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WALL INVARIANT FOR THE SPACE SATISFYING

CONDITION (T**)

By

Sang-Eon Han

Abstract. In this paper, we define the locally nilpotent space and

condition {T**), and study their properties.

Furthermore, we find the vanishing condition of the Wall

invariant of the space satisfying the condition (T**) and locally

nilpotent space.

1. Introduction

Since C. T. C. Wall defined the Wall obstruction, V. J. Lai, G. Mislin, E. K.

Pedersen, L. R. Taylor and R. Oliver have studied the finitenesscondition of the

nilpotent space and homologically nilpotent space [4, 13, 15, 18]. And there are

many results on the nilpotent space [5, 6, 7, 8].

In thispaper, we define the condition (T**) and locally nilpotent space as the

extensive concept of the nilpotent space and study their properties.

Furthermore, we study the Wall invariant of the space satisfying the con-

dition (T**).

All spaces are arcwise connected CW complexes unless otherwise stated and

we denote the category T.

We assert the following:

Theorem 3.2. For X satisfying condition (T**) with n＼{X) finite,and the

action n＼(X) x Hn(X) -> Hn{X) is nilpotent for all n > 0, then X e 7V.

Theorem 3.3. Let F ― E ―>B he a fibration with F a finitely dominated

space. If B is a finite space satisfying condition (T**), the action n＼{B)x

HJB) -> Hn(B) is nilpotentfor all n>R and m(B)(^0) is finite then co(E) = 0.
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Theorem 3.4. Let F ―> E ―>B be a fibration with F a finitely dominated

space. For finite B{eTln) if n＼{B) is finite and n＼{B) # 0 or it＼(B) is infinite with

the maximal condition on a normal subgroup of n＼(B) then m{E) = 0.

Theorem 3.6. Let F ―*■E ―>B be a fibration under the following conditions

that B is a finitely dominated space and n＼(B) acts nilpotently on the homology

of the fiber F. If F is a finite complex, such that n＼(F) is nontrivial, E is a space

satisfying condition (T**), and the action n＼(E) x Hn{E) ―>･Hn{E) is nilpotent

where n>0, with tei(1s)(#0) finite, then co(E) e Kerp*, where p* : Ko(Zni(E)) ―>

KQ{Znx{B)).

2. Preliminaries

For a space X, we consider the group ring Zn＼{X). Let Kq(Zh＼{X)) denote

the Grothendieck group of the group ring ZnAX).

Definition 2.1. A space is called of type FP, if the singular chain complex

CjX of the universal covering X of X is chain homotopy equivalent (as Zn＼(X)-

complex) to a finiteprojective complex, i.e., a complex Ci with Ci = 0 for i big

enough, and with each Ci a finitelygenerated projective Z%＼(X) module.

If X is of type FP, the Wall obstruction co(X) is defined by

co{X) = S(-1)'[CJ K0(Zm(X))

where Cj is a finiteprojective complex equivalent to CiX, and [Ci＼denotes the class

of Ci in the projective class group Ko(Zn＼(X)). It is evident that w(X) is in-

dependent of the choice of Ci.

Furthermore, a space X of type FP is dominated by a finite complex if and

only if n＼(X) is finitelypresented [12].

Definition 2.2. A n-module M is called nilpotentifIkM ― 0 for some k > 0

where I denotes the augmentation ideal of Zn [9, 10]. Furthermore, a space X is

called nilpotentif n＼(X) is nilpotent and the n＼{X)-module TCi(X) (i > 1) are all

nilpotent.

We know thefact that:ifn＼(X) is nilpotent then X is of type FP if and only if

X is finitelydominated [14].

And we denote the category of nilpotent spaces and continuous maps as TV.

Definition 2.3. A space X(e T) is said to be a locally nilpotent space if

(1) n＼(X) is a locally nilpotent group,
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(2) the action n＼(X) x nn(X) ―>nn(X) is nilpotent for all n>2.

And we denote the category of locally nilpotent spaces and continuous maps as

Tln-

We know that the category Tn is a full suhcategory of Tln-

Generally, for a group G and a fixed g e G, we denote by [g,G] the subgroup of

G generated by all commutators in G.

Since [g,a] ―[g,b]~[g,ab] for each a,be G (where ab ― b~lab),[g,G] is a

normal subgroup of G [17].

Definition 2.4. We say that a space X(e T) satisfiescondition (T*) iffor all

g,tem{X)

either g[g,m(X)] = t[t,ni{X)]

or g＼g,nl{X)]nt[t,m(X)]=t.

Lemma 2.5 [2]. Let G be an arbitrary group. If b e a[a,G] (a, b e G) then

b[h,G}<=a[a,G＼.

Lemma 2.6 [2]. For X e TLN, then X satisfiesthe condition (T*).

Proof. Since %＼(X) is a locally nilpotent group, suppose c e a[a,n＼(X)] fl

b[b,m{X)] for some a,b,cem{X). We only show that a[a,ni(X)} = b[b,m(X)].

By Lemma 2.5,

c[c,nx(X)} <= a[fl,m (X)} n ^[*,wi(X)} ･･･(*)

Clearly, c = h~la for some A = fl
iK^P' G

K^W] (^ e 7ti{X),Si = ±1). Let

Gi = (a,gu...,gmy Since a = he, h= UZA^SiT modulo [c,G＼],that is, h =

Y＼1Li[h,gi]£iin G＼/[c,Gi]. However, since the latter group is nilpotent it follows

that h ― 1 in G＼/[c,G＼]and he[c,G＼]. Therefore, a ―he e c[c,%＼[X)＼and by

Lemma 2.5, a[a,n＼{X)] a c[c,ni(X)]. It follows from (*) that a[a,n＼(X)] =

c[c,n＼(X)]. Similarly, b[b,n＼(X)] = c[c,n＼{X)} and consequently, a[a,n＼(X)] =

b＼b,ndX)＼.

Definition 2.7. For X eT, we say that X satisfiesthe condition (T**) iffor

all g(^＼)ETn{X), then g i＼g,ndX)＼.

Since the [g,ni(X)] Is a normal subgroup of n＼(X), the condition (71**) is

homotopy invariant property. And the condition (T**) is a very useful toolin the

study of the locally nilpotent space.
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Theorem 2.8. For X e TLN, X satisfiesthe condition(T**).

Proof. Assume that g e[g,n＼(X)] for some g(#l) e n＼(X). Then g~le

[g,ni(X)} and 1 eg＼g,n＼(X)].Thus g[g,ni{X)]ni[l,ni(X)} #f Since X satisfies

the condition(T*) by Lemma 2.6,g[g,n＼(X)]= 1.

But g{=£i)e g[g,n＼(X)}.Thus we have a contradiction.

Lemma 2.9 [14, Theorem 2.1]. Let F A E -> B he a fibration with F a

finitelydominated complex and B a finite complex. Then E is a finitelydominated

complex and w(E) = j*w(F)x{B), where y* :Ko(Zn＼(F)) ―>Kq{Zti＼{E)) is a group

homomorphisim and / means the Euler characteristic.

Lemma 2.10 [16, 10, Theorem 3]. Let F ―>･E -^ B be a fibration under the

condition that n＼(B) acts nilpotentlyon the homology of the fiber F. B and F are

dominated by a finiteCW-complex thenp*w{E) = w{B)%(F) where p* : KR{Zn＼ (E))―*

Ko(Zn＼(B)) is the group homomorphisim.

If a space X is nilpotent, then n＼(X) is also nilpotent and for all i > 0 the

n＼(X)-modules Hi(X,Z) are nilpotent. Next, suppose that n＼{X) is nilpotent and

operates nilpotently on Hi{X) for all i, then we have the followings [14]: there

exists

a Cartan-Whitehead decomposition of X:

> X(m) -> X(m - 1) -> > X(2) = X -+ X, such that

(1) the fibrations

K{nmX,m - 1) -> X(m + 1) -≫X(m),

where X(m) is (m ―1) connected, K means the Eilenberg-Maclane space

(2) nmX s fl (Jr(w)) for m > 2.

Assume inductively that tti(X) operates nilpotently on Hi(X(m)) for alli and

allm with 2 <m < M. Then ^i(X) operates nilpotently on Hj(K(tim{X),M - 1)).

The Serre spectral sequence associated to the fibration

K{7tM(X),M - 1) -> X(M + 1) -> X(M)

has an E2-term

4 = Hi(X(M); Hj(K(nM(X), M - 1))
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which is a nilpotentn＼(X)-module for every pair (ij). Hence ni(X) operates

nilpotentlyon H/c(X(M+l)) for all k and n＼(X) operates nilpotentlyon

tim+＼{X)= Hm+＼{X{M+1)). With the facts above, the below lemma is

followed.

Lemma 2.11 [11, Proposition 2.1]. A space X is nilpotent if and only if

n＼(X) is nilpotent and for all i>0 the n＼{X)-modules Hi{X : Z) are nilpotent.

3. Main Theorems

In this section, we make several results on the Wall invariant of the space

satisfying condition (71**).

Lemma 3.1 [3, Theorem]. If n＼(X) contains a torsion free nontrivialnormal

abelian subgroup which acts nilpotentlyon H*(X) then Euler characteristicx(X) =

0, where X is a finite complex.

We know the following; if n＼(X) is a nilpotent group then there exist finite

upper central series of n＼(X) by virtue of the center of n＼(X).

Theorem 3.2. For X satisfying condition (T**) with n＼{X) finite,and the

action n＼(X) x Hn{X) ―>Hn{X) is nilpotentfor all n > 0, then X e TN.

Proof. We only prove that n＼(X) is a nilpotent group under the above

hypothesis. So assume that n＼(X) is not nilpotent, then we don't have finiteupper

central seriesof n＼{X).If Zn{n＼{X)) denote the ≪-thcenter of n＼{X), we can find

an integer n such that Zn+＼{n＼(X))= Zn(n＼{X)) £ n＼{X). It follows that if x $

Zn(n＼{X)), then [x,n＼{X)]£Zn(n＼{X)). Choose any x＼4 Zn(n＼{X)), we know

[xi,7Ci(X)]£ Zn{n＼{X)) by above. If jcie [xi,7Ti(X)],then we have shown that

the condition (T**) does not hold, as required, so assume x＼$ [x＼,ni(X)].Then

choose X2 g [jci,7Ti(X)],X2 ^ Zn(n＼{X)). Since [*i,7Ti(A")]is a normal subgroup of

n＼{X), [x2,7ii(X)]c [xhni(X)]. If x2 e [x2,ni(X)]3 we are done.

Otherwise, we have [x2,tti(X)]£ [xi,tti(X)] but also we noted [x2,tci(X)]^

Zn{n＼{X)). So pick X3 g [x2,n＼(X)],x$ $Zn{n＼{X)) and continue. Since n＼(X) is

finite,thisprocess must stop. After all we have a for which xa(#l) g [xa,7Ci(X)].

This is a contradiction to the fact that X satisfiesthe condition (J1**). Thus we

know that n＼{X) is a nilpotent group. Next, by Lemma 2.11, we get X e Tjq.

Recall that for a nilpotent space X if nt(X) is finitelygenerated for i > 0, we

say that X is of finite type.
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Theorem 3.3. Let F ―≫･E ―≫B he a fibration with F a finitely dominated

space. If B is a finite space satisfying condition (T**), the action n＼{B) x Hn(B) ―>

HJB) is nilpotent for all ≪ > 0 and m(B)(^0) is finite then co(E) = 0.

Proof. By Theorem 3.2, BeTN. Thus x(B)=0, because nx{B)^Q. By

Lemma 2.9, our proof is completed.

We recall that a group G satisfies the maximal condition if it has no infinite

strictly increasing chain of subgroups [16].

Theorem 3.4. Let F ―* E ―> B be a fibration with F a finitely dominated

space. For finite B(e Tln) if ft＼{B) is finite and n＼(B) # 0 or n＼(B) is infinite with

the maximal condition on a normal subgroup of n＼(B) then co(E) = 0.

Proof. When n＼{B) is infinite under the above hypothesis, n＼{B) is finitely

generated nilpotent group. Then n＼(B) has the infinite normal abelian center

group of n＼(B) which acts nilpotently on H+B,* > 0. Then by Lemma 3.1, our

proof is completed.

Next, when n＼{B) is finite, by the similar method of Theorem 3.3 and

Theorem 2.8, our proof is completed.

Corollary 3.5. Let F ―> E ―≫B be a fibration with F a finitely dominated

space. If B is finite nilpotent space and n＼(B) # 0 then co(E) ― 0.

Theorem 3.6. Let F ―> E ―>B be a fibration under the following conditions

that B is a finitely dominated space and n＼(B) acts nilpotently on the homology of

the fiber F. If F is a finite complex, such that n＼(F) is nontrivial, E is a space

satisfying condition (71**), and the action n＼{E) x Hn{E) ―>■Hn{E) is nilpotent

where n > 0, with n＼(E)(^0) finite, then co(E) e Kerp*, where p* : Kq{Zti＼(E)) ―>

Ko{Zm(B)).

Proof. Since E is a nilpotent space by Lemma 2.11 and Theorem 3.2, the

fiber F is also a nilpotent space [1]. From the fact that F is a finite complex,

n＼(F) is finitely generated. By Lemma 2.11 n＼{F) acts nilpotently on Hi{F). Now

we consider the Euler characteristic of F. By the similar method of proof

Theorem 3.4, if n＼(F) is infinite, we get the infinite center subgroup of n＼(F)

which acts nilpotently on Hn(F). By Lemma 3.1, /(F) = 0.

Next, if m(F) is finite we know that /(F) = x{F) and xif") = ＼m(F)＼x(F)

where | | means the order of ni(F) [11]. Since tz＼(F) # 0, x(F) = 0. In two cases

of n＼(F) above, /(F) = 0. By Lemma 2.10, co(E) e Kerp*.
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