(v)).Hence, g~x{y) refinesif, and condition (i) of (**) is

satisfied.

Let e > 0 and consider a finitenumber of maps ft･: X ― P; in J^. Let ^ be

a special triangulation of Pt of mesh < e and "Vi the cover consisting of the

starts of its vertices.Then, by the previous paragraph, there is a map /': X ―>■P

in J^ such that,if 'V consistsof the starsof the verticesof P, then f~l(V) refines

each fjx(yi). For each vertex v of P, pick a vertex (pf(v) of Pt such that

/~1(st(f))is contained in /,7l(st(^,-(i;))).Define pt: P ^ Pi to be the simplicial

map that sends v to q>j(v).Then ptf < ft. Hence d(fi,pif) < e and, because ft is

in #", Pif is dense. Hence pt is dense and, because P is compact, /?,is surjective.

Thus, X is H-approximable.

A consequence of proposition 2 is the following result, which generalizes the

compactification theorem for covering dimension.

Corollary 3. Let U be a weakly hereditary classof compact polyhedra, and

X a topological space such that the covers of X of the form f~ (%), where

f : X ―>P is a continuous function into a member PofU and % is a uniform cover

of P, form a uniformity on X. Then X has a Yi-likecompactification of the same

weiaht as X.

Proof. X with the obvious uniformity is weakly II-like and, by proposition

2, Il-approximable. Theorem 4 does the rest.
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