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TRIGONAL GORENSTEIN CURVES AND

WEIERSTRASS POINTS

By

E. Ballico

Abstract. In this paper we study the Weierstrass points of singular

Gorenstein curves. We need to analyze separately the cases in which

the trigonal pencil is induced by a line bundle or not, in which the

Weierstrass point, P, is a smooth point or not, in which P is a

smooth ordinary or total ramification point or not.

0. Introduction

Let Y be an integral Gorenstein projective curve. In this paper we will

say that Y is trigonal if there exists a rank 1 torsion free sheaf L on Y with

degðLÞ ¼ 3 and h0ðY ;LÞb 2, but Y is not hyperelliptic, i.e. there is no line

bundle R on Y with degðRÞ ¼ 2 and h0ðY ;RÞb 2. In this paper we study the

Weierstrass points of trigonal Gorenstein curves. Let Y be an integral trigonal

Gorenstein curve with g :¼ paðY Þb 5 and let L the associated trigonal pencil.

Since Y is Gorenstein but not hyperelliptic, L is spanned and h0ðY ;LÞ ¼ 2 ([6,

Th. A of the Appendix with J. Harris]). Since gb 5 the sheaf L is unique (see e.g.

[1, Lemma 2.6]). Such curves were deeply studied in [17] and [18]. By [18, Th. 3.5]

the projective geometry of the canonical model of Y is very di¤erent if L is

locally free or not. We study the case in which L is not locally free in section 1.

We need to study the ‘‘vertex’’ v A Y (see 1.1, 1.2 and 1.3), the other singular

points (if any) of Y (see 1.4) and the smooth Weierstrass points (see 1.5 and 1.6);

1.5 and 1.6 give a complete description of the possible gap sequences of smooth

Weierstrass points which are not on the ramification of the projection from the

vertex v. All the smooth ramification points of the projection from the vertex v

are Weierstrass points (Proposition 1.7). For an existence theorem for Gorenstein
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trigonal curves with prescribed singularities and non-locally free trigonal pencil,

see Theorem 1.10. In section 2 we study the case in which L is locally free.

Among the smooth points we have to distinguish the non-ramification ones, the

ordinary ramification ones and the total ramification ones. We summarize our

results for smooth Weierstrass points in the following statement proved in 2.1, 2.2

and 2.4.

Theorem 0.1. Assume charðKÞ ¼ 0. Let Y be an integral projective trigonal

curve with a spanned L A Pic3ðY Þ and let u : Y ! P1 be the associated degree 3

pencil. The possible gap sequences of a smooth Weierstrass point P of Y are the

same as for smooth trigonal curves of the same genus, i.e. we have:

(i) if P A Yreg and P is a simple ramification point of u, then the possible gap

sequences of P are the ones described in [5];

(ii) if P A Yreg and P is a total ramification point of u, then there are two

possible gap sequences of P (Type I and Type II in the terminology of [4]);

(iii) if P A Yreg and P is not a ramification point of u, the possible gap

sequences of P are the ones described in [20] for smooth curves.

In section three we give a rather complete description of all trigonal Gorenstein

curves whose associated minimal degree rational map, u, onto P1 is birational.

This research was partially supported by MURST (Italy).

1. Non Locally Free Degree 3 Pencil

Let Y be an integral projective trigonal non-hyperelliptic Gorenstein curve

with g :¼ paðYÞb 5. Let p : X ! Y be the normalization. In this section we

assume that the trigonal pencil is not induced by a line bundle, i.e. that it is

induced by a spanned degree 3 torsion free but not locally free rank 1 sheaf.

By [18, Th. 3.5] these curves are exactly the trigonal Gorenstein curves whose

canonical model, say Y HPg�1, is contained in a cone, T, over a rational normal

curve C in a hyperplane, H, of Pg�1. Call v the vertex of T. Hence v A ðPg�1nHÞ.
By [18, Th. 3.5] v A SingðY Þ. Call f : Ynfvg ! C and f : Pg�1nfvg ! H the

projections from v. Since degð f Þ ¼ 2 and degðCÞ ¼ g� 2, Y has multiplicity

two at v. To analyze the Weierstrass points on Ynfvg we will use that C is a

rational normal curve in H and that a rational normal curve has no osculating

point, i.e. for every P A C the osculating hyperplane MHH of C at P has order

of contact g� 2 with C at P (Bezout theorem). Furthermore, since any line D

of T through v intersects Y, outside v, in a scheme of length at most two, every
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P A SingðYÞ with P0 v has multiplicity two. Since Tnfvg is a smooth surface,

every P A SingðYÞ with P0 v is a planar singularity of Y. We recall that a

planar curve singularity of multiplicity two is either a tacnode or a generalized

cusp. If YP is the partial normalization of Y at P, set dðP;YÞ ¼ paðYÞ � paðYPÞ.
Let a : S ! T be the blowing-up of T at v. Set h :¼ a�1ðvÞ. S is a smooth sur-

face isomorphic to the Hirzebruch surface Fg�2 and we will take as basis of

PicðSÞGZ 2 the curve hGP1 and a fiber, F, of the ruling u : S ! P1 of S. Hence

h2 ¼ 2 � g, h � F ¼ 1 and F 2 ¼ 0. We will often use the additive notation for the

divisors on S. We have a�ðOT ð1ÞÞ ¼ hþ ðg� 2ÞF . Let Y 0 be the strict transform

of Y in S. We assume that the pencil jF j does not induce a degree 1 map from

X onto P1; this case will be studied in 3.2. We have Y 0 A j2hþ xF j for some x;

since degðYÞ ¼ 2g� 2 we obtain x ¼ 2g� 2. Set v :¼ ujY 0. Viceversa, for any

integral Y 0 A j2hþ ð2g� 2ÞF j the curve aðY 0ÞHT HPg�1 is a canonical Gor-

enstein curve by [18, Formula 3.1] (with d instead of d � 1), and the proof of

[18, Th. 3.2] for m ¼ 0. We have oS GOSð�2h� gFÞ. Hence by the adjunction

formula we have oY 0 GOSððg� 2ÞFÞ jY 0. Thus paðY 0Þ ¼ g� 1.

(1.1) Here and in 1.2 and 1.3 we will analyze the vertex v A T . Since Y 0 A

j2hþ ð2g� 2ÞF j, we have Y 0 � h ¼ 2. Hence either Y 0 intersects transversally h

at two points or cardðY 0 V hÞ ¼ 1. In the latter case either Y 0 is tangent to h

at one point, Q, of Y 0
reg or Y 0 V h ¼ fQg, Y 0 has a planar double point at Q

(tacnode or cusp, perhaps not ordinary) and the tangent of h at Q is not in the

tangent cone of Y 0 at Q. Now assume Y 0 V h ¼ fQ 0;Q 00g with Q 0 0Q 00 and set

D 0 :¼ aðu�1ðvðQ 0ÞÞ and D 00 :¼ aðu�1ðvðQ 00ÞÞ. Hence D 0 and D 00 are lines. We have

D 0 0D 00, v is an ordinary node of Y and D 0 UD 00 is the tangent cone to Y at v.

Now we will analyze the situation for a general curve, i.e. for a curve Y ¼ aðY 0Þ
with Y 0 general element of j2hþ ð2g� 2ÞF j. Hence Y has an ordinary node at v.

By [7, Prop. 3.5], v is a Weierstrass point of Y with weight wðvÞb gðg� 1Þ. The

non-negative integer EðvÞ :¼ wðvÞ � gðg� 1Þ is called the extraweight of v and it

is the real measure of how much v is a Weierstrass point of Y, not just how

singular is Y at v. By [7, Prop. 5.5], it is possible to compute EðvÞ looking at the

gap sequences of all points of p�1ðvÞ with respect to a suitable linear system, V,

on X with V GPðp�ðH 0ðY ;oY ÞÞÞ. The next result will show that for every Y

with two ordinary branches at v and such that the fibers of the ruling a are not

tangent to Y 0 at Q 0 or Q 00 we have EðvÞ ¼ 0 and thus wðvÞ ¼ gðg� 1Þ attains

the minimal a priori possible value. Notice that for a general Y 0 A j2hþ ð2g� 2ÞF j
the canonical curve aðY 0Þ has an ordinary node at v and it is smooth ouside v.

Furthermore, Y 0 GX , none of the branches of Y at v is tangent to a line of T

and V GPðp�ðH 0ðY ;oY ÞÞÞ is just the restriction to Y 0 of jhþ ðg� 2ÞF j.
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Proposition 1.2. In the set-up of 1.1 assume Y 0 V h ¼ fQ 0;Q 00g with

Q 0 0Q 00 and that the fibers of the ruling u : S ! P1 are not tangent to Y 0 at Q 0 or

Q 00. Then we have EðvÞ ¼ 0, i.e. wðvÞ ¼ gðg� 1Þ. In particular, for a general Y 0 A

j2hþ ð2g� 2ÞF j the curve aðY 0Þ has extraweight EðvÞ ¼ 0 at v.

Proof. It is su‰cient to check that there is no D A jhþ ðg� 2ÞF j with D

containing either Q 0 or Q 00 with multiplicity at least g. Fix D A jhþ ðg� 2ÞF j
with Q 0 A D. Since Q 0 A h, ðhþ ðg� 2ÞFÞ � h ¼ 0 and h is irreducible, D contains

h. Hence D is union of h and g� 2 fibers. Since Y 0 is transversal both to h and to

the fiber of the ruling through Q 0, we easily conclude that for general Y 0 no such

D has order of contact at least g with Y 0 at Q 0 or at Q 00.

Remark 1.3. Assume that Y has two ordinary branches at v exactly g of

them ð1a ga 2Þ have a line of T as tangent at v. The proof of 1.2 shows the

inequality EðvÞb g.

Remark 1.4. Fix P A SingðYÞ, P0 v, and set d :¼ dðP;Y Þ > 0. By [7, Prop.

3.5], P is a Weierstrass point of Y with weight wðPÞb gðg� 1Þd.

Proposition 1.5. Fix an integer z with ga za 2g� 2, P A Yreg and a

hyperplane M with P A M and v B M. Assume iðY ;M;PÞ ¼ z, i.e. assume that the

scheme M VY contains the Cartier divisor zP of Y but not the Cartier divisor

ðzþ 1ÞP. Then P is a Weierstrass point of Y and the sequence of non gaps of P

is given by the integers i with ga ia z and by the integers jb zþ 2.

Proof. By construction M contains an osculating linear subspace to Y at

P. Since v B M and the embedding of C in H has no ramification point, the

ðg� 3Þ-dimensional osculating space Vðg� 3Þ to Y has contact order g� 2 with

Y at P. Hence every integer i with 1a ia g� 1 is a gap for P. Hence M is the

osculating hyperplane to Y at P. Since zb g, P is a Weierstrass point of Y.

The assumption on the scheme Y VM implies that all integers i with ga ia z

are non gaps for P, while by the geometric form of Riemann-Roch we have

h1ðY ;OY ððzþ 1ÞPÞÞ ¼ 0. Hence zþ 1 is a gap, while every integer jb zþ 2 is a

non gap, proving 1.5.

Theorem 1.6. Fix integers g, z with gb 5 and ga za 2g� 2. If charðKÞ > 0

assume z < 2g� 2. Then there exists a pair ðY ;PÞ with Y HT an integral trigonal

curve with paðYÞ ¼ g, SingðY Þ ¼ fvg, an ordinary double point at v and P A Yreg,
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P is a Weierstrass point of Y and the sequence of non gaps of P is given by the

integers i with ga ia z and by the integers jb zþ 2.

Proof. Fix P A ðTnfvgÞ and set Q :¼ p�1ðPÞ A S. Let F be the fiber of the

ruling of S passing through Q. Let A be a zero-dimensional subscheme of S with

Ared ¼ fQg, length(A) ¼ zþ 1 and such that the scheme-theoretical intersection

AVF is Q with its reduced structure. Thus A is curvilinear and it contains a

unique length z subscheme; call it Z.

Claim: We have h1ðS; IAð2hþ ð2g� 2ÞF ÞÞ ¼ h1ðS; IZð2hþ ð2g� 2ÞFÞÞ ¼ 0.

Proof of the Claim: Since F is transversal to any smooth curve containing

A (i.e. the scheme AVF is reduced), Z is the residual scheme of A with respect

to F and for every integer u with 1a ua z the residual scheme of A (resp. Z)

with respect to uF has length zþ 1 � u (resp. z� u). Since Q B h, A is trans-

versal to F and 2g� 2b lengthðAÞ � 1, we obtain h0ðS; IAð2hþ ð2g� 2ÞFÞÞ ¼
h0ðS;OSð2hþ ð2g� 2ÞF ÞÞ � lengthðAÞ and h0ðS; IZð2hþ ð2g� 2ÞF ÞÞ ¼ h0

ðS;OSð2hþ ð2g� 2ÞF ÞÞ � z. Since h1ðS;OSð2hþ ð2g� 2ÞF ÞÞ ¼ 0, we obtain the

claim.

Set W :¼ PðH0ðS; IZð2hþ ð2g� 2ÞFÞÞÞ. As in the proof of the Claim

we obtain h1ðS; IZð2hþ ð2g� 2ÞF ÞÞa 2, i.e. h0ðS; IZð2hþ ð2g� 3ÞFÞÞ <
h0ðS; IZð2hþ ð2g� 2ÞFÞÞ. Thus the linear system W has no fiber of the

ruling as a base component. Since h0ðS; IZð2hþ ð2g� 2ÞFÞÞ ¼ h0ðS;OSð2h þ
ð2g � 2ÞF ÞÞ � z ¼ 3g þ 3 � z > 3g þ 1 � z ¼ h0ðS;OSðh þ ð2g � 2ÞFÞÞ � z ¼
h0ðS; IZðhþ ð2g� 2ÞFÞÞ, h is not a base component of W. Take a general

X A W . Since h0ðS; IAð2hþ ð2g� 2ÞFÞÞ < h0ðS; IZð2hþ ð2g� 2ÞF ÞÞ, A is not

contained in X. Hence by 1.5 it is su‰cient to show that X is smooth. Since

W contains the reducible element 2hþ ð2g� 3ÞF , W has no base points out-

side hUF . Since ð2hþ ð2g� 2ÞF Þ � h ¼ 0 and h is smooth an rational, we have

Ohð2hþ ð2g� 2ÞF ÞGOh. Since h is not a base component of W, this implies

that no point of h is a base point of W. Since ð2hþ ð2g� 2ÞF Þ � F ¼ 2, F is not

a component of X and Q A F VX , either X is smooth along F or X is singular at

Q and X V ðFnfQgÞ ¼ q. Assume Q A SingðXÞ. Hence Q A SingðX 0Þ for every

X 0 A W by the generality of X. Take a general Q 0 A F . Every X 0 A W with

Q 0 A X 0 contains F because ð2hþ ð2g� 2ÞFÞ � F ¼ 2 and X 0 has intersection

multiplicity at least two with F at Q 0. Call Z 0 the residual scheme of Z with

respect to F. Since h0ðS; IZ 0 ðhþ ð2g� 3ÞFÞÞ > h0ðS; IZðhþ ð2g� 2ÞFÞÞ � 1 ¼
h0ðS; IZUfQ 0gðhþ ð2g� 2ÞFÞÞ (remember that F is not a base component of W ),

we obtain a contradiction. Hence X is smooth along F and W has no base points
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outside F. If charðKÞ ¼ 0 the curve X is smooth by Bertini’s theorem. If

charðKÞ > 0 to apply Bertini’s theorem it is necessary to check that W separates

also tangent vectors outside F. Fix Q 00 A SnðhUFÞ and let F 00 be the fiber of the

ruling of S containing Q 00. Since z < 2g� 2, 2hU ð2g� 3ÞF UF 00 A W . Hence W

separates the tangent vectors outside F U h, except perhaps the ‘‘vertical’’ ones,

i.e. the one tangent to the fibers of the ruling. Since the morphism g associated to

W is étale along F, g is étale in a neighborhood W of F. Since dimðSnWÞa 1, this

is su‰cient to apply the classical dimensional count proof of Bertini’s theorem

and obtain the smoothness of a general X A W .

Proposition 1.7. Let P A Yreg be a ramification point for the projection

u : Ynfvg ! CHHGPg�2. Then P is a Weierstrass point.

Proof. Set Q :¼ uðPÞ. Let M be the osculating hyperplane of C at Q. Since

C is a rational normal curve of H, M intersects C only at Q and with multiplicity

g� 2. Set N :¼ hfvgUMi. Thus N is a hyperplane of Pg�1 intersecting Y at P

with multiplicity at least 2g� 4. By the geometric form of Riemann-Roch the

Cartier divisor ð2g� 4ÞP is a special divisor on Y. Hence P is a Weierstrass point

of Y.

(1.8) Here we consider the case of a smooth ramification point. Fix P A Yreg

such that the line hfv;Pgi is the tangent line of Y at P. Set Q :¼ a�1ðPÞ. Since

F � Y 0 ¼ 2, the fiber u�1ðvðQÞÞ intersects Y 0 at Q with multiplicity 2. Thus

for every integer tb 1 the Cartier divisor 2tQ of Y 0 is the scheme-theoretic

intersection of Y 0 with the divisor u�1ðtvðQÞÞ of S. Hence we see that 2tþ 3 is

a gap for all integers t with 0a ta g� 3. Since also 1 and 2 are gaps and

there are exactly g gaps, the semi-group of non gaps to Y and P is given by the

integers 2j þ 2, 1a ja g� 3 and the integers zb 2g� 2. In full generality this

was noticed by the referee of a previous version of this paper. The same referee

continued with the following observations. This is remarkable because in the

smooth case such a gap sequence may occur only on bielliptic curves ([3]). This

may be explained in the following way, at least if Y has an ordinary double point

at v and hance paðY 0Þ ¼ g� 1 and the hyperelliptic pencil is induced by jF j. Set

fQ 0;Q 00g :¼ Y 0 V h. Consider the morphism f : Y 0 ! P3 induced by j3f j. Hence

fðY 0Þ is a rational normal curve. Consider the line L :¼ hðQ 0Þ; fðQ 00Þi and the

osculating plane V of fðY 0Þ at fðPÞ. Set fZg :¼ LVV . The image of fðY 0Þ by

the projection with center Z defines a nodal plane cubic, R 0, and we obtain a

morphism f 0 : Y 0 ! R 0; this corresponds to j6Pj on Y. Hence this is a kind of
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bielliptic structure on Y. The case considered in Theorem 1.6 corresponds to case

(c) of Lemma 0.2 in [3] for the integer z� g. In the case of smooth bielliptic

curves all ramification points are Weierstrass points but there are exactly two gap

sequences for such ramification points (see e.g. the introduction of [3]).

Remark 1.9. The referee of a previous version of this paper remarked that

the arguments of 1.8 show that if P A Yregnfvg is not a ramification point of u,

then all integers t with 1a ta g� 1 are always gaps for P.

Now we will prove the existence of Gorenstein trigonal curves whose trigonal

pencil is not induced by a line bundle and with prescribed singularities outside

the vertex v of the minimal degree cone T HPg�1 with Y HT . By [18, Th. 3.2]

any such curve is associated to an a‰ne curve f f ðx; yÞ ¼ 0gHA2 with f ðx; yÞ ¼
c2ðxÞy2 þ c1ðxÞyþ c0ðxÞ with c0, c1 and c2 polynomials, degðc2Þa 2, degðc1Þa g,

degðc0Þa 2g� 2 and such that equality holds for at least one degree and f ðx; yÞ
is irreducible; if c2 1 0, then the base point has multiplicity bigger than two.

Viceversa, any such polynomial gives the canonical model of a trigonal Gor-

enstein curve Y HT with non-locally free trigonal pencil. To obtain the following

existence theorem it will be su‰cient to take the very particular case c1 1 0.

Theorem 1.10. Fix an integer mb 0 and positive integers g; k; d1; . . . ; dk with
P

1aiak 2di þma 2g� 4. For every integer i with 1a ia k take a label ‘‘tacnode

with invariant di’’ or ‘‘cusp with invariant di’’; assume that exactly m labels say

‘‘cusp!’’. Then there exists an integral genus g Gorenstein canonical curve Y HT

with exactly k singular points, say P1; . . . ;Pk, each Pi tacnode with invariant di or

cusp with invariant di according to its label. Furthermore, the set of all such curves,

Y, has an irreducible component, G, of dimension at least 2g� 3 �
P

1aiak 2di �m

whose general member has an ordinary double point at the vertex v A T .

Proof. Fix k distinct numbers x1; . . . ; xk. We take c1 1 0, i.e. we take Y

corresponding to an irreducible polynomial f ðx; yÞ ¼ c2ðxÞy2 þ c1ðxÞyþ c0ðxÞ
and as Pi the point corresponding to ðxi; 0Þ A A2. It is su‰cient to take c0ðxÞ of

degree 2g� 2 and with xi root of multiplicity 2di if Pi has as label ‘‘tacnode

with invariant di’’ and with xi root of multiplicity 2di þ 1 if Pi has as label

‘‘cusp with invariant di’’. For fixed x1; . . . ; xk and fixed c1 1 0 the set of all such

c0, c2 has codimension
P

1aiak 2di þm in the vector space of all ðc0; c2Þ with

degðc0Þa 2g� 2 and degðc2Þa 2. Since h0ðP1;OP1ð2ÞÞ þ h0ðP1;OP1ð2g� 2ÞÞ �
1 � dimðAutðP1ÞÞ ¼ 2g� 3, moving x1; . . . ; xk we obtain the existence of the

component G with dimðGÞb 2g� 3 �
P

1aiak 2di �m. The last assertion is easy
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taking x1; . . . ; xk general and then, for fixed x1; . . . ; xk, Y 0 su‰ciently general

(see 1.1); here we use dimðGÞ0 0.

2. Locally Free Trigonal Pencil

In this section we assume that the trigonal pencil of Y is induced by a

spanned L A Pic3ðYÞ. By [18, Th. 3.5], the canonical model of Y lies on a min-

imal degree surface scroll SHPg�1, SGFe, with g� e even and (for gb 5))

ðg� 4Þ=3a ðg� 2 � eÞ=2a ðg� 2Þ=2, i.e. the Maroni invariant ðg� 2 � eÞ=2 of

Y is one of the Maroni invariants of smooth genus g trigonal curves. We assume

gb 6. Set q :¼ paðX Þ.
(2.1) Here we study the gap sequences of an ordinary ramification point,

P, of L. Hence P A Yreg and there exists Q A Y , Q0P, with 2PþQ A jLj. For

the case of smooth trigonal curves, see [4, 5, 13]. Here we do not make any

restriction on charðKÞ. Since 2P is a Cartier divisor of Y and L A PicðYÞ, Q is a

Cartier divisor of Y, i.e. Q A Yreg. By [18, Th. 3.5], the canonical model of Y lies

on a minimal degree surface scroll SHPg�1 and the possible Maroni invariants

of S are the same as in the smooth case. Hence we may copy [5, § 6]. In particular

in our situation we have verbatim Theorem 8, Lemma 9, Lemma 10, Lemma 11,

Proposition 12, Theorem 13 and Remark 14 of [5]; for Lemma 11 it is used [4,

Notation 2.10], which in turns depends on [4, Cor. 2.7], and this is OK in our

set-up; for Theorem 13 and Remark 14 we need [4, Lemma 5], which is OK in

our set-up dropping the word ‘‘smooth’’, i.e. taking Y only integral.

(2.2) Here we study the gap sequences of a total ramification point, P, of

L. Hence P A Yreg and 3P A jLj. Since ðg� 4Þ=3a ðg� 2 � eÞ=2a ðg� 2Þ=2, we

may copy [4] and obtain [4, Lemma 2.12] i.e. that the only possible gap sequences

are the ones described in the first page of [4] and called there of Type I or of

Type II. Now we assume charðKÞ0 2; 3. Remember that gb 6 and hence the

trigonal pencil is unique ([1, Lemma 2.6]). We will try to follow the notation

of [4]; hence m is the last integer with h1ðY ;LnmÞ0 0 and n ¼ g�m� 1.

Call t the number of total ramification points of L and tðIIÞ the number of

total ramification points of Type II of L. Since p�ðLÞ induces a g1
3 on X

and charðKÞ0 2; 3, we have 0a ta qþ 2 (Riemann-Hurwitz). We have ver-

batim [4, Prop. 2.14], i.e. P has Type II if and only if it is a base point of

joY nLn�mj. We have [4, Remark 2.15]. Since degðoY nLn�mÞ ¼ 3n� g� 1,

from [5, Prop. 2.14], we obtain at once that [4, Th. 2.17], holds i.e. we have the

following result.

Proposition 2.3. We have 0a tðIIÞa 3n� g� 1.
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(2.4) Here we study the possible gap sequences of the smooth Weierstrass

points which are not ramification points. If Y is smooth the corresponding

problem was solved in [14] (if charðKÞ ¼ 0) and then in arbitrary characteristic in

[20]. Fix P A Yreg. By [18, Th. 3.5], the canonical model of Y lies in a minimal

degree surface scroll whose possible Maroni invariants are the same as for smooth

trigonal curves with the same genus. Hence we may copy [20]. We stress that we

consider only Weierstrass points of Y which are smooth points of Y. The proof of

[20, Th. 2.5], works verbatim and hence we obtain in arbitrary characteristic the

possible gap sequences of the ramification points of jLj. The proof of [20, Th.

3.7], works verbatim and gives not only the possible gap sequences of smooth

non-ramification Weierstrass points of Y, but also several geometric conditions to

determine for a given P A Yreg what is its gap sequence.

(2.5) Here we consider a trigonal Gorenstein non-hyperelliptic curve Y of

genus gb 6 whose trigonal pencil, jLj, is induced by a line bundle and study the

singular points of Y from the point of view of Weierstrass points. Since S is

smooth, Y has only planar singularities. Fix P A SingðY Þ. Let F :¼ u�1ðvðPÞÞ be

the fiber of the ruling of S containing P. It is easy to check that one of the

following cases must occur:

(i) Y has multiplicity 2 at P and F is not in the tangent cone of Y at P;

(ii) Y has multiplicity 2 at P and F is in the tangent cone of Y at P;

(iii) Y has multiplicity 3 at P and F is not in the tangent cone of Y at P.

In cases (i) and (ii) P is either a tacnode with invariant db 1 or a cusp with

invariant db 1. For every integer gb 5 and every integer e with g� e even

and 0a 3ea gþ 2 there exists an integral trigonal curve Y HFe HPg�1 with a

unique singular point of any of the types (i), (ii) and (iii).

To show that all cases discussed in 2.5 may arise we prove the following

result; we stress that much better statements may be proved with the same

method, just with more cumbersome numerical computations; for an hint of a

possible statement for more than one singular point, see 1.9.

Proposition 2.6. Assume charðKÞ ¼ 0. Fix integers g, e, d with g� e even,

d > 0, 0a 3ea gþ 2, and gb 3eþ 4d� 1. Fix a label ‘‘tacnode with invariant d

and F not in its tangent cone’’, ‘‘cusp with invariant d and F not in its tangent

cone’’ or ‘‘ordinary triple point’’. In the latter case assume gb 3eþ 5. Then there

exists an integral Gorenstein curve Y HFe HPg�1 with a unique singular point, P,

whose isomorphism type is the one prescribed by the label and such that EðPÞ ¼ 0.

Proof. Fix P A Fe and a line D contained in the projective tangent space

TPFe HPg�1 with P A D and D0F , where F is the line of the ruling, p, of Fe
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containing P. If e > 0 assume P B h, where h is a minimal degree section of the

ruling. Take h and a fiber, f , of the ruling as a basis of PicðFeÞGZl2. Fix germs

Ci, 1a ia 3, of curves on Fe such that C1 has a tacnode with invariant d at

P and D as tangent line at P, C2 has at P a cusp with invariant d at P and D

as tangent line at P and C3 has at P an ordinary planar triple point. Fix local

(holomorphic or formal) coordinates x, y near P such that C1 (resp. C2) has

equation y2 ¼ x2d (resp. y2 ¼ x2dþ1). Let Zð1Þ be the zero-dimensional sub-

scheme of Fe with Zð1Þred ¼ fPg and with ðy2; yxd; x2dÞ as ideal sheaf. Let Zð2Þ
be the zero-dimensional subscheme of Fe with Zð1Þred ¼ fPg and with

ðy2; yxdþ1; x2dþ1Þ as ideal sheaf. Let Zð3Þ be the second infinitesimal neigh-

borhood of P in Fe, i.e. take ðIPÞ3 as ideal sheaf of Zð3Þ. The canonically

embedded trigonal curves contained in Fe are in the linear system j3hþ cF j of Fe

with c ¼ g=2 þ ð3=2Þeþ 1 ( just use the adjunction formula).

First Claim: We have h1ðFe; IZðiÞð3hþ cFÞÞ ¼ 0 for 1a ia 3.

Proof of the First Claim: (a) Here we handle Zð3Þ. We have

h1ðFe; IZð3Þð3hþ cF ÞÞa h1ðFe;OFeð3hþ ðc� 3ÞF ÞÞ; we have h1ðFe;OFeð3h þ
ðc� 3ÞF ÞÞ ¼ 0 because c� 3b 3e� 1 (e.g. use that p�ðOFeð3hÞGOP1 l

OP1ð�eÞlOP1ð�2eÞ and apply the projection formula ([10, Ex. II.5.1])).

(b) Here we handle Zð1Þ and Zð2Þ. Notice that Zð1Þ and Zð2Þ are contained

in ð2dþ 1ÞF , leghtðZð1ÞVFÞ ¼ lengthðZð2ÞVFÞ ¼ 2, degðOF ð3hÞÞ ¼ 3 > 0 and

that h1ðFe;OFeð3hþ ðc� 2d� 1ÞFÞÞ ¼ 0 because yb 3eþ 2d.

Our second claim is that a general curve Y A j3hþ yF j with Zð1ÞHY

(resp. Zð2ÞHY , resp. Zð3ÞHY ) has at P a tacnode with invariant d and

F not as tangent line (resp. a cusp with invariant d and F not as tangent

line, resp. an ordinary triple point). To check the second claim we will use

h1ðFe; IZðiÞð3hþ yF ÞÞ ¼ 0 for 1a ia 3 (First Claim) to apply [8, Th. 3.7 (ii)].

For the singularities of C1, C2 and C3 the theory of equianalytic or equisingular

deformation coincide and any equisingular deformation is trivial; for instance any

germ of planar curve singularity near an ordinary triple point and with the same

topological type is an ordinary triple point. The second claim for Zð1Þ follows

from the First Claim, [9, Examples 1 and 2 before Definition 2.12] and [8, Th.

3.7 (ii)]. The second claim for Zð2Þ follows from the First Claim, [9, Example 3

before Definition 2.12] and [8, Th. 3.7 (ii)]. The second claim for Zð3Þ follows

from the First Claim, [9, Example 2 after Definition 2.3], Lemma 2.4, and [8,

Th. 3.7]. For the assertion on EðPÞ, repeat the proof of 1.2; for the tacnode

and cusp case, use that we may take D general; for the triple point case use that

we may take as tangent cone to Y at P three lines of TPFe each of which may be

considered as a general line of TPFe through P.
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3. Birational Trigonal Pencils

Assume gb 2, Y Gorenstein and that Y has a trigonal complete pencil, jLj,
whose associated rational map, say u : X ! P1, is either birational or purely

inseparable. Hence X GP1. If u is not separable, then either charðKÞ ¼ 2 or

charðKÞ ¼ 3 because degðuÞa 3. Call L the associated spanned rank 1 torsion

free sheaf on Y with degðLÞ ¼ 3. We may assume L spanned and degðLÞ ¼ 3,

because the case degðLÞ ¼ 3 and L not spanned is reduced to the case of a

spanned L 0 with degðL 0Þa 2 which is completely described by [6, Th. A of the

Appendix with J. Harris], and [12, Prop. 1.1].

Remark 3.1. We have degðuÞ ¼ degððp�ðLÞ=Torsðp�ðLÞÞÞ. In particular

degðuÞ ¼ 3 if and only if L A Pic3ðY Þ ([6, Lemma 1 of the Appendix with J.

Harris].

(3.2) Here we consider the case degðuÞ ¼ 1. Here we do not have any re-

striction on charðKÞ. By [18, Th. 3.5], Y HT HPg�1, T cone with vertex v and

as base a rational normal curve, C, of a hyperplane of Pg�1. Since degðuÞ ¼ 1

and degðCÞ ¼ g� 2, Y has multiplicity g at v. Since degðuÞ ¼ 1, any two divisors

of the pencil must contain v with ‘‘multiplicity’’ 2. With the notation of section

one for the blowing-up a : S ! T of T at v, we have SGFg�2 and Y 0 A

jhþ ð2g� 2ÞF j, where Y 0 is the strict transform of Y in S. We have X GY 0 GP1

and Ynfvg is smooth. Viceversa, for any irreducible Y 0 A jhþ ð2g� 2ÞF j the curve

aðY 0ÞHPg�1 has degree 2g� 2, multiplicity g at v and it is non-degenerate. By

[18, Formula 3.1] (with d instead of d � 1), we have paðaðY 0ÞÞ ¼ g. Intersecting

aðY 0Þ with a hyperplane we obtain a ðg� 1Þ-dimensional family of rationally

equivalent Cartier divisor of degree 2g� 2. Hence OaðY 0Þð1ÞGoaðY 0Þ and aðY 0Þ is

Gorenstein, i.e. aðY 0Þ is a trigonal curve with degree 1 associated rational map.

Thus the set of all solutions (i.e. of all trigonal curve with degree 1 associated

rational map) is parametrized by an irreducible unirational variety of dimension

dimðjhþ ð2g� 2ÞF jÞ. Two points in the parameter space di¤ering by an element

of AutðP1Þ corresponds to isomorphic trigonal curves. We do not claim that, up

to elements of AutðP1Þ, this is a generically finite-to-one parametrization.
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[19] K.-O. Stöhr, Hyperelliptic Gorenstein curves, J. Pure Appl. Algebra 135 (1999), 93–105.
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