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LIGHTNESS OF INDUCED MAPPINGS

By

Janusz J. Charatonik and Wtodzimierz J. Charatonik

Abstract. Relations are studied concerning lightnessof a mapping

between continua and lightness of the two induced mappings:

between hyperspaces of closed subsets and between hyperspaces of

subcontinua.

1. Introduction

For a metric continuum X we denote by 2X and C(X) the hyperspaces of all

nonempty closed and of all nonempty closed connected subsets of X, respectively.

Given a mapping f : X ―* Y between continua X and Y, we let 2? : 2X ― 2Y and

C(f) : C(X) ― C( Y) to denote the corresponding induced mappings. Let TO be a

class of mappings between continua. A general problem which is related to a

given mapping and to the two induced mappings is to find all interrelations

between the following three statements:

(1.1) fem;

(1.2) C(f)eW;

(i.3) 2/e an.

There are some papers in which particular results concerning this problem are

shown for various classes W of mappings like open, monotone, confluent and

some others, see [2], [3], [4], [5], [6], [9], [12]. In the present paper we discuss the

problem in full for the class of light mappings, and we get some corollaries for

local homeomorphisms.
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valuable discussions on the topic of this paper; especially for his idea of Example

3.9.

2. Preliminaries

All spaces considered in this paper are assumed to be metric. A mapping

means a continuous function. We denote by N the set of all positive integers, and

by R the space of real numbers.

A continuum means a compact connected space. Given a continuum X with a

metric d, we let 2X to denote the hyperspace of all nonempty closed subsets of X

equipped with the Hausdorff metric H defined by

H(A, B) = max{sup{</(a, B) : a e A}, sup{d(b, A) : b e B}}

(equivalently: with the Vietoris topology: see e.g. [12, (0.1), p. 1 and (0.12), p. 10].

Further, we denote by C(X) the hyperspace of all subcontinua of X, i.e., of all

connected elements of 2X. For A c 2X we let A* to denote the union of all

elements of A. It is well-known that if A is closed in 2X, then A* is a closed

subset of X (see e.g. [8, §42, III, Theorem 5, p. 52]). The reader is referred to

Kuratowski's monograph [8] and (mainly) to Nadler's book [12] for needed

information on the structure of hyperspaces. In particular, the following fact is

well-known (see [12, Theorem (1.13), p. 65]).

2.1. Fact. For each continuum X the hyperspace C(X) is a suhcontinuum of

the hyperspace 2X.

For each n e N we put Fn{X) = {A e2x : card A < ≪}. Observe that

Fi(X) c F2{X) c ･■■c FW(X) c ･･･ c 2X,

and that each FW(Z) is a closed subset of 2*. Further, the following proposition is

a consequence of definitions.

2.2. Proposition. For each continuum X the space F＼(X) of singletonsis

homeomorphic {even isometric) to X, and thus it is a subcontinuum of the

hyperspace C(X). Consequently,

(2.3) X ~Fi(X) c C(X) c 2X.

By an order arc in 2X we mean an arc >in 2X such thatif A, 56$, then

eitherA a B or B c A. The followingfactsare known (see [12,Theorem (1.8),

p. 59 and Lemma (1.11),p. 641).
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2.4. Fact. Let A, B e 2X with A # B. Then there exists an order arc in 2X

from A to B if and only if A cz B and each component of B intersects A.

2.5. Fact. If an order arc > in 2X begins with A e C(X), then >cz C(X).

Given a mapping / : X ―> Y between continua X and Y, we consider

mappings (called the induced ones)

2f : 2X -> 2r and C(/) : C(X) -> C( F)

defined by

2f{A) =f(A) for every Ae2x and C(/)(^) =/(^) for every A e C(X).

Thus, by Fact 2.1, the following is obvious.

2.6. Fact. For every continua X and Y and for each mapping f : X ―> Y we

have 2f＼C(X) = C(f).

A proof of the following fact is straightforward.

2.7. Fact. Let a mapping f : X ―> Y between continua X and Y be given

Then CifMFAX)) c FAY).

Recall that two mappings f＼: X＼ ―> Y＼ and fi : X2 ―≫･Y2 are said to be

equivalent provided that there exist homeomorphisms hx
■
X＼―*■X2 and hy

■
Y＼―>Y2 such that f2(hx{xj) = hY{f＼{x)) for each point xeX. Observe that

thisrelationis an equivalence in the class of mappings between topological spaces

(see [13, p. 1271).

2.8. Proposition. The mappings

f:X^Y, 2^＼Fl(X):Fl(X)^Fl(Y) and C(/)|/ipr) :Ft(X) -> Fi(Y)

are mutually equivalent.

Proof. In fact,by Proposition 2.2 there are homeomorphisms h : X ―>Fi(X)

and ^: 7―>-Fi(F). Now, for each xeX, the equalities

2/|F1(X)(A(x)) = g(f(x)) and C(/)|F!(Jr)(A(x)) = g(f(x))

hold by the definitions.
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We start our discussion concerning the problem mentioned in the intro-

duction from a result of a more general nature, which is related to all hereditary

classes of mappings.

Recall that a class 9P? of mappings between continua is said to have the

composition property provided that compositions of two mappings belonging to 9R

also belongs to W, and it is said to be hereditary (compare [11]) provided that for

each subcontinuum S of the domain the partial mapping restricted to S also is

in m.

2.9. Theorem. If a class W of mappings between continua contains homeo-

morphisms, has the composition property and is hereditary, then (1.3) implies (1.2),

and (1.2) implies (1.1).

Proof. Assume (1.3). Since C(X) is a subcontinuum of 2X by Fact 2.1, and

since Wflis hereditary, the partial mapping 2^＼C(X) is in 9Jt.Applying Fact 2.6

we get (1.2). Similarly, assuming (1.2) and using Proposition 2.2 we infer that

C(f)＼Fi(X) is in SR. Now (1.1) follows by Proposition 2.8.

3. Light mappings

A mapping / : X -≫ Y between spaces X and Y is said to be light provided

that for each point y e Y the set f~l(y) has one-point components (equivalently,

if f~l(f(x)) is totallydisconnected for each x e X; note that if the inverse images

of points are compact, this condition is equivalent to the property that they are

zero-dimensional).

3.1. Theorem. Let a mapping f : X ―*Y between continua X and Y be

given. Then thefollowing conditionsare equivalent:

(3.2) / is light-

(3.3) (C(/))-1(F1(F))c=F1(X);

(3.4) Fl(X) = (C(f)yl(Fl(Y));

(3.5) FAX) is a component of (CmyUFAY)).

Proof. Assume (3.2).If a continuum K is an element of (C(/)) l(F＼(Y)),

then C(f)(K) eF＼(Y), i.e., f{K) is a singleton, say {y}, which implies that

K czf~l(y), and therefore ATis degenerate by (3.2).Hence K e FAX) and so (3.3)
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follows. (3.3) obviously implies (3.4). Since F＼{X) is connected (see Proposition

2.2),(3.4) implies (3.5). To show that (3.5) implies (3.2) suppose / is not light.

Then there exists a nondegenerate subcontinuum Q of X such that f(Q) is a

singleton, say {q}, in Y. So, Q is an element of C(X)＼Fi(X) and C(f)(Q) e

Fi(Y). Obviously, for each subcontinuum Q' of Q we have f(Q') =f{Q) = {q},

whence itfollows that C(/)(C(0)) = {q} e Fx{Y). Thus C(Q) cz(C(/))"1(F1(F)),

contrary to (3.5). The proof is complete.

3.6.Theorem. For each mapping f : X ―>Y between continuaX and Y the

induced mapping 2? : 2X ―>2Y is lightif and only if for every A, Be2x the

conditionsA £ B and each component of B intersectsA imply the condition

f(A) Zf(B).

Proof. "Only if". Suppose there are A, B e 2X such that A £ B, each

component of B intersects A, and f(A)=f(B). Put D=f(A). Then A, B e

(2^)-1(D) and, by Fact 2.3, there exists an order arc O from >4 to 2? in 2X.

Thus for each A!"e O we have A cz K cz B, whence f(K) ―D, and consequently

O c (2/)~1(Z)),so 27 is not light.

"If". Suppose there is De2y such that {2f)~l{D) contains a nondegenerate

continuum A. Then A* g 2x and /(A*) = D. Since A is nondegenerate, there

exists A e A such that A # A*. Put 5 = A*. Then i c 5 and /(4) =f(B) = D.

We shall show that each component of B intersects A. Suppose on the contrary

that there is a component C of B such that CC＼A = 0. Thus there existsa set U

open in X and such that

A<=U, Cf)clU = 0 and BHbdU = 0.

Define T ―2U. Then T is open in 2X, and A e T. Since C is a component of 5,

there is an element E of A such that EC＼C^0. Thus £ e A＼r. By con-

nectedness of A it follows that there is F e ADbdT. Thus FC＼hdU ^ 0, whence

A* flbd U # 0, a contradiction. The proof is complete.

As a consequence of Theorem 3.6 and of Facts 2.4 and 2.5 we get the

following known resultdue to J. B. Fugate and S. B. Nadler, Jr.,which is

formulated as an exercisein [12,(1.212.3),p. 2041.

3.7.Theorem. For each mapping f : X ―≫Y between continuaX and Y the

induced mapping C(f) : C(X) ―>C( F) w light if and only if for every A,

Be C(X) the conditionA £ B implies the conditionf(A) £/(5).
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Now the intend to study all the possible implications between lightness of a

mapping between continua and lightness of the two induced mappings between

the hyperspaces. We shall show that lightness of/implies lightness of neither 2*

nor C(f), and that lightness of C(f) does not imply that of 2?. The other

implications are true. We start with the needed examples.

Denote by C the plane of complex numbers equipped with the Euclidean

metric, and let Sl stand for the unit circle,i.e.,Sl ―{z e C: ＼z＼― 1}.

3.8. Example. The mapping f : S1 -> Sl defined by f(z) = z2 is light, while

C(f) and 2f are not.

Proof. Lightness of/is evident.To see that C{f) and 2? are not light,we

apply Theorems 3.7 and 3.6,respectively.To thisaim consider the rightsemi-

circleA = {z e Sl : |argz|< n/2} of the domain Sl, and put B = Sl. Then

A^B, while f(A) = f(B) = Sl. The proof is complete.

3.9.Example (Manes). There is a light mapping f : X ― Y between con-

tinuaX and Y such that C(f) is light,while2^ is not.

Proof. Let

L1 = {(x,sin(l/x))£^2:x (0,l]} and h = {(0,y) e J?2: y e [-1,1]},

and let Li and h be the images of L＼ and I＼,respectively,under the symmetry of

the plane R2 with respect to the straightline x = 1. Let L = L＼UL2, and put

X ― L U I＼U h- Then X is a continuum having L, /1 and I2 as its arc-components.

Let a relation p on X identify points (0,_y) of I＼ and (2,y) of /^ only. Define

Y = X//7 as the quotient space, and let / : X ―>F be the quotient mapping.

Then the continuum Y has two arc-components: f(L) and /(/1) =f{h)-

Obviously for each y e Y we have card/"1 (7) < 2, so / is light.

To see C{f) is light take K e C(Y) and consider two cases.If KHf(L) # 0,

then the set (CC/"))"1^) is either one-element or empty. If KHf(L) = 0, then

ATc/(/i)=/(/2), and therefore (CC/"))"1^) has two elements.

To verify that 2? is not light take a point p e h and put A = I＼U{p} and

B = I1UI2. Then A ^ B and each component of 5 intersects ,4, while f(A) ―

f(B) = f(I＼),so 2? is not light by Theorem 3.6. The proof is then complete.

3.10.Theorem. Let a mapping f : X ― Y between continua X and Y be

given. Consider the followingconditions:
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/ is light,

C(f) : C{X) - C(Y) is light,

If : 2X -* 2Y is light.
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Then (3.12) implies (3.11), and (3.11) implies (3.2). Consequently, (3.12) implies

(3.2). The other imnlications do not hold.

Proof. In fact,it is enough to observe that the class of light mappings

contains homeomorphisms, is closed with respect to compositions, and is heredi-

tary, and next to apply Theorem 2.9.The implications listedin the formulation of

the theorem are the only true, as it can be seen from Examples 3.8 and 3.9. The

proof is finished.

In connection with Example 3.8 we have the following observation.

3.13.Observation. For every continuum Y, for every point p e Y and for

every number ne N with n > 1 thereexistsa continuum X and a surjectivelight

mapping f': X'― Y such that

(3.14) c&idf~{(p)= 1 and c&rdf~l(q)=n for eachpointq e Y＼{p};

(3.15) neitherC( f) nor 2f islight.

Proof. Take the disjoint union U of n copies (Yj,pi) of the pointed

continuum (Y,p) for ie {!,...,≪}. Define a relation p on U by

xpy ifx = y or x,y e {pt :i e {1,...,≪}}.

Let X = C///) denote the quotient space, and let / : X ― Y be the natural

projection. Then (3.14) holds by the definition,whence lightness of/follows.

Applying Theorem 3.7 we see that C(f) is not light, and thus 2? also is not, by

Theorem 3.10. This ends the oroof.

4. Mappings of a constant degree. Local homeomorpMsms

A mapping / : X ―> Y is said to be:

― of a constant degree if there is an n e N such that card/"1^) = n for each

y e Y (in some papers these mappings are called n-to-1 ones);

― a local homeomorphism provided that every point xe X has an open
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neighborhood U such that f(U) is an open subset of Y and the partial mapping

f＼U: U-*f(U) is a homeomorphism;

― open, if / maps each open set in X onto an open set in Y.

It is known that a mapping / : X ―≫･Y of a compact space X onto a

connected space Y is a local homeomorphism if and only if it is open and of a

constant degree ([10, Proposition 2, p. 855 and Theorem 4, p. 856]). Since each

mapping of a constant degree is obviously light, we see that any local

homeomorphism between continua is light.

For homeomorphisms we have the following known result (see [12, (0.52),

p. 291.

4.1. Theorem. If Wl means the classof homeomorphisms, then conditions

(1.1),(1.2)and (1.3)are equivalent.

For local homeomorphisms however, such an equivalence does not hold.

Indeed, note that the mapping / : Sl ―>S1 of Example 3.8 is a local homeo-

morphism, while C(f) and 2^ are not lighteven. Moreover, the followingresult

concerns mappings of a constant degree.

4.2. Theorem. Let f : X ―> Y be a mapping between continua X and Y. If,

for some n e N, the induced mapping eitherif or C(f) is of the constant degree n,

then n=＼ andf 2? and C(f) are homeomorphisms.

Proof. Suppose if is of the constant degree n > 1 (for C(f) the argument

is the same). Thus for the element Y of 2Y there are at least two nonempty closed

subsets B = X and A £ X of X such that f(A) =f{B) = Y. Thus 2f is not light

by Theorem 3.6. Hence n = 1, and the rest of the conclusion follows from

Theorem 4.1.

43. Corollary. Let f : X ―>Y be a mapping between continuaX and Y.If

theinduced mapping either2? or C(f) is a local homeomorphism, thenf, 2? and

C(f) are homeomorphisms.

4.4. Remark. In the proof of the above theorem we use the "top" Y of the

hyperspace C{ Y) to show that C(f) is never of a constant degree n > 1. The

followingexample shows thatif we deletethe "top", then the partialmapping

restrictedto C(X)＼＼X] can be of degree 2.
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4.5.Example. There are a continuum X and a mapping f : X ― X such that

f and the partial mapping C(f)＼(C(X)＼{X}) are of the constant degree 2,

{C(f)y＼x) = {X} {thusf and C{f) are light),whileif is not light.

Proof. Let {Xi: <j>i:*e TV} be an inverse sequence with Xt ―Sl and

<f>t: Xi+i ―>Xt defined by 0,-(z)―z3 for each i e TV. Then the inverse limit

X = lim<_{Arj,^,-}is the triadic solenoid. Define ft : Xt ―>X,- by /-(z)= z2 and

note that the diagram

Z
v

i < ^i+l

fi

X,
+1

/■+>

%i+＼

commutes. Denote by / : X ―> X the limit mapping / = lim ft. Further, take

h : X ―> X defined by h((x＼,xi,...)) = (―*i, ~X2,
■■･)
and note that Z"1 (/(･*)) ―

{x,h(x)} for x e X. Since h{x) # x, the mapping / is of the constant degree 2.

We claim that

(4.6) for each x e X there is no proper subcontinuum of X containing both x and

h{x).

Indeed, suppose on the contrary that there is A e C(X)＼{X} such that x,

h(x) e A. Then there is an index m e N such that if nm : X ―>■Xm denotes the

m-th projection, then nm{A) c= xm. Then nm+＼{A) contains two antipodal points

nm+i(x) and nm+i{h{x)). Note that nm(A) = <j)m{nm+i(A)), and since (j)m maps

every continuum containing any two antipodal points onto Xm, we conclude that

nm(A) ― Xm, a contradiction. Thus (4.6) is established.

To show that the partial mapping C(f)＼(C(X)＼{X}) is of the constant

degree 2, take AeC(X)＼{X} and note that A, h(A) e (C(f))~l(C(f)(A)). By

(4.6) we have A # h(A). Assume that f(A) =f(B) for some BeC{X). We will

show that either B = A or B = h(A). Recall that f~l{f(x)) = {x,h(x)} and thus

(4.7) for each x e A either x e B or h{x) e B.

Thus B = (A f1B) U (A(^) PI5). By (4.6) thisis a decomposition of the set B

into two disjointclosed subsets; so one of them, say Af)B, is empty. Therefore

B cz h(A), and by (4.7)it follows that h(A) <z B.Jf h(A)C＼B = 0,fhe argument is

the same.
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To see that 2? is not light take an arbitrary proper subcontinuum P of X and

a point peP. Then for A = PU {h(p)} and B = PUh(P) we have A £ B, the sets

P and h(P) are components of B by (4.6),thereby each component of B intersects

A, while f(A) =f(B). Thus 2^ is not light by Theorem 3.6. The proof is then

complete.

4.8. Remark. Observe that the mapping / of Example 4.5 is open, thus

weakly confluent,and thereforethe induced mapping C(f) is a surjection(see

[12, (0.49.1),p. 241),unlike one of Example 3.9.

5. An intermediate condition

The continua of Examples 3.9 and 4.5 (showing that the conditions (1.1),

(1.2) and (1.3) are not equivalent if M stands for the class of light mappings) are

not locally connected. They are not arcwise connected even. Thus the following

question is natural.

5.1. Question. Are lightness of the induced mappings 2? and C(f) equiva-

lent conditions for a mapping / between arcwise connected (in particular,locally

connected) continua?

Observe that in all the constructed examples, i.e.,in Examples 3.8, 3.9 and

4.5, nonlightness of 2? is implied by the existence of two nondegenerate disjoint

subcontinua of X having the same images under /(for Example 3.8 one can take

{z e Sl : argz e [0,n/2]} as one of them and {z e Sl : argz e [n, 3n/2]} as the

other; for Example 3.9 we have I＼and h', and in Example 4.5 we can take any

A e C{X)＼{F＼(X) U {X}) and h(A) as the needed subcontinua). Generalizing this,

we formulate a condition (viz. condition (5.3) below) which is shown in the next

theorem to be intermediate between (but not equivalent to) lightness of the two

induced mappings. We start with the following example.

5.2. Example. There are continua X and Y and a surjective mapping

f:X^Y such that

(5.3) for every two continua P, QeC(X)＼F＼(X) with PCiQ = 0 the inequality

f(P)＼f(Q) * 0 holds,

and that 2? is not light.

Proof. Let C stand for the Cantor ternary set.Denote by Fc the Cantor

fan, i.e.,the cone (C x [0,1])/(C x {1}) over C, and let v = C x {1} be the top
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of the cone. Then irc＼{y} is a locally compact, noncompact metric space. It is

known (see [1, Theorem, p. 35]) that if S a locally compact, noncompact, metric

space, then each continuum is a remainder of S in some compactification of S.

So, take an arc L as the remainder of S ― Fc＼{v} in a compactification y of S,

and let X be the obtained compact space, i.e.,

y : S -> y(S) c= cl y(S) = X = y(S) U L,

with y(S) D L = 0. Thus X is a continuum. To define Y and / we need two

auxiliary mappings. The firstis an arbitrary homeomorphism h : L ―>･[0,1] of the

arc L onto the closed unit interval. The second one, g : C ―> [0,1], is defined as

the well-known Cantor-Lebesgue step-function from the Cantor set C onto [0,1]

(compare e.g. [7,§16, II, (8) and footnote 1, p. 150] or [13, p. 35]). Consider now

a decomposition S> of X having the sets h~l{t)Uy((g~l(t)) x {0}), for each

t e [0,1], as the only nondegenerate elements; let Y = X/Qi be the decomposition

space, and take / : X ―> 7 as the quotient mapping. In other words, for the set

E ― {e = y((c,0)) e X : c e C} of the end points of X we consider a mapping

＼//: E ― L defined by ＼]/(e)― h~l{g{c)) (which is equivalent to g); then /identifies

each end point e e E of X with its image ＼j/(e),and is a homeomorphism on X＼E.

To see that 2? is not light choose a point p e L and put A = EU {p} and

B ― EUL. Then we have f(A) = f(B) and the conclusion follows from Theorem

3.6

To verify that (5.3) holds suppose on the contrary that there are two

nondegenerate disjoint subcontinua P and Q of X such that f(P) ^f(Q)- Since

the partial mapping f＼(X＼(EUL)) is a homeomorphism, we conclude that P,

Q <=El)L. Therefore, since P and Q are nondegenerate, we have P, Q czL. But

the partial mapping f＼L is a homeomorphism, too, thus f(P) and f(Q) have to

be disjoint,which is a contradiction finishing the proof.

The above mentioned theorem, which supplies Theorem 3.10, runs as follows.

5.4. Theorem. Let continua X and Y and a mapping f : X ―>■Y be given.

Consider the followina conditions:

(3.11) C(f) : C(X)-* C(Y) is light;

(5.3)for every two continua P, QeC(X)＼Fi(X) with Pf)Q = 0 theinequality

f(P)＼f(Q)*0 holds;

(3.12) 2/:2*^2r is light.
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Then (3.12) implies (5.3), and (5.3) implies (3.11). Consequently, (3.12) implies

(3.11). The other implications do not hold.

Proof. To show that (3.12) implies (5.3) suppose that there are two

continua P, Q e C{X)＼Fi{X) with Pf] Q = 0 and f{P) cf(Q). Choose a point

p e P. Then for the sets A = {/?} U Q and 5 = PU g we see that A g 5, each

component of 5 intersects
^4,
while /(^4) =f(B). Thus 2-^is not light by Theorem

3.6.

To see that implication from (5.3) to (3.11) holds assume (5.3) and suppose

that C(f) is not light. By Theorem 3.7 there are A, B e C{X) such that A £ B

and f(A) ―f(B). Hence B is nondegenerate. Enlarging A in B if necessary, we can

assume that A is nondegenerate, too. Let P be a nondegenerate subcontinuum

contained in B＼A and put Q = A. Then /(P) ez/(5) =f(A) =f(Q) contrary to

(5.3).

Example 5.2 shows that implication from (3.12) to (5.3) is not reversible.

Taking in Example 4.5 any P e C(X)＼(Fi(X) U {X}) and Q = h{P) we get the

needed subcontinua showing that (3.11) does not imply (5.3). This finishes the

proof.

Theorems 3.10 and 5.4 can be summarized in the following corollary.

5.5. Corollary. Let continua X and Y and a mapping f : X ―> Y be given.

Consider the following conditions.

(3.2) / is light;

(3.11) C(f) : C(X)-+C(Y) is light;

(5.3) for every two continua P, Q e C(X) ＼F＼(X) with PC＼Q = 0 the inequality

f{P)＼f{Q)*0 holds;

(3.12) 2f :2X ^2Y is light.

Then the implications

(3.12) => (5.3)=* (3.11)=* (3.2)

hold, and none of them can be reversed.

5.6.Theorem. Let an arcwise connectedcontinuum X, a continuum Y and a

mapping f : X ― Y be given. Then (3.11)implies(5.3).
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Proof. Suppose that (5.3) does not hold, i.e.,that there are two continua P,

Q e C(X)＼Fi(X) with PH Q = 0 and f{P) c/(g). Denote by L an irreducible

arc between P and Q. Putting A = LU Q and B = PULU Q we have ^ £ 5 and

/(^) =/(£). Thus by Theorem 3.7 we see that C{f) is not light.

5.7. Corollary. For mappings f with an arcwise connected {in particular

with a locally connected) domain X conditions (3.11) and (5.3) are equivalent.

5.8. Remark. The implication from lightness of C(f) to lightness of /

cannot be reversed even for mappings / between locally connected continua (see

Example 3.8).The authors do not know whether the implication from (3.12) to

(5.3) of Corollary 5.5 can be replaced by the equivalence under this additional

assumption. Thus we have the following question that is equivalent to Question

5.1.

5.9. Question. Is the implication (5.3) => (3.12) trueif the domain space X

is an arcwise connected (in particular locally connected) continuum?
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