A CHARACTERIZATION OF EINSTEIN REAL HYPERSURFACES IN QUATERNIONIC PROJECTIVE SPACE

By

Soo Hyo Lee, Juan de Dios Pérez and Young Jin Suf

Abstract

On a real hypersurface of quaternionic projective space $Q P^{m}$ we study the following condition: $\mathfrak{G}(R(X, Y) S Z)=0$ where \mathfrak{G} denotes the cyclic sum, R, respectively S, the curvature tensor, respectively the Ricci tensor, of the real hypersurface and $X, Y \in \mathscr{D}$, $Z \in \mathscr{D}^{\perp}, \mathscr{D}$ and \mathscr{D}^{\perp} being certain distributions on the real hypersurface. We prove that such a real hypersurface must be Einstein.

1. Introduction

Let M be a connected real hypersurface of the quaternionic projective space $Q P^{m}, m \geq 3$, endowed with the metric g of constant quaternionic sectional curvature 4. Let N be a unit local normal vector field on M and $U_{i}=-J_{i} N$, $i=1,2,3$, where $\left\{J_{i}\right\}_{i=1,2,3}$ is a local basis of the quaternionic structure of $Q P^{m}$, [2]. Several examples of such real hypersurfaces are well known, see for instance ([1], [3], [4]).

Let S be the Ricci tensor of M. In [4] it is proved that the unique real hypersurfaces of $Q P^{m}$ that are Einstein are geodesic hyperspheres of radius r, $0<r<(\pi / 2)$ and $\cot ^{2}(r)=(1 / 2 m)$.

Recently, in [4] the second author has studied real hypersurfaces of $Q P^{m}$, $m \geq 2$, such that

$$
\begin{equation*}
\mathfrak{S}(R(X, Y) S Z)=0 \tag{1.1}
\end{equation*}
$$

for any X, Y and Z tangent to M, where R denotes the curvature tensor of M and \mathfrak{S} is the cyclic sum on X, Y, and Z, obtaining

[^0]Theorem A. A real hypersurface M of $Q P^{m} . m \geq 2$ satisfies (1.1) if and only if it is Einstein.

Now let us define a distribution \mathscr{D} by $\mathscr{D}(x)=\left\{X \in T_{x} M: X \perp U_{i}(x)\right.$, $i=1,2,3\}, x \in M$, of a real hypersurface M in $Q P^{m}$, which is orthogonal to the structure vector fields $\left\{U_{1}, U_{2}, U_{3}\right\}$ and invariant with respect to structure tensors $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$, and by $\mathscr{D}^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$ its orthogonal complement in $T M$. In order to obtain a weaker condition than (1.1) it seems natural to propose to study real hypersurfaces of $Q P^{m}$ satisfying

$$
\begin{equation*}
\mathfrak{S}(R(X, Y) S Z)=0 \tag{1.2}
\end{equation*}
$$

for any $X, Y \in \mathscr{D}$, and $Z \in \mathscr{D}^{\perp}$
The purpose of the present paper is to study such a condition. Concretely we shall prove

Theorem 1. A real hypersurface M of $Q P^{m}, m \geq 3$, satisfies (1.2) if and only if it is Einstein.

2. Preliminaries

Let X be a tangent field to M. We write $J_{i} X=\phi_{i} X+f_{i}(X) N, i=1,2,3$, where $\phi_{i} X$ is the tangent component of $J_{i} X$ and $f_{i}(X)=g\left(X, U_{i}\right), i=1,2,3$. As $J_{i}^{2}=-i d, i=1,2,3$, where $i d$ denotes the identity endomorphism on $T Q P^{m}$, we get

$$
\begin{equation*}
\phi_{i}^{2} X=-X+f_{i}(X) U_{i}, \quad f_{i}\left(\phi_{i} X\right)=0, \quad \phi_{i} U_{i}=0, \quad i=1,2,3 \tag{2.1}
\end{equation*}
$$

for any X tangent to M. As $J_{i} J_{j}=-J_{j} J_{i}=J_{k}$, where (i, j, k) is a cyclic permutation of $(1,2,3)$ we obtain

$$
\begin{equation*}
\phi_{i} X=\phi_{j} \phi_{k} X-f_{k}(X) U_{j}=-\phi_{k} \phi_{j} X+f_{j}(X) U_{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(X)=f_{j}\left(\phi_{k} X\right)=-f_{k}\left(\phi_{j} X\right) \tag{2.3}
\end{equation*}
$$

for any vector field X tangent to M, where (i, j, k) is a cyclic permutation of $(1,2,3)$. It is also easy to see that for any X, Y tangent to M and $i=1,2,3$

$$
\begin{equation*}
g\left(\phi_{i} X, Y\right)+g\left(X, \phi_{i} Y\right)=0, \quad g\left(\phi_{i} X, \phi_{i} Y\right)=g(X, Y)-f_{i}(X) f_{i}(Y) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{i} U_{j}=-\phi_{j} U_{i}=U_{k} \tag{2.5}
\end{equation*}
$$

(i, j, k) being a cyclic permutation of $(1,2,3)$. From the expression of the curvature tensor of $Q P^{m}, m \geq 2$, we have the equations of Gauss and Codazzi are respectively given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+\sum_{i=1}^{3}\left\{g\left(\phi_{i} Y, Z\right) \phi_{i} X-g\left(\phi_{i} X, Z\right) \phi_{i} Y\right. \tag{2.6}\\
& \left.+2 g\left(X, \phi_{i} Y\right) \phi_{i} Z\right\}+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\sum_{i=1}^{3}\left\{f_{i}(X) \phi_{i} Y-f_{i}(Y) \phi_{i} X+2 g\left(X, \phi_{i} Y\right) U_{i}\right\} \tag{2.7}
\end{equation*}
$$

for any X, Y, Z tangent to M, where R denotes the curvature tensor of M, see [3]. Moreover, the Ricci tensor $S^{\prime}(Z, Y)=g(S Z, Y)=\operatorname{Trace}\{X \rightarrow R(X, Z) Y\}$ are defined by

$$
\begin{equation*}
S Z=(4 m+7) Z-3 \sum_{k} f_{k}(Z) U_{k}+h A Z-A^{2} Z \tag{2.8}
\end{equation*}
$$

respectively.
From the expressions of the covariant derivatives of $J_{i}, i=1,2,3$, it is easy to see that

$$
\begin{equation*}
\nabla_{X} U_{i}=-p_{j}(X) U_{k}+p_{k}(X) U_{j}+\phi_{i} A X \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \phi_{i}\right) Y=-p_{j}(X) \phi_{k} Y+p_{k}(X) \phi_{j} Y+f_{i}(Y) A X-g(A X, Y) U_{i} \tag{2.10}
\end{equation*}
$$

for any X, Y tangent to $M,(i, j, k)$ being a cyclic permutation of $(1,2,3)$ and p_{i}, $i=1,2,3$, local 1 -forms on $Q P^{m}$.

3. Key Lemma

Let M be a real hypersurface in a quaternionic projective space $Q P^{m}$ satisfying

$$
\begin{equation*}
\Im R(X, Y) S Z=0 \tag{3.1}
\end{equation*}
$$

for any $X, Y \in \mathscr{D}$, and $Z \in \mathscr{D}^{\perp}$. Now let us take an orthonormal basis

$$
\left\{E_{1}, \ldots, E_{4 m-4}, U_{1}, U_{2}, U_{3}\right\}
$$

of the tangent space of $T_{x}(M)$ at any point $x \in M$. Then for a case where $X=E_{i}$, $Y=\phi_{1} E_{i}$ and $Z=U_{1}$ the above formula (3.1) gives

$$
\begin{equation*}
R\left(E_{i}, \phi_{1} E_{i}\right) S U_{1}+R\left(\phi_{1} E_{i}, U_{1}\right) S E_{i}+R\left(U_{1}, E_{i}\right) S \phi_{1} E_{i}=0 \tag{3.2}
\end{equation*}
$$

Now let us denote by $H=h A-A^{2}$. Then the first term of the left side of (3.2) becomes

$$
\begin{aligned}
R\left(E_{i}, \phi_{1} E_{i}\right) S U_{1}= & g\left(\phi_{1} E_{i}, H U_{1}\right) E_{i}-g\left(E_{i}, H U_{1}\right) \phi_{1} E_{i} \\
& -g\left(E_{i}, H U_{1}\right) \phi_{1} E_{i}+g\left(\phi_{1} E_{i}, H U_{1}\right) E_{i}-2 g\left(\phi_{3} E_{i}, H U_{i}\right) \phi_{2} E_{i} \\
& +2 g\left(\phi_{2} E_{i}, H U_{1}\right) \phi_{3} E_{i}-2 \phi_{1} H U_{1}+g\left(A \phi_{1} E_{i}, S U_{1}\right) A E_{i} \\
& -g\left(A E_{i}, S U_{1}\right) A \phi_{1} E_{i}
\end{aligned}
$$

The second term gives

$$
\begin{aligned}
R\left(\phi_{1} E_{i}, U_{1}\right) S E_{i}= & g\left(H U_{1}, E_{i}\right) \phi_{1} E_{i}-(4 m+7) g\left(E_{i}, \phi_{1} E_{i}\right) U_{1} \\
& -g\left(H E_{i}, \phi_{1} E_{i}\right) U_{1}+g\left(U_{3}, H E_{i}\right) \phi_{3} E_{i} \\
& -g\left(\phi_{3} E_{i}, H E_{i}\right) U_{3}-g\left(\phi_{2} E_{i}, H E_{i}\right) U_{2} \\
& +g\left(U_{2}, H E_{i}\right) U_{2}-g\left(A U_{1}, S \phi_{1} E_{i}\right) A E_{i}+g\left(A E_{i}, S \phi_{1} E_{i}\right) A U_{1} .
\end{aligned}
$$

Also the third term of (3.2) gives

$$
\begin{aligned}
R\left(U_{1}, E_{i}\right) S \phi_{1} E_{i}= & -g\left(H U_{1}, \phi_{1} E_{i}\right) E_{i}+(4 m+7) g\left(E_{i}, \phi_{1} E_{i}\right) U_{1} \\
& +g\left(H \phi_{1} E_{i}, E_{i}\right) U_{1}+g\left(U_{3}, H \phi_{1} E_{i}\right) \phi_{2} E_{i} \\
& -g\left(U_{2}, H \phi_{1} E_{i}\right) \phi_{3} E_{i}-g\left(\phi_{2} E_{i}, H \phi_{1} E_{i}\right) U_{3} \\
& +g\left(\phi_{3} E_{i}, H \phi_{1} E_{i}\right) U_{2}-g\left(A U_{1}, S \phi_{1} E_{i}\right) A E_{i} \\
& +g\left(A E_{i}, S \phi_{1} E_{i}\right) A U_{1}
\end{aligned}
$$

Thus summing up the above formulas, we have

$$
\begin{align*}
\varsigma R\left(E_{i}, \phi_{1} E_{i}\right) S U_{1}= & \left\{g\left(\phi_{3} E_{i}, H \phi_{1} E_{i}\right)-g\left(H \phi_{2} E_{i}, E_{i}\right)\right\} U_{2} \tag{3.3}\\
& -\left\{g\left(H \phi_{3} E_{i}, E_{i}\right)+g\left(H \phi_{2} E_{i}, \phi_{1} E_{i}\right)\right\} U_{3} \\
& +g\left(\phi_{1} E_{i}, H U_{1}\right) E_{i}-g\left(E_{i}, H U_{1}\right) \phi_{1} E_{i}-2 \phi_{1} H U_{1} \\
& +\left\{g\left(U_{2}, H E_{i}\right)+g\left(U_{3}, H \phi_{1} E_{i}\right)-2 g\left(\phi_{3} E_{i}, H U_{1}\right)\right\} \phi_{2} E_{i} \\
& +\left\{g\left(U_{3}, H E_{i}\right)-g\left(U_{2}, H \phi_{1} E_{i}\right)+2 g\left(\phi_{2} E_{i}, H U_{1}\right)\right\} \phi_{3} E_{i} \\
& +3 g\left(A U_{1}, E_{i}\right) A \phi_{1} E_{i}-3 g\left(A U_{1}, \phi_{1} E_{i}\right) A E_{i} \\
= & 0 .
\end{align*}
$$

For a case where $j=2$ we can also calculate the following

$$
\begin{align*}
\Im_{R\left(E_{i}, \phi_{2} E_{i}\right) S U_{2}=} & \left\{g\left(\phi_{1} E_{i}, H \phi_{2} E_{i}\right)-g\left(\phi_{3} E_{i}, H E_{i}\right)\right\} U_{3} \tag{3.4}\\
& -\left\{g\left(H \phi_{1} E_{i}, E_{i}\right)+g\left(H \phi_{3} E_{i}, \phi_{2} E_{i}\right)\right\} U_{1} \\
& +g\left(\phi_{2} E_{i}, H U_{2}\right) E_{i}-g\left(E_{i}, H U_{2}\right) \phi_{2} E_{i}-2 \phi_{2} H U_{2} \\
& +\left\{g\left(U_{3}, H E_{i}\right)+g\left(U_{1}, H \phi_{2} E_{i}\right)-2 g\left(\phi_{1} E_{i}, H U_{2}\right)\right\} \phi_{3} E_{i} \\
& +\left\{g\left(U_{1}, H E_{i}\right)-g\left(U_{3}, H \phi_{2} E_{i}\right)+2 g\left(\phi_{3} E_{i}, H U_{2}\right)\right\} \phi_{1} E_{i} \\
& +3 g\left(A U_{2}, E_{i}\right) A \phi_{2} E_{i}-3 g\left(A U_{2}, \phi_{2} E_{i}\right) A E_{i} \\
= & 0 .
\end{align*}
$$

Similarly, for a case where $j=3$ we have

$$
\begin{align*}
\mathfrak{S} R\left(E_{i}, \phi_{3} E_{i}\right) S U_{3}= & \left\{g\left(\phi_{2} E_{i}, H \phi_{3} E_{i}\right)-g\left(\phi_{1} E_{i}, H E_{i}\right)\right\} U_{1} \tag{3.5}\\
& -\left\{g\left(H \phi_{2} E_{i}, E_{i}\right)+g\left(H \phi_{1} E_{i}, \phi_{3} E_{i}\right)\right\} U_{2} \\
& +g\left(\phi_{3} E_{i}, H U_{3}\right) E_{i}-g\left(E_{i}, H U_{3}\right) \phi_{3} E_{i}-2 \phi_{3} H U_{3} \\
& +\left\{g\left(U_{1}, H E_{i}\right)+g\left(U_{2}, H \phi_{3} E_{i}\right)-2 g\left(\phi_{2} E_{i}, H U_{3}\right)\right\} \phi_{1} E_{i} \\
& +\left\{g\left(U_{2}, H E_{i}\right)-g\left(U_{1}, H \phi_{3} E_{i}\right)+2 g\left(\phi_{1} E_{i}, H U_{3}\right)\right\} \phi_{2} E_{i} \\
& +3 g\left(A U_{3}, E_{i}\right) A \phi_{3} E_{i}-3 g\left(A U_{3}, \phi_{3} E_{i}\right) A E_{i} \\
= & 0 .
\end{align*}
$$

By contracting from $i=1, \ldots, 4(m-1)$ the formulas (3.3), (3.4) and (3.5) are reduced by the followings respectively

$$
\begin{align*}
& -(4 m-5) \phi_{1} H U_{1}+\phi_{2} H U_{2}+\phi_{3} H U_{3} \tag{3.6}\\
& \quad+3\left\{A \phi_{1} A U_{1}-g\left(A U_{1}, U_{2}\right) A U_{3}+g\left(A U_{1}, U_{3}\right) A U_{2}\right\}=0 \\
& -(4 m-5) \phi_{2} H U_{2}+\phi_{3} H U_{3}+\phi_{1} H U_{1} \tag{3.7}\\
& \quad+3\left\{A \phi_{2} A U_{2}-g\left(A U_{2}, U_{3}\right) A U_{1}+g\left(A U_{2}, U_{1}\right) A U_{3}\right\}=0
\end{align*}
$$

and

$$
\begin{align*}
& -(4 m-5) \phi_{3} H U_{3}+\phi_{1} H U_{1}+\phi_{2} H U_{2} \tag{3.8}\\
& \quad+3\left\{A \phi_{3} A U_{3}-g\left(A U_{3}, U_{1}\right) A U_{2}+g\left(A U_{3}, U_{2}\right) A U_{1}\right\}=0 .
\end{align*}
$$

Now let us denote the curvature tensor and the Ricci tensor defined in section 2 respectively by

$$
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y+Q(X, Y) Z
$$

and

$$
S Z=(4 m+7) Z-3 \sum_{k} f_{k}(Z) U_{k}+H Z
$$

where

$$
\begin{aligned}
Q(X, Y) Z= & \sum_{l=1}^{3}\left\{g\left(\phi_{l} Y, Z\right) \phi_{l} X-g\left(\phi_{l} X, Z\right) \phi_{l} Y\right. \\
& \left.+2 g\left(X, \phi_{l} Y\right) \phi_{l} Z\right\}+g(A Y, Z) A X-g(A X, Z) A Y
\end{aligned}
$$

and

$$
H Z=h A Z-A^{2} Z
$$

respectively, for any tangent vector fields X, Y and Z of M. In this section we want to prove the following

Lemma 3.1. Let M be a real hypersurface in a quaternionic projective space $Q P^{m}$ satisfying (3.1). Then

$$
g\left(H \mathscr{D}, \mathscr{D}^{\perp}\right)=0 .
$$

Proof. The formula (3.1) implies that

$$
\begin{equation*}
Q(X, Y) S Z+Q(Y, Z) S X+Q(Z, X) S Y=0 \tag{3.9}
\end{equation*}
$$

for any tangent vector fields $X, Y \in \mathscr{D}$ and $Z \in \mathscr{D}^{\perp}$. Now let us put $X=E_{i}$, $Y=\phi_{1} E_{i}$ and $Z=U_{2}$ in (3.9) and use the basic formulas in section 2 , then the first term of the left hand side of (3.9) gives

$$
\begin{align*}
Q\left(E_{i}, \phi_{1} E_{i}\right) S U_{2}= & -g\left(E_{i}, H U_{2}\right) \phi_{1} E_{i}+g\left(\phi_{1} E_{i}, H U_{2}\right) E_{i} \tag{3.10}\\
& -8(m+1) U_{3}-2 \phi_{1} H U_{2}-2 g\left(\phi_{3} E_{i}, H U_{2}\right) \phi_{2} E_{i} \\
& +2 g\left(\phi_{2} E_{i}, H U_{2}\right) \phi_{3} E_{i} \\
& +g\left(A \phi_{1} E_{i}, S U_{2}\right) A E_{i}-g\left(A E_{i}, S U_{2}\right) A \phi_{1} E_{i}
\end{align*}
$$

where we have used the fact that

$$
\phi_{1} S U_{2}=4(m+1) U_{3}+\phi_{1} H U_{2}
$$

The second term of (3.9) gives

$$
\begin{align*}
Q\left(\phi_{1} E_{i}, U_{2}\right) S E_{i}= & -g\left(U_{3}, H E_{i}\right) E_{i}+g\left(E_{i}, H E_{i}\right) U_{3} \tag{3.11}\\
& -g\left(U_{1}, H E_{i}\right) \phi_{2} E_{i} \\
& +g\left(\phi_{2} E_{i}, H E_{i}\right) U_{1}+g\left(A U_{2}, S E_{i}\right) A \phi_{1} E_{i} \\
& -g\left(A \phi_{1} E_{i}, S E_{i}\right) A U_{2}+(4 m+7) U_{3},
\end{align*}
$$

where we have used $S E_{i}=(4 m+7) E_{i}+H E_{i}$. Finally the third term of (3.9) is given by the following

$$
\begin{align*}
Q\left(U_{2}, E_{i}\right) S \phi_{1} E_{i}= & (4 m+7) U_{3}+g\left(\phi_{1} E_{i}, H \phi_{1} E_{i}\right) U_{3} \tag{3.12}\\
& -g\left(U_{3}, H \phi_{1} E_{i}\right) \phi_{1} E_{i} \\
& -g\left(\phi_{3} E_{i}, H \phi_{1} E_{i}\right) U_{1}+g\left(U_{1}, H \phi_{1} E_{i}\right) \phi_{3} E_{i} \\
& +g\left(A E_{i}, S \phi_{1} E_{i}\right) A U_{2}-g\left(A U_{2}, S \phi_{1} E_{i}\right) A E_{i} .
\end{align*}
$$

Combining (3.10), together with (3.11) and (3.12), we have

$$
\begin{align*}
= & \mathfrak{S} R\left(E_{i}, \phi_{1} E_{i}\right) S U_{2} \tag{3.13}\\
= & \mathfrak{S} Q\left(E_{i}, \phi_{1} E_{i}\right) S U_{2} \\
= & \left\{g\left(\phi_{2} E_{i}, H E_{i}\right)-g\left(\phi_{3} E_{i}, H \phi_{1} E_{i}\right)\right\} U_{1} \\
& +\left\{g\left(E_{i}, H E_{i}\right)+6+g\left(\phi_{1} E_{i}, H \phi_{1} E_{i}\right)\right\} U_{3} \\
& +\left\{g\left(\phi_{1} E_{i}, H U_{2}\right)-g\left(U_{3}, H E_{i}\right)\right\} E_{i} \\
& -\left\{g\left(E_{i}, H U_{2}\right)+g\left(U_{3}, H \phi_{1} E_{i}\right)\right\} \phi_{1} E_{i} \\
& -\left\{2 g\left(\phi_{3} E_{i}, H U_{2}\right)+g\left(U_{1}, H E_{i}\right)\right\} \phi_{2} E_{i} \\
& +\left\{2 g\left(\phi_{2} E_{i}, H U_{2}\right)+g\left(U_{1}, H \phi_{1} E_{i}\right)\right\} \phi_{3} E_{i} \\
& -2 \phi_{1} H U_{2}+\left\{g\left(A \phi_{1} E_{i}, S U_{2}\right)-g\left(A U_{2}, S \phi_{1} E_{i}\right)\right\} A E_{i} \\
& +\left\{g\left(A U_{2}, S E_{i}\right)-g\left(A E_{i}, S U_{2}\right)\right\} A \phi_{1} E_{i} \\
& +\left\{g\left(A E_{i}, S \phi_{1} E_{i}\right)-g\left(A \phi_{1} E_{i}, S E_{i}\right)\right\} A U_{2} .
\end{align*}
$$

From this let us take a summation given by $\sum_{i}=\sum_{i=1}^{4(m-1)}$, then we know the following informations

$$
\sum_{i} g\left(\phi_{2} E_{i}, H E_{i}\right)=0
$$

and

$$
\sum_{i} g\left(\phi_{3} E_{i}, H \phi_{1} E_{i}\right)=0
$$

Moreover, by contracting we also have the followings

$$
\begin{gathered}
\sum_{i} g\left(E_{i}, H E_{i}\right)=\operatorname{Tr} H-\Sigma_{i=1}^{3} g\left(U_{i}, H U_{i}\right), \\
\sum_{i} g\left(\phi_{1} E_{i}, H \phi_{1} E_{i}\right)=\operatorname{Tr} H-g\left(\phi_{1} U_{2}, H \phi_{1} U_{2}\right)-g\left(\phi_{1} U_{3}, H \phi_{1} U_{3}\right), \\
\sum_{i} g\left(\phi_{1} E_{i}, H U_{2}\right) E_{i}=-\phi_{1} H U_{2}-g\left(U_{3}, H U_{2}\right) U_{2}+g\left(U_{2}, H U_{2}\right) U_{3}, \\
\sum_{i} g\left(U_{3}, H E_{i}\right) E_{i}=H U_{3}-\Sigma_{i=1}^{3} g\left(U_{3}, H U_{i}\right) U_{i}, \\
\sum_{i} g\left(E_{i}, H U_{2}\right) \phi_{1} E_{i}=\phi_{1} H U_{2}-g\left(U_{2}, H U_{2}\right) U_{3}+g\left(U_{3}, H U_{2}\right) U_{2}, \\
\sum_{i} g\left(U_{3}, H \phi_{1} E_{i}\right)=H U_{3}-f_{1}\left(H U_{3}\right) U_{1}-g\left(H U_{2}, U_{3}\right) U_{2}-g\left(H U_{3}, U_{3}\right) U_{3}, \\
2 \sum_{i} g\left(\phi_{3} E_{i}, H U_{2}\right) \phi_{2} E_{i}=-2 \phi_{1} H U_{2}-2 f_{3}\left(H U_{2}\right) U_{2}+2 g\left(H U_{2}, U_{2}\right) U_{3},
\end{gathered}
$$

and

$$
\sum_{i} g\left(U_{1}, H E_{i}\right) \phi_{2} E_{i}=\phi_{2} H U_{1}+g\left(U_{1}, H U_{1}\right) U_{3}-g\left(U_{1}, H U_{3}\right) U_{1}
$$

Following with the proof, let us take a contraction to the latter terms of (3.13), then we have

$$
\begin{aligned}
& \sum_{i}\left\{2 g\left(\phi_{2} E_{i}, H U_{2}\right)+g\left(U_{1}, H \phi_{1} E_{i}\right)\right\} \phi_{3} E_{i} \\
& =2 \phi_{1} H U_{2}-2 f_{2}\left(H U_{2}\right) U_{3}-\phi_{2} H U_{1}-f_{1}\left(H U_{1}\right) U_{3} \\
& \quad+2 g\left(H U_{2}, U_{3}\right) U_{2}+g\left(H U_{3}, U_{1}\right) U_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i}\left\{g\left(A \phi_{1} E_{i}, S U_{2}\right)-g\left(A U_{2}, S \phi_{1} E_{i}\right)\right\} A E_{i} \\
& =3 A \phi_{1} A U_{2}+3 g\left(A U_{2}, U_{3}\right) A U_{2}-3 g\left(A U_{2}, U_{2}\right) A U_{3}, \\
& \sum_{i}\left\{g\left(A U_{2}, S E_{i}\right)-g\left(A E_{i}, S U_{2}\right)\right\} A \phi_{1} E_{i} \\
& =-3 A \phi_{1} A U_{2}+3 g\left(A U_{2}, U_{2}\right) A U_{3}+3 g\left(A U_{2}, U_{3}\right) A \phi_{1} U_{3}, \\
& \quad \sum_{i}\left\{g\left(A E_{i}, S \phi_{1} E_{i}\right)-g\left(A \phi_{1} E_{i}, S E_{i}\right)\right\} A U_{2}=0 .
\end{aligned}
$$

Taking account of these formulas into (3.13), we have

$$
\begin{align*}
H U_{3}= & \phi_{1} H U_{2}-\phi_{2} H U_{1}+2 g\left(H U_{2}, U_{3}\right) U_{2}+2 g\left(H U_{1}, U_{3}\right) U_{1} \tag{3.14}\\
& -\left\{g\left(H U_{1}, U_{1}\right)+g\left(H U_{2}, U_{2}\right)-g\left(H U_{3}, U_{3}\right)\right\} U_{3} \\
& -4(m-1) \phi_{1} H U_{2}
\end{align*}
$$

From this it follows that

$$
\begin{equation*}
\phi_{3} H U_{3}=-(4 m-5) \phi_{2} H U_{2}+\phi_{1} H U_{1} . \tag{3.15}
\end{equation*}
$$

Using the similar method, we have the following

$$
\begin{align*}
& \phi_{2} H U_{2}=-(4 m-5) \phi_{1} H U_{1}+\phi_{3} H U_{3} \tag{3.16}\\
& \phi_{1} H U_{1}=-(4 m-5) \phi_{3} H U_{3}+\phi_{2} H U_{2} \tag{3.17}
\end{align*}
$$

Thus summing up (3.15), (3.16) and (3.17), we have

$$
\sum_{i=1}^{3} \phi_{i} H U_{i}=-(4 m-5) \sum_{i=1}^{3} \phi_{i} H U_{i}+\sum_{i=1}^{3} \phi_{i} H U_{i}
$$

so that

$$
\sum_{i=1}^{3} \phi_{i} H U_{i}=0
$$

On the other hand, from (3.6) and (3.15) we know that

$$
\begin{equation*}
2 \phi_{3} H U_{3}+3\left\{A \phi_{2} A U_{2}-g\left(A U_{2}, U_{3}\right) A U_{1}+g\left(A U_{2}, U_{1}\right) A U_{3}\right\}=0 \tag{3.18}
\end{equation*}
$$

Similarly, we can assert that

$$
\begin{equation*}
2 \phi_{1} H U_{1}+3\left\{A \phi_{3} A U_{3}-g\left(A U_{3}, U_{1}\right) A U_{2}+g\left(A U_{3}, U_{2}\right) A U_{1}\right\}=0 \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \phi_{2} H U_{2}+3\left\{A \phi_{1} A U_{1}-g\left(A U_{1}, U_{2}\right) A U_{3}+g\left(A U_{1}, U_{3}\right) A U_{2}\right\}=0 \tag{3.20}
\end{equation*}
$$

On the other hand, putting $\phi_{2} H U_{2}+\phi_{3} H U_{3}=-\phi_{1} H U_{1}$ into (3.6) and using (3.20), we have

$$
\begin{equation*}
-4(m-1) \phi_{1} H U_{1}-2 \phi_{2} H U_{2}=0 \tag{3.21}
\end{equation*}
$$

Similarly, we also have

$$
\begin{equation*}
-4(m-1) \phi_{2} H U_{2}-2 \phi_{3} H U_{3}=0 \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
-4(m-1) \phi_{3} H U_{3}-2 \phi_{1} H U_{1}=0 \tag{3.23}
\end{equation*}
$$

Thus (3.22) and (3.21) imply $\phi_{3} H U_{3}=-2(m-1) \phi_{2} H U_{2}=4(m-1)^{2} \phi_{1} H U_{1}$. From this, together with (3.23) it follows

$$
\left\{8(m-1)^{3}+1\right\} \phi_{1} H U_{1}=0
$$

Similarly, we have $\phi_{2} H U_{2}=0$, and $\phi_{3} H U_{3}=0$. From this we complete the proof of our lemma.

4. The Proof of Main Theorem

In section 3 under the condition (3.1) we have proved that $g\left(H \mathscr{D}, \mathscr{D}^{\perp}\right)=0$ for the distributions \mathscr{D} and $\mathscr{D}^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$ of real hypersurfaces in $Q P^{m}$, where $H=h A-A^{2}$. But $H A=A H$. Thus we can find an orthonormal basis of $T_{x} M$, for any $x \in M$, such that it diagonalizes simultaneously both H and A. So on this decomposition of $T_{x} M$ such that $T_{x} M=\mathscr{D} \oplus \mathscr{D}^{\perp}$ the fact that $g\left(H \mathscr{D}, \mathscr{D}^{\perp}\right)=0$ is equivalent to $g\left(A \mathscr{D}, \mathscr{D}^{\perp}\right)=0$. Then by virtue of a theorem given by J. Berndt [1] we conclude that a real hypersurfaces satisfying (3.1) is locally congruent to one of geodesic hypersphere, a tube over $Q P^{k}, k=$ $1, \ldots, n-1$ with radius $0<r<(\pi / 2)$, or a tube over $C P^{m}$ with radius $0<r<(\pi / 4)$.

Firstly, let us consider the case where M is a geodesic hypersphere. Then its principal curvatures are given by $\alpha=2 \cot 2 r$, cotr with multiplicities 3 and $4(m-1)$ respectively. That is, $A U_{i}=\alpha U_{i}, i=1,2,3$ and $A X=\operatorname{cotr} X$ for any $X \in \mathscr{D}$. From this the Ricci tensor S, for any X in \mathscr{D}, is given by

$$
\begin{aligned}
S X & =\left[(4 m+7)+\{(4 m-1) \cot r-3 \tan r\} \cot r-\cot ^{2} r\right] X \\
& =\left[4 m+7+(4 m-1) \cot ^{2} r-3-\cot ^{2} r\right] X \\
& =\left[4 m+4+(4 m-2) \cot ^{2} r\right] X .
\end{aligned}
$$

On $\mathscr{D}^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$ we have

$$
\begin{aligned}
S U_{i} & =\left[4 m+4+\{(4 m-1) \cot r-3 \tan r\}(\cot r-\tan r)-(\cot r-\tan r)^{2}\right] U_{i} \\
& =\left\{4+(4 m-2) \cot ^{2} r+2 \tan ^{2} r\right\} U_{i} .
\end{aligned}
$$

On the other hand, the condition (3.1) implies that

$$
\begin{equation*}
\mathfrak{\Im}(X, Y) S U_{i}=R(X, Y) S U_{i}+R\left(Y, U_{i}\right) S X+R\left(U_{i}, X\right) S Y=0, \tag{4.1}
\end{equation*}
$$

for $i=1,2,3$. Thus on this geodesic hypersphere we can put $S U_{i}=\gamma U_{i}$ and $S X=\delta X$ for any X in \mathscr{D}. Then it can be easily verify that γ and δ could be equal to each other. This means that the geodesic hypersphere M in $Q P^{m}$ is Einstein. From this and the above expression of the Ricci tensor we have

$$
4+(4 m-2) \cot ^{2} r+2 \tan ^{2} r-(4 m+4)-(4 m-2) \cot ^{2} r=0 .
$$

That is, M is a Einstein real hypersurface in $Q P^{m}$, which is congruent to a tube of radius r such that $\cot ^{2} r=(1 / 2 m)$.

For the case where M is congruent to a tube over $Q P^{k}, k=1,2, \ldots, m-1$. Its principal curvatures are also given by $\cot r,-\tan r$ and $2 \cot 2 r$ with their multiplicities $4 m-4 k-4,4 k$ and 3 , respectively. Thus h is given by

$$
\begin{aligned}
h & =\operatorname{Tr} A=(4 m-4 k-4) \cot r-4 k \tan r+3(\cot r-\tan r) \\
& =(4 m-4 k-1) \cot r-(4 k+3) \tan r .
\end{aligned}
$$

Now let us take principal vectors such that $X \in V_{\text {cotr }}, Y \in V_{-t a n r}$ and $U_{i} \in \mathscr{D}^{\perp}$, where the distribution \mathscr{D} is given by $\mathscr{D}=V_{\text {cotr }} \oplus V_{-\tan r}$. Then we have the following

$$
\begin{align*}
S X & =(4 m+7) X+\{(4 m-4 k-1) \cot r-(4 k+3) \tan r\} \cot r X-\cot ^{2} r X \tag{4.2}\\
& =\left\{(4 m-4 k+4)+(4 m-4 k-2) \cot ^{2} r\right\} X, \\
S Y & =(4 m+7) Y-\{(4 m-4 k-1) \cot r-(4 k+3) \tan r\} \tan r Y-\tan ^{2} r Y \tag{4.3}\\
& =\left\{4 k+8+(4 k+2) \tan ^{2} r\right\} Y,
\end{align*}
$$

and

$$
\begin{align*}
S U_{i}= & (4 m+4) U_{i}+(\cot r-\tan r)\{(4 m-4 k-1) \cot r-(4 k+3) \tan r \tag{4.4}\\
& -(\cot r-\tan r)\} U_{i} \\
= & \left\{4+(4 m-4 k-2) \cot ^{2} r+(4 k+2) \tan ^{2} r\right\} U_{i} .
\end{align*}
$$

Thus if we put $S X=\gamma X, S Y=\delta Y$ for any $X \in V_{\text {cotr }}$ and $Y \in V_{-t a n r}$, and $S U_{i}=\beta U_{i}$, then the condition (4.1) implies that $\gamma=\beta=\delta$. Thus substracting (4.2) and (4.3) from (4.4) respectively, then it follows respectively that

$$
(4 k+2) \tan ^{2} r=4 m-4 k
$$

and

$$
(4 m-4 k-2) \cot ^{2} r=4 k+4
$$

These imply $(4 m-4 k)(4 k+4)=(4 m-4 k-2)(4 k+2)$. Thus $8 m=-4$. This makes also a contradiction. Thus this case does not appear.

Finally let us consider for the case where M is congruent to a tube over $C P^{n}$. Then its principal curvatures are given by $\cot r,-\tan r, 2 \cot 2 r$ and $-2 \tan 2 r$ with multiplicities $2(m-1), 2(m-1), 1$ and 2 respectively. Then the trace of the second fundamental form A is given by

$$
\begin{aligned}
h & =2(m-1)(\cot r-\tan r)+2 \cot 2 r-4 \tan 2 r \\
& =(2 m-1)(\cot r-\tan r)-4 \tan 2 r .
\end{aligned}
$$

Now let us denote by its corresponding principal curvature vectors $X \in V_{\text {cotr }}$, $Y \in V_{-\tan r}, U_{1} \in V_{2 \cot 2 r}$, and $U_{2}, U_{3} \in V_{-2 \tan 2 r}$. Then we have the following

$$
\begin{aligned}
S X= & (4 m+7) X+\{(2 m-1)(\cot r-\tan r)-4 \tan 2 r\} \cot r X-\cot ^{2} r X \\
= & \left\{2 m+8+2(m-1) \cot ^{2} r-4 \tan 2 r \cot r\right\} X, \\
S Y= & (4 m+7) Y-\{(2 m-1)(\cot r-\tan r)-4 \tan 2 r\} \tan r Y-\tan ^{2} r Y \\
= & \left\{2 m+8+2(m-1) \tan ^{2} r+4 \tan 2 r \tan r\right\} Y, \\
S U_{1}= & (4 m+4) U_{1}+(\cot r-\tan r)\{(2 m-1)(\cot r-\tan r)-4 \tan 2 r\} U_{1} \\
& -4 \cot ^{2} 2 r U_{1}, \\
S U_{k}= & \left(-4 m+8+4 \tan ^{2} 2 r\right) U_{k}, \quad k=2,3
\end{aligned}
$$

On the other hand, let us put $X \in V_{\text {cotr }}, \phi_{2} X \in V_{-t a n r}$ in (3.1). Then we have

$$
\begin{aligned}
R(X & \left.X, \phi_{2} X\right) S U_{1}+R\left(\phi_{2} X, U_{1}\right) S X+R\left(U_{1}, X\right) S \phi_{2} X \\
= & \left\{(4 m-4)+(2 m-2)(\cot r-\tan r)^{2}\right\} R\left(X, \phi_{2} X\right) U_{1} \\
& +\left\{(2 m+8)+(2 m-2) \cot ^{2} r-4 \tan 2 r \cot r\right\} R\left(\phi_{2} X, U_{1}\right) X \\
& +\left\{(2 m+8)+(2 m-2) \tan ^{2} r+4 \tan 2 r \tan r\right\} R\left(U_{1}, X\right) \phi_{2} X \\
= & 2\left\{(4 m-4)+2(m-1)(\cot r-\tan r)^{2}\right\} U_{3} \\
& -2\left\{(m+4)+(m-1) \cot ^{2} r-2 \tan 2 r \cot r\right\} U_{3} \\
& -2\left\{(m+4)+(m-1) \tan ^{2} r+2 \tan 2 r \tan r\right\} U_{3} \\
= & 0 .
\end{aligned}
$$

So it follows

$$
\begin{aligned}
& 2\left\{4(m-1)+2(m-1)(\cot r-\tan r)^{2}\right\}-2(2 m+8)-4(m-1)\left(\cot ^{2} r+\tan ^{2} r\right) \\
& \quad+4 \tan 2 r(\cot r-\tan r)=0
\end{aligned}
$$

Thus $-4 m-8=0$. This is impossible. Thus this case also can not occur.
Summing up this result, we conclude that a real hypersurface in $Q P^{m}$ satisfying (3.1) is Einstein and it is congruent to a geodesic hypersphere, that is a tube over one point with radius r such that $\cot ^{2} r=(1 / 2 m)$. This completes the proof of our assertion.

Remark. But if we consider the above situation for the shape operator A of M in a quaternionic projective space $Q P^{m}$, we can verify that $Q P^{m}$ do not admit any real hypersurfaces satisfying the corresponding condition. Using the same method as in the proof of Theorem 1, we can assert this as follows:

Theorem 2. There do not exist any real hypersurfaces M in a quaternionic projective space $Q P^{m}, m \geq 2$, satisfying $\mathfrak{G} R(X, Y) A Z=0$ for any $X, Y \in \mathscr{D}$ and $Z \in \mathscr{D}^{\perp}$, where \mathfrak{S} denotes the cyclic sum of X, Y and Z and R is the curvature tensor of M.

Corollary 3. There do not exist any real hypersurfaces M in $Q P^{m}, m \geq 2$, satisfying $\mathfrak{S} R(X, Y) A Z=0$ for any X, Y and Z tangent to M, where \mathfrak{S} denotes the cyclic sum of X, Y and Z.

References

[1] Berndt J., Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9-26.
[2] Ishihara S., Quaternion Kaehler manifolds, J. Diff. Geometry 9 (1974), 483-500.
[3] Martinez A. and Pérez J. D., Real hypersurfaces in quaternionic projective space, Ann. Math. Pura Appl. 145 (1986), 355-384.
[4] Pérez J. D., On certain real hypersurfaces of quaternionic projective space II, Alg. Groups Geom. 10 (1993), 13-24.

Department of Mathematics
Kyungpook National University
Taegu, 702-701, KOREA
Departmento de Geometría y Topología
Facultad de Ciencias
Universidad de Granada
18071-Granada, SPAIN
Department of Mathematics
Kyungpook National University
Taegu, 702-701, KOREA

[^0]: 1991 Mathematics Subject Classification. Primary 53C40; Secondary 53C15.
 Partially supported by BSRI-97-1404 and TGRC-KOSEF
 Received August 19, 1996.

