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THE SEMICLASSICAL ESTIMATE OF THE EIGENVALUE
SPLITTING FOR THE KAC OPERATOR

By

Atsushi DOUMEKI

Abstract. We estimate for small # > 0 the eigenvalue splitting of the
two largest eigenvalues u,(h) and p,(#) of the Kac operator

K(h) = exp (=V(x)/2) exp (i’ A) exp (~ V' (x)/2)

with potentials ¥(x) not necessarily uniformly strictly convex, by
comparing it with the eigenvalue gap of the Schrddinger operator.
The method is based on Helffer’s idea. If V(x) =|x|”, 0 < p < o0,
then we have

() (B) =1 — (e — )i/ 7D 1 O(W"?), h 10,

where e; and e; are the two smallest eigenvalues of the Schrodinger
operator —A + |x|”.

1. Introduction and the Main Result

The Kac operator
(L.1) K(h) = exp (—V(x)/2) exp (h*A) exp (- V' (x)/2),

is a transfer operator for a Kac model [6] in statistical mechanics, where
0 < h <1 is the Planck constant, A is the Laplacian and V(x) is a real-valued
function on R?.

This model has been recently revisited by Helffer [2], [3], [4] to consider the
large dimensional behavior of the correlation function which involves the quotient
of the two largest eigenvalues u, (%) and u,(h) of the Kac operator K(#). He has
assumed in [2] that ¥ (x) is uniformly strictly convex in the sense that V(x) is a
C* function satisfying
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o = inf (Hess V)(x) > 0,

xeR?

and

(1.2) 10*V(x)] < Culxd@ 4 0 < o] <00, V(x)=Clx]*-1/C, C>0,

where (s), =sv0 and {x) = (1 + |x|2)1/ 2. Then he has obtained the estimate of

the eigenvalue splitting of the Kac operator for # >0
(1.3) () /1 (h) < exp (—cosh™! (%6 + 1)).

On the other hand, though (1.3) already implies a semiclassical eigenvalue
splitting for the Kac operator, he has given in [3, Remark 2.3]

(1.4) ta(h) /1y (B) = exp (—(Ea(h) — Ex(R))) + O(H?), h— 0,

which semiclassically relates the quotient of the two largest eigenvalues g, (k) and
Hy(h) of the Kac operator K(h) to the quotient of the two smallest eigenvalues
E\(h) and E,(h) of the Schrodinger operator

(1.5) H(h) = Ho(h) + V = —h*A + V(x).

Moreover, if we know a semiclassical asymptotic expansion of E;(h) — E;(h), we
can get with (1.4) a semiclassical estimate of the eigenvalue splitting for the Kac
operator K(#). The class of uniformly strictly convex potentials contains the
harmonic oscillator potential but not other important potentials like |x|*, etc.

The aim of this paper is to extend his result (1.4) to the case for some more
general potentials which may not be uniformly strictly convex, to obtain a
semiclassical eigenvalue splitting for the Kac operator K(#) with the aid of a
semiclassical asymptotic expansion of E»(h) — Ej(h).

To get our result corresponding to (1.4) we assume that V(x) satisfies with
constants ¢ >0, p>0, 0<m< o0 and 0 <k <1,

(1) V(X) = VO(x) + Vl (X), V}(x) = Oa ] = Oa 17
(2) Vo(x) € Co""(RY),
(1.6)
(3) Vi(x) € C*(R?), Vi(x) > c<{x)? on |x| > R (R> 1),
10°V1(x)] < CuxdP 1D 0 < Ja| <2,

where Cj"*(R“) is the family of the m-times continuously differentiable functions
f(x) in R? with compact support whose derivatives &°f, |a| = m, are x-Hélder
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continuous. Under the condition (1.6), the Kac operator K(h) is a trace class
operator and has a simple largest eigenvalue. On the other hand, under the
condition (1.6), H(#) admits a unique nonnegative selfadjoint extension in L*(RY)
(e.g. [9, Theorem X. 28]). We denote this extension by the same notation H(h) in
(1.5). Then H(h) has only purely discrete spectrum and has a simple first
eigenvalue E;(h) (e.g. [10, Theorem XIIL 47]). Therefore it has the eigenvalue
gap E»(h) — Ey(h), where E,(h) is the second eigenvalue of H(h).

To obtain a semiclassical asymptotic expansion of E;(#) — Ei(h), we assume
further that

(1) ¥(x) =01if and only if x =0,
(2) Vi(x) =0on |x| <1/2,

(L.7) (3) Vo(x) € C*(R?\{0}), supp Vo = {xeR?||x| <1},

Vo(x) ~ w(x) Z a,x*, nearx =20,
|oe|=0

with ag # 0, where w(x) is a positively homogeneous function in C% (R?\{0})
with w(ix) = X*"w(x) for A > 0. The condition (1) in (1.7) is essential in our
case because it assures ¥ (x) is a one well potential. If we exclude this condition
we encounter the double well potential. The double well potential case is a future
problem for us, although Helffer has already treated it in [4]. The potential
V(x)=|x|’, 0<p<oo, is one of the typical examples which satisfy these
conditions. In fact, putting Vo(x) = x(x)V(x), Vi(x) = (1 —x(x))V(x), where
x(x) is a C® cut-off function with 0 <y(x)<1 in R? and suppy(x)
{x e R%||x| <1}, we see V satisfies (1.6) and (1.7) by taking m = [p] — 1 and
k = p—m. Here [p] is the largest integer that is not greater than p.
With w(x) in (3) of (1.7), we put

(1.8) H, = —A + aow(x).

Then H, also admits a unique nonnegative selfadjoint extension in L2(R?), which
is also denoted by the same notation H, as in (1.8). It also has only purely
discrete spectrum and has a simple first eigenvalue.

The main result of this paper is the following theorem.

TueoreM 1.1. Let V(x) satisfy the conditions (1.6) and (1.7) and let u,(h)
and p,(h) be the two largest eigenvalues of the Kac operator K(h). Let ey and e, be
the two smallest eigenvalues of the Schrodinger operator H,. Then one has
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1 — (€2 — e))h* + O(H*™), K+m< V2,

1.9 m)/u(h) =
(1.9)  w(h)/pm(h) {1..(ez—el)h“~:h“+ﬂ+O(h(x+m)A2)’ K+m2= \/Z

as h—0, with a=2(k+m)/(k+m+2) and B=2/(k+m+2), where the
constant E depends on (a,)jy_ in (3) in (1.7) and E =0 if V(x) = apw(x).

In Section 2, to get a formula like (1.4), we shall estimate the operator norm of
the difference between the Kac operator and the exponential of the Schrédinger
operator. There we use simple commutator method. In Section 3 we prove semi-
classical asymptotic expansions of the eigenvalues of the Schrédinger operator
with the conditions (1.6) and (1.7). In Section 4 we prove Theorem 1.1 by using
the theorems proved in Section 2 and Section 3 and give a non-trivial example.

2. Semiclassical Error Estimate for the Kac Operator

In this section we shall observe the difference between the Kac operator K ()
and the exponential exp(—H (h)) of the Schrédinger operator H(#) in L? operator
norm. The problem has been recently studied first by Helffer [3] for potential
V(x) satisfying |0*V (x)] < Co{(x)?1*)+ and then by Ichinose-Takanobu [5] and
Doumeki-Ichinose-Tamura [1] for some more general potentials.

This result can be used to relate the two largest eigenvalues y, (%) and u,(h)
of the Kac operator K(#) to the two smallest ones Ej(h) and E,(h) of the
Schrodinger operator H (k) such as in (1.4). Though the method of this section is
very similar to the paper [1], we include it to make the paper self-contained.

As a semiclassical error bound between the Kac operator and the exponential
of the Schrodinger operator we have the following theorem.

TueoreM 2.1. Let V(x) satisfy the condition (1.6). Let H(h) be the
Schrodinger operator with potential V(x) and let K(h) be the associated Kac
operator. Then one has

llexp (—H(R)) — K ()| = O(R*+™*2),

as h— 0.
To prove Theorem 2.1 we shall show the following proposition.

PROPOSITION 2.1. Let V(x) and H(h) be the same as in Theorem 2.1. Then
one has the estimate for a >0 and for small t >0
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exp (-%H(h)) — K(t;h)| = w1 Qs +elltm) £ 2))

+ O(tZ—a(Z—x—m)+) + h-1+(P—1)+/ﬂ0(,3-a(1—x—m)+-(/7—1)+//’))
+h! O(t3—2a(1—k—M)+) + h—1+2(l’—1)+/P0(t3—2(ﬂ—1)+/l’)
+ h(p—2)+/po(t2—(p—2)+/p)’

uniformly in ke (0,1], where
K(t;h) = exp (—% V/Z) exp (—%Ho(h)) exp (—% V/2).

In the beginning we prove Theorem 2.1, accepting that Proposition 2.1 has
been established.

Proor oF THEOREM 2.1. From Proposition 2.1 we determine the asymptotic
order in A by putting t=h. We have the following constraint among the
parameters @, k and m

a((k+m)n2)) 20, —a2—x-—m), +2=0,
—2a(l—k-m), +220, —a(l-x-m), +2=>0.

Here we want to take the order in 4 as large as possible. Then this constraint
determines ¢ = 1. Thus we have proved Theorem 2.1. O

In the rest of this section we shall prove Proposition 2.1, which follows from
some successive lemmas.

Let ¢(x) be a normalized smooth non-negative even function compactly
supported in the unit ball. We define for 0 < e«1

oul) =574 [4(*72) Tal) .
and put Vy(x) = Vou(x) + Vi(x). Note the following identity
@1) exp(- %H(h)) ~ k(i) = (exp (— %H(h)) ~exp (- %He(h)))
+ (exp (—%He(h)) - Kil(t;h))

+ (Kq(t;h) — K(1; h))
= Dy(t; ) + Dy(t; h) + Ds(t; h),
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where

H,(h) = Ho(h) + V., = —h>A + V,(x),

K.(t;h) = exp (_;i Va/2) exp (—%Ho(h)) exp (~?t1 VS/Z).

To prove Proposition 2.1 it is enough to estimate the asymptotic orders of the
norms of Di(t;h), Dy(t;h) and Ds(t;h). To do so we should study some
properties of V.

LemMa 2.1. Vy, defined as above satisfies the following inequalities
(1) Vou(x) = Vo(x)| < Caltm2,
(2) |0*Voe(x)] < CemWel==m 1 <o < 2,
where the constant C is independent of e.

Proor. (1) By the Holder continuity of Vy, the case m = 0 is trivial. We can
prove the case m > 1 by using Taylor’s theorem

m—1

Volx+2) — Vo(x) = Z%(za)k Vo(x) +
7

J 1 dr(1 — 7)™ (20)" Vo (x + 12)
= 0

1
(m—1)!

and noting the fact that

J¢(x—y) (xi —yi)dy = 0.

&

(2) We can obtain (2), noting
o X =
|@n(E)nwa=0, >0 O
First we shall evaluate the norm of D(t;h).

LemMMA 2.2. One has
[ID1(5 1) ]| = e*+) 2071 0(1),

uniformly in he (0,1].
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ProoF. We have

exp (- %Hg(h)) _exp (—%H(h))

L xp (~ 5 H.(h)) (B () — HL() exp (—(I—;s—)H(h)) ds

t
€
t
€

Use Lemma 2.1 (1), then we get the desired estimate for Di(t;h).
Next we evaluate the norm of D;(t;4).

LemMMA 2.3. One has
D3 (8 B)|| = et~ 2571 0(s),

uniformly in he (0,1].

Al
- %L *P (‘%H*’(h)) (Vo(x) — Voe(x)) exp (— e = ) H(h)) ds

489

Proor. This evaluation can be done immediately by considering the identity

K.(t;h) — K(t;h)

= exp(—%V£/2)exp(—%Ho(h))exp(—% VS/Z)
(-5v12)
(-

+exp(—%V8/2)exp(—% (h))exp % )

- exp(—— V. /2)exp( % o(h))exp

- exp(—% V/Z)exp(— %Ho(h))exp(——;; V/2)

= (exp(—% Vg/2) - exp(——;; V/2))exp<— %Ho(h))exp(—% V/Z)

+ éxp(—% VJZ)exp(—%Hg(h)) (exp(——;'- V8/2) - exp(—% V/Z)).

Here we note the formula
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exp(—é Vg/Z) — exp(—% V/Z)

= —ilﬁj(t) exp(—% Va/Z) (Vo(x) — Voe(x)) exp(~ (t;hs) V/Z)ds.

Then we have Lemma 2.3 0O
Finally we make a semiclassical estimate of the norm of D,(t;h).
LemMA 2.4. One has
| Da(; )| = g~ (2—x—m), 0(,2) + 8—(1—x—rn)+h—l+(p—1)+/p0(t3—(p—1)+/p))

+ 3‘2(“""”)+h‘10( ,3) + h(p—2)+/p0(,2—(p—2)+/p)

+ h—1+2(p—l)+/p0(:3—2(P—l)+/l’),

as t — 0, uniformly in he (0,1].

ProoF. Since K,(t#;h) is strongly continuous in t, elementary calculation
yields

d 1
ZKH) = == HBWK,(5 ) = R(5 7).

Solving this differential equation, we get

(2.3) Dy(t;h) = exp (— %Hg(h)) —K(t:h) = J; exp (_ (¢ - 5) Hg(h))Rs(s; h) ds,

where

Re(t;h) = Ryz(t;h) + Ry (1; B),
Riu(t:) = [exp (=5 V2/2), Ho(h) /] exp (— 2 Ho(h)) exp (~ 1 ./2),

Ros(1;h) = exp (—% V./2) [exp (—-;;Ho(h)), V.l (2h)] exp (—% V./2).

Then to prove Lemma 2.4 it is enough to show
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24) R =& @ 0(1) + &=+ D /e (2= (=D /)
+ g 2m) g1 0(12) 4 j0=2: /P O (1~ (p=2)4 /)
+ R Dile (2 20-1)lr) 0,

uniformly in # € (0, 1].

First we study Rj.(s;h). Writing Hy(h) = thjZ by use of the summation
convention, where D; = —id/0x;, we have by a simple commutator calculus

(25  [Dexp (~% v./2)]
_— % 1D, 1D}, V2/2]] exp(—% v./2)

2
— 5510, Vi/2)Dy, Vel exp (=1 Ve/2)

t

__Zh

1D, V./ 2Dy exp(— 1 V./2)

—_ % D}, (D}, Vou/2l] exp(———;—l v./2) - —;; D}, Dy, 1/2]] exp(—% v./2)
~ D Vouf 1Dy, Vol exp( 3 Vi12)
- ;—22 (D3, V1/2)1Dy, Vi /2 exp (=3 Vi/2)
- 2;'—22 D}, Vo/2)[D;, V1/2] exp(——;; V./2)

- 2% [D;, V./2)D; exp(—% v, /2),
By Lemma 2.1 (2) we can obtain the inequalities
26) | 105, Dy, Vol | < G,
D), Vo, | < Ce~(=r=ms,
From (1.6) we have
2.7) (D), V]| < CidxylDs,

| [Dj’ [Dj7 Vl]] | < C2<x>(/’—2_)+.
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We note for 0 < a < p,

(2.8) exp (— % Ve) X < C(?) a/p, t— 0.

Then as an immediate consequence from (2.5) ~ (2.8) we get

(2.9) Ria(t;h) = tIDy, VDK (t; ) + &7+ 04 (2) + & X 17 04 (£2)
4 g~ (I=x=m), h_1+(I’—1)+/P0b(t2—(l’—1)+/ﬂ) + h(p—2)+/p0b(t1—(p—2)+/p)
+ h—1+2(P—1)+/pOb(,2—2(p—1)+/p), t—0,

uniformly in 4 € (0, 1], where O(¢%) is a bounded operator whose order in t is a.
Second we evaluate R, (#;4). To this end we express the commutator factor
in Ry.(t;h) by the following integral formula

210)  [exp(- %Ho(h)), v./2)

S %J; exp(—%Ho(h)) (Ho(h), V2/2] exp (— 4 - J Ho(h)) ds

- j; exp(— -;-Ho(h)) [D?,V,/2] exp (- (t - ) Ho(h)) ds.
Then easy calculation yields
(2.11) [D?,V./2] = D, Ve|D; + [D;, (D}, Ve/2]] = 4 + B.
Substituting (2.11) into (2.10) and taking commutator, we get
(2.12) Ry (t;h) = —tAK,(t;h) — Ro1(t;B) — Roa(t; 1) — Raz(t; 1),
where

Ry (t;h) = t[exp(—% V€/2),A] exp(—%Ho(h))exp(—% V€/2>,

! t—s)

exp(—%Ho(h))Bexp<— ( . Ho(h)>

Ry (t;h) = exp(—-;; VE/Z) L

X exp(—% V8/2)ds,
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t

Ros(th) = exp(—% VE/Z) L

(-5 2).4]

(z—ys) t
X €xp (— P Hy(h) exp(—z VS/Z)ds.
The commutator factor in Ry(# %) is calculated as

[exp(——;; VE/Z),A] = —[Dj, V¢ [Dj,exp(——;; VE/Z)]

= 21, VID;, Vo/ A exo(~ 5 V./2)

t t
= z [Dj’ Vo,ﬁ] [D]', VO,E/Z] CXp(—- ﬁ Ve/z)

t

t
+ 2 1D5, Vo, ID;, Vilexp(— 5 72/2)

+ 21D, VillDy, Vi/2 exp(— 1 V2/2).
Then from (2.6) ~ (2.8) we can evaluate Ryi(#;4h) as
(2.13) || Ru(t;h)|| = 8‘2(1"‘"")+h’10(t2) + 6—(1—x-m)+;,—1+(p—1)+/p0(t2—(p—1)+/p)
+ h—1+2(p—1)+//70(,2—2(pv1)+/p)’ t— 0,
uniformly in # e (0,1]. By Lemma 2.1 and (1.6) we have
|B| < Ce=@m=K)y | Cy(xdP2s,

To evaluate Ry (f;#) we use this fact and the next lemma, which we shall show
later.

LeEMMA 2.5. For every nonnegative number I, one has

(1) [[<x>exp (5 Hoth) )| = 01), £ =0,

@) [[<x>exp(~ 5 Ho(®) Dy = 57207, 1 =0,
uniformly in he (0,1].

Decompose B as B = ) 2<x>“(”_2)+/ 2B(xy~ P2/ 202472 and use
Lemma 2.1 and Lemma 2.5 (1). Then Ry (¢;h) takes the form
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t _ ‘ - t
exp(— ; Vs/2) Cxeplp=2s 12 L 05(1) ds¢x)P~D+ exp (— 5 V€/2)

t
+ g Gmm), J O5(1) ds,
0

where Oy(1) is some bounded operator whose order in ¢ is 0. From the condition
(1.6) we obtain

(2.14) | R (t; h)|| = &=+ 0(r) + KP4/ (' =(P-2s /Py ¢ 5 0,

uniformly in # € (0, 1].
We shall prove that Ry (#;4) obeys almost the same bound as (2.13) and
(2.14). To this end we rewrite R,3(#;%) as an integral expression

(2.15) Ras(t; ) = exp (—% v./2) J; F(s; 1) exp (— (t - ) Ho(h))dsexp(—% V./2),

where

(2.16)  F(s;h) = — L exp(— %Ho(h)) [Ho(h)/h, A] exp (— (s = i Ho(h)) dr.

We can calculate the commutators

(2.17) [Ho(h), 4] = B*[D, 4],
[DZ, A1 = [D, [Dy, Ve]1D;Di + Di[Dx, [D;, Ve]ID;
[Dr, [y Vel] = [Dr [Dy, Vol + [Di, [Dj, V1]]-

By Lemma 2.5 (2) and Lemma 2.1 we rewrite F(s;h) as
F(s;h) = & msp L W20y 20, (s — 1)) de
+ 8*(2—x—m)+hJ: H204((s - )12 de HY?
+ (o2 j B 205(x7 R 2 0y (s — 7) 712) daxy D2
0
+ 0Dk [ W20y - 7 )
=&~ @ 0,(1) + 8_(2_K_m)+ﬁl/ZOb(sl/z)Hg/z

+ <x>(ﬂ—2)+/20b(1)<x>(P—2)+/2 + <x>("_2)+hl/z‘Ob(sl/Z)H;/z’
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where Hy = —A and Ou(¢?) is a bounded operator whose order in ¢ is a. From
(2.8) we get the estimate

(2.18) | Ras(8; )| = &= @~ 0(2) + W=D+ O(#1 =727 1 — 0,

uniformly in 4 € (0, 1].
From (2.13), (2.14) and (2.18) we have with (2.12)

(2.19) Rao(t;h) = —t[D;, VoIDiK,(t;8) + e e Oy (1)
4 g (1mx=m), K1+ (-1)./p Ob(tz’("‘l)+/”)
4 g~ (@x-m), Os(1) + h(”‘2)+/”0b(tl“(/"2)+/")
+ h‘1+2(”'1)+//’Ob(tz‘z(p’l)+//’), t— 0,

uniformly in # € (0, 1]. Summing up (2.9) and (2.19) we have the estimate (2.4).
In view of (2.3) we have thus proved Lemma 2.4. O

PROOF OF PropoSITION 2.1. From Lemma 2.2 ~ 2.4 we have Proposition 2.1
by putting ¢ = t* with a > 0. O

Finally we give the proof of Lemma 2.5, which we have used in the proof of
Lemma 2.4.

Proor oF LEMMA 2.5. By interpolation, it suffices to prove (1) and (2) only
for every integer / > 0.

(1) The proof is done by induction. The case / = 0 is trivial. We assume the
case 0 </ <k. If it is shown that

(2.20) =0(1), t—0,

oy~ [exp (= 2 Ho(W)), <01

then the case / =k + 1 follows at once and the proof is complete. To prove
(2.20), we represent the commutator as

[oxp (= Ho(h)), G**']

- jo exp (L o) [Ho )/, G+ exp (— ) Ho(m) ds.
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The commutator in the integrand takes the form
[Ho, <xY**!) ~ bj(x)D; + bo(x),

where b;(x) = O(|x[*) and bo(x) = O(|x[*"") as |x| — 0. Noting D;(Hy + 1)™'/>
is bounded, we have (2.20). This ends the proof of Lemma 2.5 (1).
(2) Noting that ||D;(Ho(h) +1)""?| = 0(1/h) and

Ho()'/ exp(— & F#) “ —HPO(ER), 10,

uniformly in A€ (0,1], the case / =0 follows at once. We assume the case
0</<k. Then by Lemma 2.5 (1) we have

(2.21) ey Vexp (=2 Ho(h)) DyCxpt+!
= 05(1) + <0 **Vexp (— 2 Ho(h) ) ey D,

We take the commutator between exp(—(¢/#)Hp(h)) and (x)**! in (2.21). Then

(2.22)
ey~ Nexp (- 2 Ho(h) ) ey

= G E Dy exp (- - Ho(h)) Dy

= 007 [ exp(~ (1) o/ 53 enp ( ~ 5Lt )

The second term in (2.22) takes the form

— oy~ J; exp(— 3 Ho(#)) (Dyby(x) + bo(x)) exp (— (’ - ) Ho(h)> D; ds.

where b;(x) = O(|x|*) and bo(x) = O(|x[*™") as |x| = co. Therefore by the
assumption of the induction

- t
x>~ 84D exp((— 2 Ho(h) ) <)+ D
t
=1'20,(71%) + hj H204(s T 204 (1 - 5)7 V) = W20, (712,
0

This ends the proof of Lemma 2.5 (2). O
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ReMARK 2.1. From Proposition 2.1, one can also obtain an error bound of
the operator norm for the Trotter-Kato product formula such as in 3], [5] or [1]

O(N—((K+M)/2)A(2/p))), m=0,1,

. Ny—
(223)  llexp(~tH(1)) - (K(/N; )" = { (N0, m=2,

as N — oo. This estimate corresponds to the result of the paper [5] but the paper
[1] did not include the case m =0, 1. In fact, set # =1 in Proposition 2.1. Then
we have

llexp(—2H (1)) — K(; 1)||
= O(selletm) 2)y 4 g(2-a@-rm),y 4 O(£~2l1-x-m). )
+ 0(t3—a(1—K—m)+—(p—1)+/p)) + o(tZ—(p—2)+/p) + 0(t3—2(p—1)+/p)’ t — 0.
Then we have the constraint conditions in @ such as
a((k+m)A2)+1=20, —a2—x—m), +22>0,
—2a(1—-k—-m)_ +3=20, 3—a(l—-x-m), —(p—1),/p=0.

We should take the order in ¢ as large as possible. Therefore we choose a = 1/2.
Then we have

O(t(l+(x+m)/2)/\(1+2/p)), m= 0, 1’

O(£1+2/P)~2), mz2,

lexp(~tH (1)) — K(5: 1) = {

at t — 0. This estimate and standard telescope argument yield the desired error
bound (2.23) of the operator norm for the Trotter-Kato product formula. [

3. Semiclassical Asymptotic Expansions of Eigenvalues for the Schrédinger
Operator

In this section we see semiclassical asymptotic expansions of the eigenvalues
for the Schrédinger operator with one well potential. For this purpose we have
assumed the asymptotic expansion (3) in (1.7) for the potential Fp(x). Under the
assumptions (1.6) and (1.7), H(k) has only discrete spectrum. We label these
eigenvalues by E;j(h), where we list the eigenvalues in increasing size, including
multiplicity,

Ei(h) < Ex(h) < E3(h) < ---.
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Under the condition (1.7) H, in (1.8) also has only discrete spectrum. Let (ej)jf'il
be the eigenvalues of H, listed in increasing size, including multiplicity,

ep<ep e < -,

and let (¢;);2; be the set of distinct values &, ordered by size, with multiplicity m;,
so that é; = e; and &, = e;. Then we can determine explicitly the first asymptotic
coefficient of E;(h).

THEOREM 3.1. Let V(x) satisfy the conditions (1.6) and (1.7). Then there exist
m; not necessarily distinct eigenvalues Ey ;)(h) of the Schrédinger operator H(h)

satisfying

. Exy(h) .
with
_ 2(c+m) _ 2
T k4+m+2 T k+m+2

Moreover we have

THEOREM 3.2. Let V(x) satisfy (1.6) and (1.7). For each & there are m;j not
necessarily distinct eigenvalues Ey;(h) of H(h) satisfying

Ek(j)(h) ~ K (éj + Z Cf(j)hm) s
I=1
as h— 0, with the same o and B as in Theorem 3.1, where the c;‘(j) are some
constants depending on (aa)m:o in (3) in (1.7) and cf(]) =0, I1<l<w) if
V(x) = apw(x).

This type of theorems has been proved by [11], [7], [8] and others for double
well or multiple well potentials. Though their results include one well potential
case, we want to treat some more general one well potentials. In the first place we
shall prove Theorem 3.1 by a method similar to that used by Simon [11] to prove
the tunneling effect. We modify two lemmas used in his proof.

We can take C* functions j%(x) and j'(x) such that 0 < j¥(x) <1, k= 0,1,
GO(x)2 + (j1(x))> =1 and j%(x) satisfies

1, |x]<1
.Ox:{’ 3
=10, 1z
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Then we put JO(#) = j°(h7°x) and J'(h) = j'(h°x) for some constant & > 0. Set

(Um)f)(x) = Wf(WPx), feL*(RY).

Let (¢j(x))jf'il be the orthonormal eigenfunctions of H, in (1.8) with eigenvalues
()72, and put Y;(x) = (J'(mU (h)'1¢j)(x). Then we shall see below that
(|,l/j(x));-’f’__l are asymptotically approximated eigenfunctions for H(h).

Lemma 3.1. Set H.(h) = _#2A + agw(x). Then one has
Y, (H(h) — He(h))¥ye> = O(HBe+m+1)y.

Proor. Simple calculation leads us to the identity

Yy, (H(h) — He(R)Wic)

- J - agw () ()P (x) dx

= JRd(V(X) — agw(x))J°(B) U (R) ™' §;(x)JO(R) U (h) ™' () dx.

Here supp J%(h) is a neighborhood of the origin in RY and V, satisfies the
condition (2) in (1.7), so we have

J a0 T AOWNY (1) () U (W) gu(x) dx

= j|x|<2 " W(x)lxIO(l)U(h)_lgﬁj(x)W dx

[, w8 Wy ORI dy
{hPy| <2k

_ pttms) j W)W () E0) dy.

|yl <24~

Since by the exponential decay property of (¢j(y))]f'il, we have

J.M,,H w0 0(1>¢,-(y)mdy\ < el Hy18ell < oo,

we obtain

Wy (H(R) — He(W)> = O, O
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LeMMA 3.2. We have asymptotic orthogonality of the asympiotically

approximated eigenfucntions (Y;(x))2;

Wy ¥ie> = O + O (exp (—ch*F)),

Jor an arbitrary constant & with 0 < 6 < B, where c is a positive constant and Sy is
Kronecker’s delta.

PrRoOOF. One can verify this lemma by a similar method used to prove
Lemma 3.1 and the exponential decay property of (¢j)j‘f’__1. O

Proor OoF THEOREM 3.1. To prove Theorem 3.1 we shall show that we can
get the value & as both the upper bound and the lower bound.

(1) limsuph_,OEk(j)(h)/h“ < éj.

First of all, we shall estimate {y;, H(h)y,>, using the same notations as in
Section 1. To this end we estimate {y;, He(h)Y, ).

Recall the fact that (¢,-);il are the eigenfunctions of H, with eigenvalues
(¢/);2;- Then we have

Wy He(B)> = (IO (R) U™ ()@, He(R)T () U™ (B) >

= 3 B U (1), T W H WU ()
45 R HT (), TR U™ (R + <y, (VI

1 1
=5 U ey +5 el > + Uy, B2 (VI ()W

Since we have (VJ(h))? = O(h%) by the definition of JO(#), we get, for any
constant J < (2 — a)/2 = f, the semiclassical estimate

<'/Ij) Hx(h)l//k> - <'/Ij’ haekl//k>5jk + 0(h2—26)
Thus we have by Lemmas 3.1 and 3.2,
(3.1) <lﬁj, Hnh),> = haekéjk + O(h(Z—M)Aﬂ(K+m+1)).

From Lemma 3.2 we conclude that (y;);_, span an r-dimensional subspace for
small #. Then we can find, for arbitrary (éj);;{ < L*(R?) and for sufficiently small
h, a linear combination Y of (Y,¥,,...,¥,) such that y € [£,&,.. .,.f,_l]J‘. Note
H(h) has only pure discrete spectrum, then the semiclassical estimate (3.1) enables

us to use the min-max principle to estimate the upper bound for E; ().
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(2) liminfy_o Ey(;y(h)/h"* = &. We use the following localization formula with
the semiclassical parameter to obtain the lower bound.

LeMMA 3.3. One has the formula

H(h) = J (W) H(R)J' (h) + T () H (k) (h) — i h2(VJ4(h))?
a=0

in the form sense.

Proor. It is easy to see for an arbitrary C* function f

[fa [f’ H(h)]] = _th(vf)z'

Then taking J'(k) and J°(%) as f and summing them up, we obtain the formula.
O

From the condition for Vp(x), we have the following asymptotic evaluation
I7O() (H (B) — Hi(1)T°(B)]| = OFE+D).
Then we have
JURYH(R)JO(R) = JO(B)R(R)TO(R) + Ke(JO(R))* + O(HOC+m+D)y,

where R(#) is the restriction of H(#) to the span of all eigenfunctions of the
H,(h) with eigenvalues lying below #% for e € (¢-1,¢;) and the rank of R(h) is at
most 1+Z’;; my. Moreover, since |x| > ¢k’ on supp J'(h), we see for any &
satisfying é(x +m) < a

T B H T (B) = cx() | (T (1)* + c(1 — x(x))
> B o(JU(h))? = Re(J1(h))?,

with sufficiently small # and every ee (é_1,6;), where x(x) is a C* cut-off
function with 0 < x(x) <1 in R? and supp y(x) < {xe R?||x| < 1}.

From Lemma 3.3, summing up and using (VJ%(h))> = O (h"?), a=0,1, we
obtain for a/(k +m+1) <d < B,

H(h) > h*el + J°(h)R(k) JO(h) + O (h2~2) ~oletmtD)y

where 1 is the identity operator. This inequality shows the lower bound.
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From (1) and (2) we have proved Theorem 3.1 by taking the constant é so as to
satisfy B(k +m)/(k+m+1) < < B, noting Bk + m)/(k + m+ 1) =a/(k +m+ 1).
O

Next we proceed to obtain the asymptotic expansion of the eigenvalue of the
Schrédinger operator. We shall recall some notations used in the proof of
Theorem 3.1. We put

=L _ !
Pi(h) = 2n£hag,_,,=m(mh) 2yt dz,

where ¢>0 is so small that there are no other eigenvalues in the disc
{ze C||z — & < h* ¢} except for Ey(;(h). For higher order perturbation the
next lemma is crucial.

LemMa 3.4. |[(1 — Pj(h))Yll — O as b — O for every positive integer j, where
ke (ki(f),k1(7); - km () = k1 (), k1 (/) + 1, ka () + m; — 1).

ProoF. We show the lemma by induction on j. Suppose the lemma has been
proved for all i <j. Then for every i with i <j, P;(h)y, —y, — 0 as h — 0 for
se (s1(0),52(9),...,5m(i)). From Lemma 3.2, we see that (y,);%, is linearly
independent and hence (P;(h)¥, )", span an m;-dimensional subspace Ran P;(h).
Take an orthonormal basis ();%, of Ran P;(h). Then we can write w =
o1 af Pi(h)y,,. Then for k € (ki(}), k2(J), - -, km(j)) we have

m;

Py = ) <Pi(h)g, urduy

I=1

=S (P S P, > S P,
I=1 =1 g=1

mp myom;

=D D> el <y, Pih), P,

I=1 p=1 g=1

On the other hand, since |ju|| = 1, we have from Lemma 3.2 |af| < C, where
C is independent of small 4. Then it follows from the assumption of the induction
and Lemma 3.2 that

Wi i)y, > = Wiy (Pi(h) — DY, > + i ¥, > = 0,

as h — 0. Therefore we have that P;(h)y, — 0 as # — O from every i with i <j
and for k € (ki1(j), k2(j), ..., kn;(j)). That is, P(—o0,& — &)y — 0 as & — 0 for
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every positive ¢, where P(4) is the spectral measure of A “H (k). If we preserve
the consistency with the fact that (Y, h “H(h)y,)> — &, we conclude that
|P(&; — &,& + )y, || converges to 1 for k € (ki(j),ka()),- - -, km;()), which implies
the lemma for j. O

We are going to prove Theorem 3.2, first in the case &; is simple and then in
the case & is degenerate.

(1) The case & is simple.

In this case we have m; = 1. Let k = ki(j) = km, (/). Put

H(h) =k UMmHR)UH)™,
B(h) = %fﬁf— GO )7 de.

If ¢, is the k-th eigenfunction of H, in (1.8) with the eigenvalue e; = ¢;, then by
Lemma 3.4 we have P;(h)g; — ¢, as h — 0. Thus {x, Pj(h)@;) is convergent to
1 and so it is non-vanishing. Note the trivial relation

a CH(R)y, Pi(h) >
3.2 W *E  »(h) = a2 .
62 W) = B e

Then for the proof of Theorem 3.2 we need further to obtain the L2
asymptotic expansion of P;(h)d.

LemMMA 3.5. For each fixed positive integer |, GO He—2)x)™ is a
bounded operator.

Proor. The case / = 0 is trivial. Let / = 1. Then we can show the lemma
noting that

(KxD, (Hye — 2) 7] = (He — 2) 7 [Hie, ) (Hye — 2) 7!

and 9; is H, bounded. Assume the case / = k is valid. Then we can show the case
[ =k+1 in the same way as the case / = 1. O

ProOF OF THEOREM 3.2 (The simple case). Note A~ *U(h)H(h) Un)™ = H,.
If V(x)=aow(x) then from (3.2) we have A "Ey;(h)=ex =¢;. Therefore
c;‘(j) =0, (1<l<o0) in the case V(x) =aw(x). If V(x) # aow(x) we expand
the resolvent of H(h) as a geometric series

I-1
(H() = 2)" ¢ = D talB) + 1u(h),

n=0
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where
tn(h) = (=1)"(Hy — 2)" [V (He — 2)'I"gy,,
n(k) = (=1)'(HH) - 2) [V (He - 27Ty,
V =8V (#x) — apw(#x)).

Therefore we need to estimate ||z,(h)|| and ||r;(B).
Recall ¥j(x) has an asymptotic expansion in (1.7) in a neighborhood of the
origin. Let y(x) be an C® function such that

) 1, |x]<1/2,
A\X) =
0, |x|>1,

and put y, = x(#’x). Then we have

o0
1V ~ b w(#Px) Z ayhﬂ|y|xy
lyl=1
as h — 0, that is, near x = 0. This implies that )(,,17 takes for / > 0 the form
2V = 230115 x) + Ry(h; x),

where

-1
Qi(h; x) = B *w(WPx) Y " a,i"Pxr.

[»I=1

Then we have on supp y(h’x)
(3.3) |Ry(h; x)| < Crit)| 7+,
where Cg is some positive constant. Put
B(h) = (=1)"(He — 2) " [V (He — 2) s
Fi(h) = (=D (H®) — 2) " [V (He — 2) 7'y
We obtain by Lemma 3.5 and exponential decay property of ¢,
(34)  [R®) = (1) (H®) — 2)7 D ()=, V) (H — 2)7" ey~
(oY~ 2 )Y D (Hye — 2)7 )y ey

= O(h'#).
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On the other hand, we have
(3.5)
ri(h) — Fi(h)
= (~1)/(HH) —2)"' (0~ ) V(He—2) ' V(He—2) - V(He—2) '8y
+ (=1 (HR) —2) "V (He—2) " (1= ) V(He—2) 7 - V(He —2) 7'y

+o o () HB) =2 aV He—2) "0V - (L= ) V(He = 2) " e

Noting |V| < Ch*(x)¥+m+DVP  the exponential decay property of g,
(1 = ) <x>7¥]|,, = O(H™?) for all N >0 and Lemma 3.5 implies

Iri(h) — Fa(h) |
= I(=1)(H®) = 2)" (1 = 1) <x> ™M)V P)

x YN (Hie — 2) TGN (e N )G (Hy - 2)™
- I7<x>(’“)N(HK _ Z)—l<x>—(i+1)N<x>(l+l)N¢kH
o (=1 (He(B) = 2)7 ()i V)N (Hye — 2) 7y
x (Y™™ - (1= 2) ™) ()TN )y T DN Gy DN
X (Hye — 2) 7 eIV (xy DN g

— O(h(_l““LNﬂ)),

forall N> [(k+m+1)vp|+1.
Hence we conclude that

lr:(h) — Fi(R)]| = O(K™)
so that ||r;(k)|| = O(H?#) from (3.4).
Similarly we have ||t,(h) — 4,(h)| = O(K®).
Moreover we put
Tn(h) = (=1)"(Hi — 2) 7' [Qi(B; X)(Hie — 2) "' "
Then it is seen from (3.3) that
|17n(B) — B(B)]| = O(H¥)

holds for all 1 <n</I—1. Since 7,(h) is a polynomial in #%, this yields the
asymptotic expansion of Ej(;). O
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(2) The case ¢; is degenerate.
We prove Theorem 3.2 in the degenerate case.

LevMMa 3.6. Let C(h) be an r x r Hermitian matrix whose elements have
asymptotic expansion in P for §>0. Then the eigenvalues of C(h) have
asymptotic expansion in hP.

Proor. See [11, Lemma 5.2].

Proor oF THEOREM 3.2 (The degenerate case). Since the multiplicity of e; is
m;, we can take my; eigenfunctions of H,, (¢s,,);ni1- We construct m; eigenfunctions
of Hy(h), ¢, (h) = U(h)_]¢sp for pe(1,2,...,m;) such that (¢ (h),P;(h)¢, (h)>
— Opq for p, g€ (1,2,...,m;) as h — 0. As in the proof of Theorem 3.2 we can
show that the matrices

A(h) = <¢y,(h), Pj() 4, (B)>,  M(h) = {4, (h), H(h)P;(h)gs ()

have the asymptotic expansion in #* for p, ge(1,2,... ,m;), noting A(h) =
(Opg) + o(#).

Therefore A(h)_l/ M (h)A(h)"l/ 2 has asymptotic expansion in #®. By Lemma
3.6 we conclude the eigenvalues (Ej,(; (h));'; , have asymptotic expansion in P
Moreover if V(x) = aow(x) then M(h) = €6y, A(h) = Opq, that is, h™*Ey () =
¢, ki(j) <k(j) <ki(j)+m; —1. Hence c;“(j) =0, (1<l/<w) in the case
V(x) = agw(x). O

4. Proof of Theorem 1.1 and Example

In this section we prove Theorem 1.1. This can be done by using Theorem
2.1 and Theorem 3.2.

Proor oF THEoREM 1.1. Recall Ei(#) and E,(h) are the two smallest eigen-
values of H(h). Applying Theorem 2.1 and min-max principle, we have

exp (—Ej(h)) — gi(h) = OW**™*2), h—0, j=1,2.
Hence
(4.1) to(B) /1 () = exp (—(Ea(h) — Er(h))) + O("T %)
=1 — (Ex(h) — E1(h)) + O™ %) 5 — 0.

This is a generalization of the estimate (1.4).
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Applying Theorem 3.2, we have the asymptotic expansion of E;(h) and E;(h)
such that

0

E(h) ~ #° (e,. +Zcih"”), j=12,
k=1

where ¢} =0, (1 <k < o0,j=1,2) if ¥(x) = aw(x). Since the ground state of

the Schrédinger operator H(h) is simple, it follows that

(42)  Ei(h) — Ex(h) ~ (e1 — e2)h* + (¢} — cHitF 4 (e} — 2)u* + o),

where ¢} — ¢? =0 if V(x) = aow(x).

If x + m = o+ B, where o and f are the same notations as used in Theorem
3.1, then x +m = /2, so that k + m < .+ f (resp. k +m > o + f) if and only if
K+m< V2 (resp. k+m> v2). Then from (4.1) and (4.2) we obtain for the
semiclassical eigenvalue splitting of K(#) the expressions in (1.9) and E = e} —
el =0 if V(x) = aow(x). O

ExaMPLE. Consider the Kac operator K(h) with potential V(x)=
|x[”4/1 + |x|2, 0 < 0 < 00. Using a cut-off function y(x) with 0 < y(x) < 1 which
is supported in {xeRY||x| <1}, we put Vo(x)=x(x)V(x) and Vi(x)=
(1 = x(x))¥(x). Then V(x) satisfies the assumptions (1.6) and (1.7) with m =
[6] =1, k=0—m and p =0+ 1. So we can apply Theorem 2.1. We have from

Theorem 1.1 with Theorem 3.2
1 — (ep — e1)h” + O(K%), o< V2,

2 (B) 1y (R) = A
1—(e2 —en)h* —Er*7% 4+ 0(0°"?), o=V2,

as h — 0, where ¢; and e, are the first two eigenvalues of the Schrodinger
operator —A + |x|” and o =20/(6+2), f=2/(0+2).
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