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SIX-DIMENSIQNAL

CONSTANT

QUASI-KAHLER MANIFOLDS OF

SECTIONAL CURVATURE

By

Jong Taek Cho* and Kouei Sekigawa

Abstract. In this paper we prove that a six-dimensional quasi

Kahler manifold of constant sectional curvature is a nearly Kahler

manifold of positive sectional curvature or a flatKahler manifold.

1. Introduction

In an almost Hermitian geometry, it is a natural question to ask the

relationships between the properties of the curvatures and the ones of almost

complex structures(for example, the integrability and so on). For general classes

of almost Hermitian manifolds, we can not expect much concerning thisquestion

even for the case of spaces of constant sectional curvature. For example, F.

Tricerri and L. Vanhecke ([7]) gave examples of locally flat almost Hermitian

manifold which are not Kahler manifolds. On one hand, we may easily observe

that there exist Hermitian structures on even-dimensional Hyperbolic spaces

H2n (n > 1). On the contrary to this, T. Oguro and the second author ([6])

proved that 2n (> 4)-dimensional Hyperbolic space H2n can not admit com-

patible almost Kahler structure. Further, T. Oguro ([5]) obtained the local

version. Quite recently, the present authors proved that a four-dimensional almost

Kahler manifold of pointwise constant holomorphic sectional curvature is a

Kahler manifold (that is, it is a locally complex 2-dimensional complex space

form) ([1]).

It is also well-known that among even-dimensional spheres, only two- and

six-dimensional spheres admit almost complex structure and further that a six-

dimensional sphere S6 equipped with the canonical Riemannian metric admits a
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nearly Kahler structure ([2]). An almost Hermitian manifold M = (M,J,g) is

called a quasi Kahler manifold if M satisfiesthe condition (Va-/) Y + (VjxJ)JY

= 0 for X, Y g 3E(M) (X(M) denotes the Lie algebra of all smooth vector fields

on M). It is known that the classesof almost Kahler manifolds and nearly Kahler

manifolds are subclasses of the class of quasi-Kahler manifolds. In the present

paper, we consider six-dimensional quasi-Kahler manifolds of constant sectional

curvature and prove the following

Main Theorem. A six-dimensional quasi-Kdhler manifold of constant sec-

tional curvature is a nearly Kdhler manifold of positivesectional curvature or a flat

Kdhler manifold.

2. Preliminaries

Let M ―(M2n,J,g) be a 2≪-dimensional quasi-Kahler manifold. The cur-

vature tensor R is defined by

R(X,Y)Z = [V*,VF]Z -V[x,y}Z,

for X, Y,Z X(M). Then it is known that the curvature tensor R satisfiesthe

following identity (cf.[3]):

(2.1) R(x, y,z, w) - R(x, y, Jz,Jw) + R(Jx, Jy, Jz,Jw) - R(Jx, Jy, z, w)

+ R(Jx, y, Jz, w) + R(Jx, y,z,Jw) + R(x, Jy, z,Jw) + R(x, Jy, Jz, w)

= -2{g{(W{VxJ)yJ)z, w) - g{{S7{WyJ)xJ)z,w)}

for x, y,z, w e TpM, p e M. If M is of constant sectional curvature c, then (2.1)

reduces to

(2.2) - 2c{g(y, z)g(x, w) - g{y, w)g{x, z) - g(y, Jz)g{x, Jw) + g{y, Jw)g(x, Jz)}

for x, y, z, w e TPM, p e M. We denote by Q, the Kahler form of M defined by

Q{X, Y) = g(JX, Y), for X, Y e %(M). For any 1-form <j)on M, we denote by J$

the 1-form defined by (J</>)(X) ― -</>(JX), for X eX(M). Now, in particular we

assume that the dimension of the quasi-Kahler manifold M under consideration is

six. The vector bundle A2M of 2-forms over M is decomposed into the following

form

(2.3) A2M = RQ c Al'lM c LM (orthogonal directsum),
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where Aq1M and LM are bundle of primitive /-invariant 2-forms and /-skew-

invariant 2-forms of M, respectively. The bundle LM can be equipped with the

canonical complex structure / defined by (JQ>)(X, Y) ― - >(/Z, Y) for any

section O of LM and X, Y e £{M) and the action of the group 17(3) on TPM at

each point p e M induces the action on LM (at p) defined by (a(h)(x＼))(x, y) =

x＼(h~lx,h~1y) for he U(3) and x,ye TpM. Further, we may easily check that

the induced action of the group U(3) on the set of all unitary bases of LM (at p)

is transitive. Let {e,} = {e＼,£2,£3,£4= Je＼,?5 ― Je2,^6 = ^3} be any unitary basis

of TpM at any point p e M and {e'} the dual basis. Then we see that e4 ― Jel,

e5 ― Je2, e6 = Je3, and further, the covariant derivative VQ, of the Kahler form

Q is expressed in the following form:

(2.4)

VO = otiR >i - Jai (g)J<S>i + a2 R #2 - J<*2 R ^^2 + ≪3(8>^3 - -/^ R ^^3,

where

o,

>2

= {l/V2)(el Ae2-e4 a e5) J≪Di= (l/y/l)(el Ae5 + e4 a e2)

(l/V2)(el a e3 - e4 a e6), Jd>2 = (l/V2)(el a e6 + e4 a e3)

Ch = (l/＼/2)(e2a e3 - e5 a e6), / >3= (l/V2)(e2 a e6 + e5 a e3),

for some a＼,a2,ol^e T*M. In the present paper, we shalladopt the following

notationalconvention unless otherwise specified:

a,b,c,= 1,2,3, a = a + 3, Z>= 6 + 3, c = c + 3,

U,M= 1,2,3,4,5,6.

Now we put

＼(≪,!>) = (1/2)^(V^V^

ij

for m,v e TpM. Then we see that *F satisfies

(2.5) W(u,v) = W(v,u), ＼(/≪,/≫)= ＼(M,

for m,≫6 r^M. We shallprove the following Lemma which plays an essentialrole

in the proof of our Main Theorem.

Lemma 2.1. Let M ―(M,J,g) be a six-dimensional quasi-Kdhler manifold.

Then, for each point p e M, we may choose a unitary basis {e,} of TpM such that

the forms {ai,a2,a3, Ja.＼,Ju.2,Ju-i}in (2.4) are orthogonal to each other.
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Proof. Taking account of (2.5), we may choose a unitary basis {e,} =

{ea,ea} {ed ―Jeaia― 1,2,3) in such a way that

(2.6)

＼ = A＼(el<g>el + el <g>e1) + ^|(e2 R e2 + e1 R e2) + y42(e3 R ^3 + ef<g>e5),

for some Ai,A2,A* ^ 0- On one hand, from (2.4), we have also

(2.7) ＼ = ai R aj + aj(g)aj + a2 R ≪2+ ≪2R a^ + ≪3(8)a3 + ≪3R aj.

Now we put

(2.8)

Cta

b

CCa= JcLa = E

b

b

T-uPb 4. V^ T -p*>

Then we have easily Tab = T-E, TaE = -Tab. From (2.5),(2.6),(2.7) and (2.8), we

have also

(2.9)

a

a

a

-≫ah* ac
+
/ _,-*db*dc ―

^b^bci

a

1 ab* ac ~r

a

TdbTac = 0>

TabT<* +
J2 TabTa-c= AbSbc

a

By (2.5),we see that the rank of *F is even at each point of M. Thus, for the rank

of *F, only the following four cases are possible:(I) rank T = 6, (II) rank *P = 4,

(III) rank T = 2 and (IV) rank ＼ = 0 (i.e.,＼ = 0), at each point of M.

We shall check that the assertion of the Lemma is valid for all cases

(I) - (IV) above.

Case (I). Then we see that A＼,Ai and A3 are all positive, and hence from

(2.9), we see that the 6x6 matrix t ―(71,-,-)given by

(2.10) T
Tab/Ab

Tab/Ab

TallAb

is an orthogonal one. Since {ei} = {ea,Jea} is an ortfaonormal basis at/?, we see

that {Af,eb,AbJeb} is an orthogonal basis at p. From (2.8) we get
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≪≪= Y/(Tab/Ab)(Abeb) + J2(Ta-b/^)(Abeb)

b b

^J2(fab)(Abeb) + J2(fj(A^

b b

Jaa =
y^{Tai/Ab){Abeh) + Y^(Tab/Ab){Abeb)

b

= £(^-)(-V)

b

From (2.4) and (2.11),we have

b

{

+

b

AbebR ^(fat^a - fatJOa)
a

a

}

>≪)

!
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Here, {<bb = £a Tab^a - £fl tsbJQa, JRb = -£fl 7^0, + Ea f^J<S>a} is a

unitary basis of LM at /?. Since the action of the group U(3) on the set of all

unitary bases of LM (at p) is transitive,there existsan element h e £7(3)such that

6, - l/>/2{i(A(e,)) a i(h(e2)) - i(h(e,)) a i(h(es))},

J<bi = 1/a/2{i(A(≪i))a i(h(es)) + i(h(e4)) a i(/≫(e2))},

62 = l/V2{i{h(ei)) a i(A(e3)) - i(A(≪4))a i(h{e6))},

JR2 = l/V2{i(A(≪,)) a i(h(e6)) + i(/i(e4))a i(h(e3))},

#3 = l/V2{i(A(≪2)) a i(h(e3))- i(h(e5)) a i(A(≪6))},

J >3 = l/V2{i(A(≪2)) a i(A(≪6))+ i(h(e5)) a i(A(e3))},

where i denotes the duality TPM ―>T^M defined by means of the metric g. Thus

we see that {aa,Jaa} is an orthogonal basis of T*M.

Case (II). Without loss of generality we may assume that A3 = 0

{AUA2 > 0). Then we have (ra3, rfl-3)= (ra3, ra-j)= 0, a = 1,2,3. Thus, we may

choose (Tai, 7^3), (7^3, 7^3) e ^6 in such a way that the 6 x 6 matrix f = (fy)

given by
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(2.12)

(≪ 1,2,3,6

aa

(2.13)

for a

JV-a

1 2

vo

b=＼ I

1,2)
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f-{ Tab/Ab

Tab/Ab

fa3

fd3

TJA≫

T - I

is an orthogonal one. From (2.8) and (2.12), we have

iZiTab/Ab){Abeb)
+ fa3(A3e3)+ J2(TjAb)(AbeE) + fa^A3e')

6=1 b=＼

B

6=1

2
E(

2

b=＼

fab)(Abeb)+ fa3(A3e2)+ Y^{fai){Abeh) + ffl3(V),

2
T.-b/Ab)(Abeb)+ f^A2e3 + Y,(T*b/Ab){Abeb) + Td3A3e3

b=＼

2
faE)(Abeb)+ f^A3e2 + J2(fab)(Abe

b=＼

3. From (2.4) and (2.13),we have

AbebR J2(fabRa - fabJRa)
a

b=＼ I

AbebR J2(
a

*) + fa3A3e3

+ A3e3R J2(f<*R

a

Ta^a + faima) -

a - f≪7OB)

a

By applying the similar arguments as in the case (I), we see that {<xa,Jixa}is an

orthogonal basis of T*M.

Similarly, in the case (III) we can also see that {aa,Jcca} is an orthogonal

basis at p. The case (IV) is trivial since aa = 0, Ja.a= 0, a =1,2,3. This

completes the proof of Lemma 2.1. Q.E.D.

In the remainder of this section,we assume that M is a

quasi-Kahler manifold of constant sectionalcurvature c. Then

(2.4) we have

(2.14)

six-dimensional

from (2.2) and

- 2c{g(y, z)g{x, w) - g(y, w)g(x, z) - g(y, Jz)g(x, Jw) + g{y, Jw)g(x, Jz)}

- (/a2)(x)(/O>2)(j,e/) + a3(x)<D3O^) - (7a3)W(/4>3)(^≪,-)}
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- {aiMOi(*,<?,■) - (/ai)(j;)(yOi)(jc,eI-)+ a2(>0O2(x,e,-)

- (Ja2)(j;)(/cD2)(x,^) + a3(j) >3(x,^) - (Ja3)(j)(/ >3)(x,^)}]

x [ai(e,-)Oi(z,w)- (/aO^OC/OOCz,^) + a2(e,-)O2(z,w)

- (Ja2)(ei)(m2)(z,w) +0L3{ei)O3(z,w) - (/a3)(^)(/a>3)(z, w)],

where x, 7,z, w e T^M, peM. By substituting x, j,z, w by ei,e2,ei,e2 in (2.14)

respectively, we have

(2.15) ai(e02 + ai(e4)2 + on(e2)2 + ^(e5)2

+ xiMfaM - asM) + di{e6){a2(e5) - a3(e4))

Similarly, we have

(2.16) a2{e{)2 + oc2{e4)2+ a2{e3)2 + a2{e6)2

+ <X2{e2){cc3(e＼)+ ai(e3)) + a2{es){^{eA) + <*i(e6))

(2.17) a3(e2)2 + ≪3(e5)2 + a3(e3)2 + a3(e6)2

-Ac

-Ac

+ ^(ei){a2{e2) - ≪i(e3))+ v.i(eA)(v.2(es)- a.＼{e6))= -4c.

By substituting x,y,z,w by e＼,e2,e＼,esin (2.14) respectively, we have

(2.18) ai(e3){a2(e5) - <x3(e4))+ ai{e6){cc3(ei) - oc2(e2)) =0

Similarly,we have

(2.19) o>2(e2)(oL3{e4)+ on(e6)) + <x2(e5)(-a3(ei) - ai(e3)) = 0,

(2.20) a3(ei)(a2(e5) - aiM) + a3(e4)(ai(<?3) - a2(e2)) = 0.

By substituting x,_y,z,w by ei,^2,ei,e3 in (2.14) respectively, we have

(2.21) a2(ei)ai(ci) + a2(e4)ai(e4) + a2(e2)ai(e2) + a2(e5)ai(e5)

+ ≪2(^3)(a2(e2) - a3(ei)) + ct2(e6)(cc2(e5)- a3(e4)) = 0.

Similarly, we have

(2.22) a3(ei)ai(ei) + a3(e4)aj(e4) + ot3(e2)<xi(e2)+ cc3(e5)ai(e5)

+ a3(e3)(a2(e2) - a3(ei)) + a3(e6)(a2(c5) - a3(e4)) = 0,

(2.23) a2(ei)cti(e4) - a2(e4)ai(ei) + ot2{e2)cci{e5)- <x2(e5)ai(e2)

+ cc2(e3)(Gt2(e5)- CL3(eA))+ oc2(e6)(cc3(ei)- cc2(e2)) = 0,
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(2.24) oc3{ei)cci(e4)- ot3(e4)ai(ei)+ <x3(e2)ai(e5)- a3{e5)ai(e2)

+ oc3(e3)(a2(e5)- a3(e4)) + oc3(e6)(a3(ei)- ct2(e2))= 0,

(2.25) ct3(ei)ct2(ei)+ ot3(e4)a2{e4)+ a3{e3)cc2(e3)+ a3(e6)ct2(e6)

+ oc3(e2){a3(ei) + CL＼{e3))+ oc3(e5)(a3{e4)+ on(e6)) = 0,

(2.26) a3(ei)a2(e4) - oc3{e4)cc2(ei)+ ot3(e3)cc2(e6)- cc3(e6)a2(e3)

+ ct3{e2)((x3(e4)+ on{e6)) - oc3(e5)((x3(ei)+ oti(e3))=0.

In the forthcoming proof of the Main theorem, we assume that the 1-forms

{a(} and unitary basis {e/} in the equality (2.4) at any point p e M are chosen in

such a way that the Lemma 2.1 holds for them.

3. Case of positive constant sectional curvature

In thissection, we shall show that a six-dimensional quasi-Kahler manifold of

positive sectional curvature is a nearly Kahler manifold of constant sectional

curvature. We assume that M is a six-dimensional quasi-Kahler manifold of

constant sectional curvature c. We denote by a* the dual vectors to aa

{a= 1,2,3), and a*{e) e R6 (a = 1,2,3) by

atUe) = (ai(ei),ai(e2),ai(^3),ai(g4),ai(e5),ai(e6)),

aX(e) = (0C2(ei),<X2(e2),0C2(e3),a2(e4),cc2(e5),a2(e6))

aUe) = (tx3(ei),a3(e2),ot3(e3),ct3(e4),ci3(e5),a3(e6))

We also set

a?(A) = (ai(ei),ai(e2),Aai(e3),ai(e4),ai(e5),/lai(e6)),

a|(//) = (a2(ei),^a2(e2),a2(e3),a2(e4),//a2(e5),a2(e6)),

a3*(v)= (va3(ei),a3(e2),a3(^3),va3(e4),a3(e5),a3(e6)).

Suppose that M is of positive constant sectional curvature, i.e.,c is positive.Then

from (2.15),(2.16) and (2.17), we have

(3.1) (ai(≪3),≪i(≪6)) # (0,0), {a2(e2),a2(e5)) * (0,0),

(a3(*i),a3(e4))#(0,0).
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Also, from (2.18),(2.19) and (2.20) and (3.1), we see that
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(3.2) (<x2(e2) - <*3M,ct2{e5) - a3(e4)) = A(ai(≪?3),ai(e6)),

(3.3) (a3(ei) + ai(e3),a3(e4) + ai(e6)) = Ma2(≪2),a2(^)),

(3.4) (a2(e2) - ai(e3),a2(e5) - ai(e6)) = v(a3(£?i),a3(e4)),

for some constants X,fi,v. So, (2.15), (2.16) and (2.17) reduce respectively to

(3.5) aM? + aifo)2 + ≪i(ft)2 + ≪i(e5)2 + ^M^)2 + ≪i(e6)2) = -4c,

(3.6) a2(ei)2 + a2{e4)2 + nMe2)2 + ≪2(e5)2) + a2(e3)2 + a2(e6)2 = -4c,

(3.7) v(a3(ei)2 + a3(e4)2) + aM)2 + as^s)2 + ≪3^3)2 + a3(^)2 = -4c.

Further, we define Ja*(e) e R6 by making use of the equalities J<xa(x) =

―a.a(Jx), for x e TpM, a ― 1,2,3. Then by the definitions of al(X) and JoL＼{e),we

have immediately

(3.8) d＼{X)LJa＼(e).

From (2.23) and (2.24) we have

(3.9) aj^A) ±/a2*(c), /a3*(e).

Similarly, from (2.21) and (2.22), we have

(3.10) a*(A)J_a2*(e), a3≫.

Thus, from (3.8) ~ (3.10) and Lemma 2.1, we see that cl＼{X)//a.＼{e),and hence

we may set

(3.11) a1*(A) = te1*(e)

for some t e R. Since (≪i(^3),ai(e6)) #0, from (3.2) and (3.8) we have

(3.12) k = t.

If (cL＼(e＼),cL＼{e2),cL＼(e4),c(.＼(e5))# 0, then, from (3.11) and (3.12) we get t = A = 1.

But, this and (3.5) yield a contradiction. Hence, we have

(3.13) (ai(ei),ai(e2),ai(e4),ai(e5)) =0.

Similarly, we have

(3.14) (a2(ei),a2(e3),a2(e4),a2(e6)) =0
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and

(3.15) (cc3{e2),a3(e3),a3{e5),a3(e6))= 0.

Thus, from (3.5), (3.6) and (3.7), we have

(3.16) MM2 = /z|H|2 = v||a3||3= -4c, X,M,v< 0.

Taking account of (3.13) ~(3.15), we may set

a, = V'4c /X''(cos&3 + sin£e6),

(3.17) a2 = ＼/4c/fj.'(cosrje2+ sinrje5),

a3 = y/4c/v'(cosCel + sinC^4),

for some ,ri,£eR, here we put A' = ―X, /*'= ―//,v' = ―v. From (3.2) and

(3.17), we get

y/l/fi'cosrj- a/1/v'cosC = -V A'cosc^,

(3.18)

y/l/fi'sinr/- x/l/v'sinC = -vA'sin^.

Similarly, from (3.3),(3.4) and (3.17), we get

(3.19)

(3.20)

･v/l/v'cosC+ y 1/A'cos^ = -＼fji'cost]

＼/l/v'sinC+ v/I/A' sin^ = -y/J? sinrj,

＼Jl/ti'cosrj- Jl/k'cost, = -v'VcosC

y/T/fj/sinrj― y 1/A'sin^ = ―vVsinC-

From (3.18), (3.19) and (3.20), we have

(3.18')

(3.19')

(3.20')

(3.18")

VTT^7cos(f -rj)- ＼flJV'cos(C- f) = -V7!7

s/YJV'cos(rj - C) + y/l/X'cos (£-?/) = -y^

y/lji? cos{rj- C) - v/T/Fcos (C - 0 = -y/V'.

V^7 - y/T/v'cosiri- 0 = -^cos (f - rj)
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^/＼J?+ -/l/I7cos(C- a = -v^7cos (n - c)

y/TJJ?cos(i-rj)-
JlJI'
= -^7cos(C - 0-

From (3.18') - (3.20'), (3.18") ~(3.20"), we obtain also

(3.21)

(3.22)

(3.23)

{＼/J'+
JV/k')

cos(£- rj)= vV + ＼/W,

-(y/jp + VW) cos(7- 0 - vV + yflJV',

(V?+ vX^)cos(C- f) = ^' + vA/?

From (3.18') ~(3.20'), we have

(3.24)
cos(£-*) = -v/Ay/2, co&(t,-C) = -y/j??/2

cos(C-£) = Vv^/2

Thus, from (3.21)- (3.23) and (3.24),we have
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(3.25) (A/-iy = 2, (//-l)v' = 2, (v'-l)A' = 2.

From (3.25), we can see that X' = // = v' = 2, and hence A = ju = v = ―2. Thus,

from (3.17) we have finally

ai = V2c{cos£e3 + sin^e6), a2 = v/2c(-cos<^e2 - sin£e5),

a3 = -^^(cos^e1 + sin£e4),

and hence

(3.26) VH = v^f^3 R (^! a e2 - e4 a e5) - e6(g)(^! a e5 + e4 a e2)

+ e

+ e

2 <g>(e3 a e1 - e6 a e4) - e5 (x)(e3 a e4 4- e6 a e1)

1 R (e2 a e3 - e5 a ^6) - e4 R (e2 a e6 + e5 a e3)]

where e3 = cos£e3 + sin£e6 and e6 = -sin£e3 +cos<^e6. Therefore, by (3.26) we

can see that M is a nearly Kahler manifold.

4. Case of negative constant sectional curvature

In this section, we shall show that there does not exist six-dimensional quasi-

Kahler manifold of negative constant sectional curvature. Let I be a six-
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dimensional quasi-Kahler manifold of negative constant sectional curvature c.

First of all, from (2.15) ~ (2.17), we see that a.＼,0.2,0.?,# 0 at each point p e M

(i.e.,the rank of T is 6 everywhere on M). We suppose that {o.＼(e?,),o.＼{ef,))# 0.

Then, by (2.18), we see that

≪2(e5) -^3(^4) =Xai(e6),

(4.1)

a3(<?i) -ct2(e2) = -Aai(e3),

for some real number X. In this case, by the similar arguments as in section 3, we

can see that a＼{X)= Xa＼{e) for some real number L If (ai(ei),ai(e2),≪i(^4),

≪i(^5))̂ 0> tnen we nave ^.= 1- Thus, from (4.1), we have

≪i(e3)- cc2(e2)+ a3(ei) =0,
(4.2)

ai(e6)-a2(e5) + a3(e4) = °-

From (2.4) and (4.2), by direct calculations, we can easily check that M is an

almost Kahler manifold. However, by the result of T. Oguro ([4]), we see that

this case can not occur. Thus, in this case, it must follow that (ai(ei),ai(e2),

ai(f?4),a(<?5))= 0- Similarly, if (a2(e2),a2(£?5))^ °(resP- (a3(ei),a3(e4)) # 0), then

we have (<x2(£?i),a2(e3),a2(£?4),a2(<?6))=0 (resp. {^{e2),^{ei),a^{es)^i{e(>)) = 0).

We here suppose that (ai(e3),ai(e6)) # 0, (a2(e2),a2(e5)) # 0, (a3(*?i),a3(e4)) # 0.

In this case, by modifying the arguments in section 3 slightly, we can see that M

is a non-Kahler nearly Kahler manifold. However, it is known that a six-

dimensional non-Kahler, nearly Kahler manifold is an Einstein manifold with

positive scalar curvature ([4]). Therefore, we see that one of {(ai(e3),ai(e6)),

(a2te0,a2(e5)),(a3(ei),a3(e4))} must be OeR2.

First, we suppose that (ai(e3),ai(e6)) #0, (a2(e2),a2(e5)) = (a3(£?i),a3(e4)) =

0. In this case, we have (ai(ei),ai(e2),ai(e4),ai(e5)) = 0 and further, (a2(e3),

a2(e6)) = (≪3(e3),a3(e6)) = 0 by virtue of Lemma 2.1. Since a2,a3 9^ 0, we have

(4.3)

a£(e) =

<{e)

(a2(6>i),0,0,a2(e4),Q,0)

(0,a3(e2),0,0,a3(e5),0)

Thus, from (2.25),(2.26) and (4.3),we have

(4.4)

a3(e2)ai(e3) + a3(e5)ai(e6) = 0,

a3(e2)ai(e6) - a3(e5)ai(>3) = 0.
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Since (ai(e3),ai(e6)) # 0, by (4.4) we have (03(62), 03(65)) = 0 (and hence

o%(e) = 0, by (4.3)), But, this is a contradiction. Similarly, we see that the case

Me2),O2(e5)) #0, (Gti(e3),(Xi(e6)) = (oc3(el),a3(e4))=O (resp. (o3(el),a3(e4)) ＼=

0, (o＼(e3),o＼(e(>))= (0(2(^2),^2(^5)) = 0) can not occur. Next, we suppose that

(ai(e3),ai(e6)) #0, (a2(e2),a2(e5)) # 0 and (a3(ei),a3(e4)) = 0. In this case

we have (ai(ei),ai(e2),ai(^4),ai(e5)) = 0 and (o^i),^^)^^),^^)) = 0.

From Lemma 2.1, since oc^(e)±af(e), Jo＼(e), a|(e), Jo.l(e), we have therefore

(a3(^), a3(^)) = (a3(e3),a3(e6)) = 0 (and hence a3(e)=0). But, this is a con-

tradiction. Similarly, we see that the case (a2(^2),a2(es)) # 0, (a3(ei),a3(e4)) # 0

and (ai(e3),ai(e6)) =0 (resp. (a3(ei),a3(<?4)) #0, (ai(e3),ai(e6)) #0 and (a2(e2),

^2(^5)) = 0) can not occur. Therefore, it must follow that (o＼(e3),o.＼(e(,))=

(0-2(62)
1^2(65))

= (a3(ej),a3(e4)) = 0. Then, taking account of (2.4) and (4.2), we

see that M is an almost Kahler manifold. Again, by the result of T. Oguro ([4]),

we see that this can not occur. Summing up the arguments in this section, we see

finally that there does not exist six-dimensional quasi-Kahler manifold of negative

constant sectional curvature.

5. Locally flat case

In thissection,we shall show that a six-dimensional locally flat(c = 0) quasi-

Kahler manifold is a locally flat Kahler manifold. We assume that Mis a six-

dimensional locally flatquasi-Kahler manifold. At first,we show that there is no

point in M such that the rank of T is 6 or 4.

Suppose that there exist a point p e M such that the rank of *F is 6 at p.

Then from (2.15) ―(2.17) (with c = 0), we see easily that ((X＼(eT,),a＼(ee))# 0,

(oL2(e2),a2(e5))# 0 and (a3(ei),a3(e4)) ^ 0. Thus, by (2.18) ~(2.20), we see that

GC2(e5)-a3(£?4)=/lai(e6),

a3(ci) -d2{e2) = -Aai(e3),

ct3(e4)+ ct}{e6)=jua2(e5),
(5.1)

a3(e＼)+ a＼{e3)=//a2(e2),

a2(^5) - ai(c6) = va3(e4),

ai(e3) - a2(e2) = -va3(ei),

holds for some real numbers A,ju:v.Thus, again from (2.15) ―(2.17), taking

account of (5.1), we have
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(5.2)
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ai(ei)2 + ai(e4)2 + ai(e2)2 + ai(e5)2 + A(ai(e3)2 + ai(e6)2) = 0

(5.3) a2Oi)2 + <x2{e4)2 + ju(a2{e2)2 + 0L2(e5)2) + a2(e3)2 + oc2(e6)2 = 0,

(5.4) v(a3(ei)2 + a3(e4)2) + a3(e2)2 4- a3(e5)2 + a3(e3)2 + a3(e6)2 = 0.

From (5.2) ~ (5.4), we see that X,/i, v < 0. First, we suppose that (A,//, v)#

(0,0,0). Without loss of essentiality, we may suppose that X < 0. Then, from

(2.18), (2.23) and (2.24), we have

(5.5) a1*(;i)±/a1*(e), /a*(e), 7a3*(e).

Further, from (2.15), (2.21) and (2.22), we have also

(5.6) ^(X)±a*l(e)1 ≪2≫. ≪3*W-

From (5.5) and (5.6), taking account of Lemma 2.1, we have ajf(A)=O, and

hence ai＼{e)= 0 (i.e., ol＼= 0), since k < 0. But, this contradicts to the hypothesis

that rank *F = 6 at p. Thus, it must follow that (A,^, v) = (0,0,0). Then, by

(5.1) ~ (5.4), we see easily that c/.＼{e)= a|(e) = <x$(e) ― 0. But, this contradicts

also to our hypothesis.

Next, we suppose that there exists a point p e M such that the rank of T at p

is 4. Then taking account of (2.7) and Lemma 2.1, without loss of essentiality, we

may assume that a3 = Ja3 = 0 and ai,a2 # 0. Then, by (2.18), we have

(5.7) ai(e3)a2(e5) - cti(e6)a2(e2) = 0.

Since ai #0, from (2.15), we see that (ai(*?3),ai(e6)) #0. Thus, from (2.16) and

(5.7), we have

(5.8) {<x2(e2),ct2(e5))= A(ai(e3),ai(e6)),

for some real number X < 0. Thus, from (2.15) and (5.8), we have

(5.9) a;(e)Lal(A).

From (2.21), (2.23) and (5.8), we have also

(5.10) *＼{k)L<%{e), Ja*(e).

Since ol＼{X)LJai＼(e), from (5.9) and (5.10), it follows that

(5.11) ai*(A)JL <(<?), Ja*(e), a*(e), /a2≫.

Next, we consider a|(l/2). By (2.16) and (5.8) with a3 =0, we have

(5.12) a*(l/X)±≪Ue).
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By substituting x, y,z, w by e＼,ee,e＼,e2in (2.14) respectively, and taking account

of 0C3= J0L3= 0, we have

(5.13) a2(ei)ai(e4) - a2(e4)cci(ei)- cci(e6)ai{e2)

+ ai(e3)ai(e5) - a2(e6)ai(e3) + a2{e3)cti(e6)= 0.

Thus, from (5.13), taking account of (5.8), we have

(5.14) Ja£(l/X)±aii(e) and hence a|(l/A) ±7a,*(e).

Similarly, substituting x,y,z,w by ^4,^6,^1,^2 in (2.14) respectively,and taking

account of 0C3= Jet?,= 0, we have

(5.15) 0L*(l/X)±al(e).

Since a|(l/A) ±/a2*(e), from (5.12), (5.14) and (5.15), we have therefore

(5.16) 0^(1/2) ±ai*(e), /<(e), a*(e), /a*(e).

From (5.11), since aj*(A)±a|(e), we have

(5.17) ai(ei)a2(ei)+ ai(e2)a2(e2) + A(cLi(e3)a2(e3)+ ax(e6)ct2(e6))

+ oti(e4)oc2(e4)+ ai(e5)a2{e5) = 0.

From (5.17), taking account of a^(e)±a2(e), we have

{X - I)(ai(e3)a2(e3)+ ai(e6)a2(e6)) = 0,

and hence

(5.18) ai(e3)a2(£?3)+ ai(≪6)a2(c6)= 0.

From (5.16), since a|(l/A) JLa^e), we have also

(5.19) x＼(e2)a2(e2)+ ai(e5)a2(e5) = 0.

Since aJ^-La^e), from (5.18) and (5.19), we have further

(5.20) oLi(ei)oL2(ei)+ ai(e4)a2(e4) = 0.

Taking account of (5.18) ~(5.20), we have immediately

(5.21) a*(l/A)±a*(A).

Similarly, taking account of aj"(e)±/a|(e), aj*(/l)±7a|(e) and ^(l/A) ±/aj*(e),

we have also

(5.22) /a2*(l/2)±ai*(A)
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and hence a$(＼/X)±Jtf(X). Since a＼(e) # 0, it follows that a＼(X) # 0. Thus, by

(5.16), (5.21) and (5.22), it must follow that a*(l/2) = 0 and hence a${e) = 0.

But, this is a contradiction.

Finally, we suppose that rank *F < 2 at each point in M and there is a point

at which the rank of *F is 2. Then we see that the subset W of M on which the

rank of ＼ is 2 is a non-empty open set in M. We discuss our arguments on a

neighborhood N(p) of a point p of W. Then, taking account of (2.7) and Lemma

2.1, without loss of essentiality, we may assume that ct2= Ju-i = 0C3 = J0C3 = 0 and

ai #0. Then, by (2.15), we have

(5.23) (ai(ei),ai(e2),ai(e4),ai(e5)) = °.

and {v.＼(eT,),cL＼{e())^ 0. From (5.23), we see that there exists a local unitary

frame field {et} on N(p) such that

(5.24) VQ = ＼＼WJ＼＼/2V2{e2<g)(e1 a e2 - e4 a e5) - e6 <g>(e4 a e2 + el a e5)}.

We put

Vinjk = ViJjk = g{{VeiJ)eJ,ek)

and

where (V2/ne7)e;- = Ve/i((Ve,/)ey) - (Vv,^,/)^ - (Ve,/)Ve/ie/. Then, since M is

locally flat, by using the Ricci identity we have

(5.25) V2J#-V2^ = 0.

Further, since M is a quasi-Kahler manifold we have

(5.26) <yJx)jy = -<yxj)y

for any tangent vector field x and y on N(p). Now we define two holomorphic

distributions D and T)± on Af(/?) by

T) = span{e3,e6 = M}, D1 = span{ei,e2,e4 = Jei,e5 = Je2}.

Then from (5.24), (5.25) and (5.26) we can show after some long but straightfor-

ward computations that both X> and T)1 are parallel distributions. So, W is

a locally product space of a 2-dimensional flat Kahler manifold and a 4-

dimensional flat quasi-Kahler manifold. But it is known that a 4-dimensional

quasi-Kahler manifold is an almost Kahler manifold and further that a flat
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almost Kahler manifold is a flat Kahler manifold. Thus it follows that W is a

locally flatKahler manifold, which is a contradiction. Therefore we see that the

rank of T is 0 whole on M, and hence M is locally flat Kahler manifold.
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