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THE SEMICLASSICAL ESTIMATE OF THE EIGENVALUE

SPLITTING FOR THE KAC OPERATOR

By

Atsushi Doumeki

Abstract. We estimate for small h > 0 the eigenvalue splittingof the

two largest eigenvalues H＼(h) and fcifi) of the Kac operator

K(h) = exp (- V(x)/2) exp (h2A) exp (- V(x)/2)

with potentials V(x) not necessarily uniformly strictlyconvex, by

comparing it with the eigenvalue gap of the Schrodinger operator.

The method is based on Helffer'sidea. If V(x) ―＼x＼p,0 < p < oo,

then we have

ft2{h)/M*) = l-(ei- e^h2^^ 4- O(^A2), h | 0,

where e＼and e% are the two smallest eigenvalues of the Schrodinger

operator -A + ＼x＼p.

1
Introduction and the Main Result

The Kac operator

(1.1) K(h) =exp(-F(x)/2)exp(ft2A)exp(-F(x)/2),

is a transfer operator for a Kac model [6] in statisticalmechanics, where

0 < h < 1 is the Planck constant, A is the Laplacian and V(x) is a real-valued

function on Rd.

This model has been recently revisitedby Helffer [2],[3],[4] to consider the

large dimensional behavior of the correlation function which involves the quotient

of the two largest eigenvalues fix{K)and fi2(^)°ftne K-ac operator K(h). He has

assumed in [2] that V(x) is uniformly strictlyconvex in the sense that V(x) is a

C00 function satisfying
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and

Atsushi Doumeki

a = inf (Hess V){x) > 0,
xeRd

(1.2) |daK(x)|^Ca<jc>(2-|a|)+, 0<|a|<oo, V(x) > C＼x＼2- 1/C, C > 0,

where (s)+ = svO and <*> = (1 + |x|2)1'2.Then he has obtained the estimate of

the eigenvalue splittingof the Kac operator for h > 0

(1.3) MiW/Mfy £ exp(-cosh-1(^2ff+ 1)).

On the other hand, though (1.3) already implies a semiclassical eigenvalue

splittingfor the Kac operator, he has given in [3, Remark 2.3]

(1.4) fi2(h)/^(h) = zW(-(E2(h)-El(h))) + O(h2), h^Q,

which semiclassicallyrelates the quotient of the two largest eigenvalues fix(ft)and

fi2(h) of the Kac operator K(ft) to the quotient of the two smallest eigenvalues

E＼(ft)and E2(h) of the Schrodinger operator

(1.5) H(h) = H0(h) + V = -h2A + V(x).

Moreover, if we know a semiclassical asymptotic expansion of E2(ft)―E＼(h),we

can get with (1.4) a semiclassical estimate of the eigenvalue splittingfor the Kac

operator K(ft). The class of uniformly strictlyconvex potentials contains the

harmonic oscillatorpotential but not other important potentials like ＼x＼4,etc.

The aim of thispaper is to extend his result (1.4) to the case for some more

general potentials which may not be uniformly strictlyconvex, to obtain a

semiclassical eigenvalue splittingfor the Kac operator K(ft) with the aid of a

semiclassical asymptotic expansion of E2(h) ―E＼(h).

To get our result corresponding to (1.4) we assume that V(x) satisfieswith

constants c>0, p > 0, 0<m<oo and 0 < k < 1,

(1) V(x) = V0(x) + Vi(x)t Vj(x) > 0, j = 0,1,

(2) V0(x) e C%>K(Rd),

(1.6)

(3) Vi(x) e Cx(Rd), Vi(x) > c<jc/ on |jc|> R (R ≫ 1),

|5"Ki(jc)|^Ca<x>^-W)+, 0<|a|<2,

where C 'K(Rd) is the family of the m-times continuously differentiablefunctions

f(x) in Rd with compact support whose derivatives daf, ＼a＼= m, are ic-H61der
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continuous. Under the condition (1.6), the Kac operator K(h) is a trace class

operator and has a simple largest eigenvalue. On the other hand, under the

condition (1.6),H(h) admits a unique nonnegative selfadjointextension in L2(Rd)

(e.g.[9, Theorem X. 28]).We denote thisextension by the same notation H(h) in

(1.5). Then H(h) has only purely discrete spectrum and has a simple first

eigenvalue E＼(h) (e.g.[10, Theorem XIII. 47]). Therefore it has the eigenvalue

gap E2(h) ―E＼(h), where £2(ft)is the second eigenvalue of H(h).

To obtain a semiclassical asymptotic expansion of £2(ft)―E＼(h), we assume

further that

(1) V(x) = 0 if and only if x = 0,

(2) Fi(x) = 0on lx| <l/2,

(1-7) (3) V0(x) e Cco(Rd＼{0}), supp Foc{xeRd＼ ＼x＼< 1},

00
Vq(x) ~ W(x) ^2 aaX<3t' near ^ = 0?

|≪|=0

with ao # 0, where w(x) is a positively homogeneous function in Cco(Rd＼{0})

with co(Xx) = lK+mw(x) for X > 0. The condition (1) in (1.7) is essentialin our

case because it assures V(x) is a one well potential.If we exclude this condition

we encounter the double well potential. The double well potential case is a future

problem for us, although Helffer has already treated it in [4]. The potential

V(x) = ＼x＼p,0 < p < 00, is one of the typical examples which satisfy these

conditions. In fact, putting Vo(x) = x{x)V(x), V＼(x)―(1 ―x(x))V(x), where

x(x) is a C00 cut-off function with 0 < x(x) < 1 in Rd and supp/(x) c=

{x e Rd I＼x＼< 1}, we see V satisfies(1.6) and (1.7) by taking m = ＼p]―＼ and

k = p ―m. Here [p] is the largest integer that is not greater than p.

With w(x) in (3) of (1.7), we put

(1.8) HK = -A + aow{x).

Then HK also admits a unique nonnegative selfadjointextension in L2(Rd), which

is also denoted by the same notation HK as in (1.8). It also has only purely

discrete spectrum and has a simple firsteigenvalue.

The main result of this paper is the following theorem.

Theorem 1.1. Let V{x) satisfy the conditions (1.6) and (1.7) and let H＼{h)

and jn2{h)be the two largest eigenvalues of the Kac operator K{h). Let e＼and e2 be

the two smallest eigenvalues of the Schrodinger operator HK. Then one has
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(1.9) frih)/*(*) =

Atsushi Doumeki

1 - (e2 - ei)ha+ 0(hK+m), K + m<V2,

＼-{e2-ei)ha- Eha+P + 0{h{K+m^A2), K + m>V2,

as h-+Q, with ol= 2(k + m)/(K + m + 2) and fi = 2/(k + m + 2), where the

constant S depends on (^oOuLo *w (3) ^ (1-7) ^≪<iH = 0 if V(x) =oqw(x).

In Section 2, to get a formula like (1.4),we shallestimate the operator norm of

the difference between the Kac operator and the exponential of the Schrodinger

operator. There we use simple commutator method. In Section 3 we prove semi-

classicalasymptotic expansions of the eigenvalues of the Schrodinger operator

with the conditions (1.6) and (1.7).In Section 4 we prove Theorem 1.1 by using

the theorems proved in Section 2 and Section 3 and give a non-trivial example.

2. Semidassical Error Estimate for the Kae Operator

In this section we shall observe the difference between the Kac operator K(h)

and the exponential exp(―H(h)) of the Schrodinger operator H(h) in L2 operator

norm. The problem has been recently studied firstby Helffer [3] for potential

V(x) satisfying ＼daV(x)＼< Ca<x>(2~~W)+and then by Ichinose-Takanobii [5] and

Doumeki-Ichinose-Tamura [1] for some more general potentials.

This result can be used to relate the two largest eigenvalues H＼(h) and fi2{h)

of the Kac operator K(h) to the two smallest ones E＼{h) and Ei{h) of the

Schrodinger operator H(h) such as in (1.4). Though the method of thissection is

very similar to the paper [1], we include it to make the paper self-contained.

As a semiclassical error bound between the Kac operator and the exponential

of the Schrodinger operator we have the following theorem.

Theorem 2.1. Let V{x) satisfy the condition (1.6).

Schrodinger operator with potential V(x) and let K{h) be

operator. Then one has

＼＼Qxp(-H(h))-K(h)＼＼= O(ft(K+w)A2),

Let H(h) be the

the associated Kac

as h^O.

To prove Theorem 2.1 we shallshow the followingproposition.

Proposition 2.1. Let V(x) and H{h) be the same as in Theorem 2.1. Then

one has the estimatefor a > 0 and for small t > 0
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exp(-£#(*))-*(/;*) = h~l 0(tl+a^K+rri) a2^)

+ 0(^"a(2~K~m)+) + h~l^p~l)+lpO{^~a{'l~K~m)+~^~l)+/fi))

+ h~lOit*'2"^'*' ^) + |j-1+2^-1)+/^o(r3"2(/'~1)+/p)

+ fl(P-2)+/PQ(tl-(p-2)+/p^

uniformly in h e (0,1], where

K(t;h) = exp (-*- V/2) exp (- ^H0(h)) exp (-1 V/l)
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In the beginning we prove Theorem 2.1,acceptingthat Proposition2.1 has

been established.

Proof of Theorem 2.1. From Proposition2.1 we determine the asymptotic

order in h by putting t = h. We have the following constraintamong the

parameters a, k and m

a((K + m) a 2)) > 0, -ail- K-m)++ 2 > 0,

-2a(l -K-m)+ + 2 > 0, -fl(l-K-m)+ + 2 > 0.

Here we want to take the orderin h as large as possible.Then thisconstraint

determines a = 1. Thus we have proved Theorem 2.1. □

In the rest of this section we shall prove Proposition 2.1, which follows from

some successive lemmas.

Let (f>{x)be a normalized smooth non-negative even function compactly

supported in the unit ball. We define for 0 < e ≪ 1

M*) = £-≪JV(^ l)v0(y)dy,

and put Ve(x) ― Fo)£(x)+ V＼{x).Note the following identity

(2.1) exp(-j-H{h))-K{t;h) = (cap (-£#(*)) -exp (-£#.(*)))

+ (KE(t;h)-K(t;h))

= Dl(t;h)+D2(f,h) + D3(t;h),



norm of D＼{t＼h).

□V0(x)dy = 0, |a|>0.

WD^t^W = e^+m^A2h-lO(t),
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He{h) = H0(h) + Ve = -h2A + V,(x)

Ks(t;h)= exp (-1 Ve/2) exp (~H0(h)) exp f-1 Ve/2)

To prove Proposition 2.1 itis enough to estimatethe asymptotic orders of the

norms of D＼(t;h),D2(t;h) and D$(t＼h).To do so we should study some

propertiesof Fo,e.

Lemma 2.1. Foi£definedas above satisfiesthefollowinginequalities

(1) ＼Vo,e(x)-VO(x)＼<C^K+m^2,

(2) |SaFo,e(;c)[< Ce-M-K-m^, 1 < |a|< 2,

where the constant C is independent of s.

Proof. (1) By the Holder continuity of Vq, the case m = 0 is trivial.We can

prove the case m > 1 by using Taylor's theorem

Vo(x + z)-Vo(x) =
m-＼
£

k=＼

and noting the fact that

i
(zd)kV0(x)+

^1^| </t(1- r)-1 (zd)"F0(x + rz)

l</>(^Z)(xi-yi)dy
= Q

(2) We can obtain (2), noting

＼
(daj)

First we shall evaluate

Lemma 2.2. One has

uniformly in h e (0,1]

(-

the

7~)
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Proof. We have

exp(-

_1

~h

1

h

Use Lemma

£#.(*))-exp (-£#(*))

|f exp (-£#.(*))(H(h) - H.{h))exp
(-lLAH(hfj

ds
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j%xp (~/f.(ft))(K0(x)- F0,£(x))exp
^-lL_^(^

ds.

2.1(1),then we getthe desiredestimatefor DAv.h). D

Next we evaluate the norm of Di(t;h).

Lemma 2.3. One has

＼＼D3(t;h)＼＼=e(K+m^2h-lO(t),

uniformly in h e (0,1].

Proof. This evaluation can be done immediately by considering the identity

KJt;h)-K(t;h)

= exp(~ F£/2)exp(-^oW)exp(-^ V8/l)

- exp(-| F£/2)exp(-|ifoW)exp(-^ V/l)

+ exp(-^ F£/2)exp(-|^oW)exp(-| V/l)

- exp(-^ F/2)exp(-^oW)exp(-| V/l)

= (exp(-|Fe/2) -exp(-^F/2))exp(-^oW)exp(-^F/2)

+ exp(-^K./2)exp(-^0(≫)) (exp(-| V./l) - exp(-| V/l))

Here we note the formula
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exp(-|Fe/2)-exp(-V/2)

=

±r

2* Jo exp(-^F£/2)(F0(x)- ^(xOexpf-^―^

Then we have Lemma 2.3

V/l＼ds

Finally we make a semiclassical estimate of the norm of D2(t;h).

Lemma 2.4. One has

＼＼D2(t;h)＼＼= £-V-K-m^O{t2) +E-(l-K-m)+h-lHp-l)+lpO{ii-(p-l)+!p))

+ e-2(1-*-'≫)+fr10(f3)+ h{p-2)+lPo{i1-(p-2)+ip)

+ h~l+1{p~l)+lpO(t'~2(p~l)+lp)

as f ―> 0, uniformly in he (0,11.

□

Proof. Since Ke{t＼h)is strongly continuous in t, elementary calculation

yields

jtKE(t;h) = ~HE(h)KB(t;h)-Re(t;h).

Solving this differentialeauation, we get

(2.3) D2(t;h)=Qxp(-^H£(h)) - Ks(t;h)=
^exp(-{lj^

where

Re(t]h)=R1M;h)+R2Jt;h)

HE(h))Re(s;h)ds,

R^t; h) = [exp(-1 VE/2),H0(h)/h] exp (-
±H0{h))

exp (-1 VE/l)

R2,e(f,h)= exp (-J-K/2) [exp (-~H0(h)), Vs/(2h)]exp (-^K≪/2)

Then to prove Lemma 2.4 it is enough to show
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(2.4) ＼＼Re(t;h)＼＼= e-V-K-m)+O{t) + £-(l-K-m)+h-l^p-l)+lpO{?-(p-l^lti)

+ e-2(l-K-m)+h-lo(t2) + h{p-2)+lpo{tl-{p-2)+lp)

uniformly in h e (0,1].

First we study R＼fi(t;h).Writing Ho(h) =h2Dj by use of the summation

convention, where D,- = ―id/dxj, we have by a simple commutator calculus

(2.5) [i>;,exp(-|Fe/2)]

= -j-[DJ,[Dj1Vt/2]]exp(-j-Va/2)

-

^[Dj,
V£/2][Dj, F£/2]exp(-|F£/2)

-2j-[Dj,V,/2]DjOLi>(-j;Vtl/2)

= -
j-
[Dj, [Dj, F0>£/2]]exp(-

'-
VE/l) -

|
[Dj, [Dj, V./2}] exp(-

*-
Ve/2)

-^[Dy-,FOj£/2][D7-,Fo,e/2]exp(

--jlDy.FV^Ki/qexp

-2-2[DhVQ,E/2＼[Dh
fl

-2^[Dy-,Fe/2]Dy-exp

≫

(-≫

Ki/2]exp(-

O4

≫

By Lemma 2.1 (2) we can obtain the inequalities

(2.6)

From (1.6) we have

(2.7)

＼lDj,[Dj,Vo,e]}＼<Ce-(2-K-m^,

＼[Dj,V0,E}＼<Ce-^-K-m^.

＼[Dh[Dj,Vl}}＼<C2<x>(<}-V+.
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Then easy calculationyields

(2.11) [/>;,V./2]= [Dj,Ve]Dj+ [Dj,[Dj,VE/2}＼=A + B.

Substituting(2.11)into (2.10) and taking commutator, we get

(2.12) R2,(t;h)= -tAKe(t;h)-R2i(t;h)-R22(t;h)-R23(t;h)

where

exp(-~flb(ft))[J),2,VE/2]Qxp(-{^j^H0(h)＼ ds

H0(h)＼ dsS-H0(h))[HQ(h),V£/2]exp(-{-LA

R22(t;h)= exp(-~K,/2)
£exp(-£jyo(*))*≪p(-£-^

#(>(≫)
)

xexp(--Ke/2)<fc

= ?[exp(-^Fe/2)^] exp(-^oW)exp(-V£/2)R2i(t;h)
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We note for 0 < a < p,

(2.8) exp(4
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ve)(Xy<c(^j
a/p

t^Q

Then as an immediate consequence from (2.5)~(2.8) we get

(2.9) RhE(t;h) = t[Dj,Ve]DjKE(t;h)+e^2-K-m^Ob(t)+e-2^-K-m^h-lOb(t2)

_i_
E-v-K-m)+frl+{p-l)+lpob(i1-{p-l)+lp) + h{p~2)+/pob{tl-{p-2)+/p)

+ ft"l+2(/'-l)+//'06(/2-2(^l)+/P)>t ^ 0,

uniformly in h e (0,1], where Ob{ta) is a bounded operator whose order in tis a.

Second we evaluate Rifi{t＼h).To this end we express the commutator factor

in R2f(t]h) by the following integral formula

(2.10) [≪p(-£#o(ft)),n/2ft]

ilexp(
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R23(t;h) = exp(-
*-
VE/1)
j" [exp(- S-Ho(h)),

a]

The commutator factorin Ry＼

[expH

(t;h) is calculated as

Ve/2), A] = -[Dj, Ve][Dj,exp(-
*-
Vs/l)]

|[Dy,Fe][D7-,Ke/2]exp(-|K£/2)

j-[Dj,Vo,][Dj,Vo,/2]exp(-j-V'/2)

+ j-[DJ,VoA[Dj,Vl]Gxp(-j-Ve/2)

+ j:[Dj,Vl][DJ,Vl/2]exj>(-j-V8/2)
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Then from (2.6) ~(2.8) we can evaluate R.2i(t＼h)as

(2.13) ＼＼R2i(t;h)＼＼= 8-2{1-K-m)^h~lO(t2) + e-^-^^h-1^-^^^-^-1^^)

+ h-l+2{p-l)+ipo{?-2^-l)+lp), t -> o,

uniformly in fte (0,1]. By Lemma 2.1 and (1.6) we have

＼B＼< Ce-V-m-K)+ + C2<x>(/?-2)+.

To evaluate M.22(t;fo)we use this fact and the next lemma, which we shall show

later.

Lemma 2.5. For every nonnegative number I, one has

(1)

(2)

<x> 'exp(-v #o(ft))<*y = 0(1), *->0

<x>-/exp(-^oW)i)7<xy = h-l'20{rlf2), t-0,

uniformlyin h e (0,1].

Decompose 5as5= <x>(/?-2)+/2<x>"(/'"2)+/25<jc>-^-2)+/2<x>(/'-2)+/2and use

Lemma 2.1 and Lemma 2.5 (1).Then R22(t;h) takes the form
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r£/2)<x>^-2>+/2

+ £-(2-*- )
f

.

I

Ob{＼)ds,

0,(1) ^<x>('-2>+/2exp(-
*-
VE/2)

where Of,(l)is some bounded operator whose order in tis 0. From the condition

(1.6) we obtain

(2.14) ||*22(f; *)ll = e-{2-K-m)+0{t) + h{p-2^/p0{tl-^-2^/p) f-+0

uniformly in h e (0,1].

We shallprove that R23(t;h) obeys almost the same bound as (2.13) and

(2.14). To this end we rewrite R23(t;h)

(2.15) R2,{t-h)= QxV{-~VE/2)

where

(2.16) F(s;h) = - IexpK

i;

as an integral

F(s; h) exp

( {t

h

*)

expression

Ho(h)
)<fc≪p(-iK./2)

#o(ft))[tfo(ft)/M]≪p(-^p

We can calculate the commutators

(2.17) [Ho(h),A] = h2[DlA]

[D2k,A] = [Dk, [Dj, VE]}DjDk + Dk[Dk, [Dj, Ve]]Dj

[At, [Dj, VE]}= [Dk, [Dj, Fo,J]+ [Dk, [Dj, Vx]].

By Lemma 2.5 (2) and Lemma 2.1 we rewrite F(s;h) as

F{s-h) {2-K-m)+h
＼
h-ll2Ob{T-ll2)h-ll2Ob{{s-xYl'2)dT

-(2-K-m)+h

+ <x>('-2)+/2

r

Jo

Jo

+ O>('-2)+li
f

Jo

= e-i2-K-m)+Qb(l

tfo(ft))

≫-"2OK(,-T)-1'Vrfl2'2

dx

ftlllOu(T-V2^-in^
,

h-l/2Ob((s-z)-l/2)drHl6/2

)+E-V-K-rn)+hll2Ob{sl/2)HM2

+ <x>('-2)+/20,(l)<x>('-2)+/2 + {x}^-2Hl/2Ob(sl/2)Hl0/2
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where Ho = -A and Ob(ta) is a bounded operator whose order in t is a. From

(2.8) we get the estimate

(2.18) ||*23(f;ft)ll= £-(2-*-m)+0M + ft('-2)+/'0(*1-(/>-2)+//O＼t
_ o,

uniformly in h e (0,1].

From (2.13), (2.14) and (2.18) we have with (2.12)

(2.19) R2,e(t,ft)=
~t[Dh
Ve]DjKe(t;h) + iT2*1-*-"^-1^/2)

+ £-0-K-m)+^-l+(p-l)+//?£W£2-(/>-1)+//>)

+ e-{2-K-m)+Ob{t) + h{p-2)+/pOb(tl-{p-2)+/p)

+ h^+2(P~l)+/POb^-2(p-D+/p^ t^ 0>

uniformly in h e (0,1]. Summing up (2.9) and (2.19) we have the estimate (2.4).

In view of (2.3) we have thus proved Lemma 2.4. □

Proof of Proposition 2.1. From Lemma 2.2 ~ 2.4 we have Proposition 2.1

by putting e-ta with a > 0. □

Finally we give the proof of Lemma 2.5, which we have used in the proof of

Lemma 2.4.

Proof of Lemma 2.5. By interpolation, it sufficesto prove (1) and (2) only

for every integer / > 0.

(1) The proof is done by induction. The case / = 0 is trivial.We assume the

case 0 < / < k. If it is shown that

(2.20) <*>-(*+1)[exp(-^oW)X*/+1] = 0(1), t^O

then the case / = k + 1 follows at once and the proof is complete. To prove

(2.20),we representthe commutator as

[exp (-
£#<>(≫)),

<*>*+1]

J*cxp[-S-H0(h)) [H0{h)/h,<x>k+l)exp
(-ILAh^

ds
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The commutator in the integrand takes the form

[HOi<x>k+l]~bj{x)Dj + bo(x),

where bj{x) = O(＼x＼k)and bo(x) = O(＼x＼k'1)as |x| -> oo. Noting Dj(H0 + 1)~1/2

is bounded, we have (2.20). This ends the proof of Lemma 2.5 (1).

(2) Noting that ＼＼Di(H0(h)+ l)~l/2＼＼= O(＼/h) and

flb(*)1/2exp(-^0(*)) = hl'20{r1'2), t -o,

uniformly

0 < / < k.

(2.21)

in h e (0,1], the case / = 0 follows at once. We assume the case

Then by Lemma 2.5 (1) we have

<x>-(*+1Wp (-LHo(h))Dj<x>k+l

= 0,(1) + <x>-(*+1)exp(-j;Ho{h)yxyk+lDj

We take the commutator between exp(-(t/h)H0(h)) and <x/+1 in (2.21).Then

(2.22)

<x>-(*+1)exp(-
±H0
(ft))<x>*+1Dy-

- <x>-(*+1)
I'
exp(- S-HQ(*))[Ho{h)/h,<x}k+l)exp(-^-A

The second term in (2.22) takes the form

/*>(*)) dsDj.

-^y{k+l^l ≪p(- j:HQ(ft))(Djbj(x)+ bo(x))exp
(-(L-AHo(h)＼

Dj ds.

where bj(x) = 0(＼x＼k) and hQ(x) = 0(＼x＼k~l) as ＼x＼-≫ oo. Therefore by the

assumption of the induction

<x>-(*+1) exp(- ^Ho (ft))(xyk+lDj

h-l/2ob(rl/2) + h
f
h-Wotis-v^h-WotUt - s)-1/2)= h-l'2ob{rli2)
Jo

This ends the proof of Lemma 2.5 (2)
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Remark 2.1. From Proposition 2.1, one can also obtain an error bound of

the operator norm for the Trotter-Kato product formula such as in [3],[5] or [1]

(2.23) ＼＼Qxp(-tH(l))-(K(t/N;l)f＼＼ =

0(jy-((*:+'n)/2)A(2/'>)))

O(N-Wpa%

/w = O,l

m > 2,

as N ―>oo. This estimate corresponds to the result of the paper [5] but the paper

[1] did not include the case m ― 0,1. In fact, set ft= 1 in Proposition 2.1. Then

we have

＼＼exp(-tH(l)) - K(t;l)＼＼

_ Q(tl+a({K+m) a2)＼_j_QtjL-a{2-K-m)+＼ + Q/£-2a{＼-K-m)+^

+ o(r3-fl(1-K-m)+-^-1)+/^) + o{il-{p-2)+lp) + 0{t*-2{p-l)+/p), t -> 0

Then we have the constraint conditions in a such as

a((K + m) a2) + 1 > 0, -a(2-K-m)+ + 2 > 0,

-2a(l - k - m)+ + 3 > 0, 3 - a{＼- k - m)+ - (p - ＼)Jp > 0.

We should take the order in t as large as possible. Therefore we choose a = 1/2.

Then we have

||expHff(l))-tf(r;l)|| =

{ Q^l+(K+m)/2) a(l+2/p)^ m = 0, 1

OUl+2/p)A2^ m>2,

at t ―＼0. This estimate and standard telescope argument yield the desired error

bound (2.23) of the operator norm for the Trotter-Kato product formula. □

3. Semiclassical Asymptotic Expansions of Eigenvalues for the Schrodinger

Operator

In this section we see semiclassical asymptotic expansions of the eigenvalues

for the Schrodinger operator with one well potential. For this purpose we have

assumed the asymptotic expansion (3) in (1.7) for the potential Vq(x). Under the

assumptions (1.6) and (1.7), H(h) has only discrete spectrum. We label these

eigenvalues by Ej(h), where we listthe eigenvalues in increasing size,including

multiplicity,

EAh) < E2(h) < E3(h) < ･･-.



498 Atsushi Doumeki

Under the condition (1.7) HK in (1.8) also has only discrete spectram. Let (e/)>Li

be the eigenvalues of HK listed in increasing size, including multiplicity,

e＼< ei < e-x,< ･･ ･,

and let (£/)>=
i
be the set of distinct values q, ordered by size, with multiplicity m,-,

so that e＼= e＼and ei = ei. Then we can determine explicitly the first asymptotic

coefficient of EAh).

Theorem 3.1. Let V{x) satisfythe conditions (1.6) and (1.7). Then there exist

nij not necessarily distincteigenvalues Ek^{h) of the Schrodinger operator H(h)

satisfying

with

a =
2{k + m)

/c+ m + 2'
p =

2

K + m + 2'

Moreover we have

Theorem 3.2. Let V(x) satisfy(1.6) and (1.7). For each ej there are m,j not

necessarily distincteigenvalues E^ (h) of H(h) satisfying

Ek(j)(h) ~ h*

(

l―＼

)

as h ―>0, with the same a and f$ as in Theorem 3.1,where the ct are some

constantsdepending on (fla)ui=0in (3) in (1.7) awJ c/ = 0, (1 < / < oo) if

V(x) ―oqw(x).

This type of theorems has been proved by [11],[7],[8] and others for double

well or multiple well potentials.Though their resultsinclude one well potential

case, we want to treat some more general one well potentials.In the firstplace we

shall prove Theorem 3.1 by a method similar to that used by Simon [11] to prove

the tunneling effect.We modify two lemmas used in his proof.

We can take C00 functions f(x) and jl(x) such that 0 < jk(x) < 1, k = 0,1,

(/to)2 + (/to)2 = 1 and f(x) satisfies

f(x) =
{ W < i,

＼x＼> 2.



□
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Then we put J°(h) = jo(h~dx) and J＼h) = jl(h~sx) for some constant S > 0. Set

(U(h)f)(x) = hd^2f(h^x), f e L2(Rd).

Let {(j>j{x))^=lbe the orthonormal eigenfunctions of HK in (1.8) with eigenvalues

{ej)f=l and put ＼ftj(x)= (J°{h)U{h)~l0j)(x). Then we shall see below that

(≫A/W)jli are asymptotically approximated eigenfunctions for H(h).

Lemma 3.1. Set HK(h) = -h2A + ao＼v(x).Then one has

<^, (H(h) - HK{h))tk> = O(h^K+m+＼

Proof. Simple calculation leads us- to the identity

<j,p(H{h)-HK{h))+k>

I

r<>

J
|v|<2≪*-'

fa{x)dx.

<IKIIilbky<<*>,

we obtain

(V(x) - aow(x))il/.(x)＼l/k(x)dx

(V(x) - aow(x))J°(h)U(h)-lUx)JQ(h)U(h)

Here supp J°(h)is a neighborhood of the originin Rd and Vo satisfiesthe

condition(2) in (1.7),so we have

f
(K0-flbw(jc))^(*)-V/W^(ft)"VikW^

J|x|<2^

=
f
w{x)＼x＼O(l)U(h)-l+j(x)U(hrl+k{x)dx

= [ M^y)＼^y＼O(l)^(y)^k(y)dy

= ft≪**≫+i)
f
w(y)＼y＼O{l)+j(y)+k(y)4y.

}＼y＼<2hs-l>

Since by the exponential decay property of (^Ay))^, we have

*(y)＼y＼o{i)+j(y)+k{y)<fy

<*,,(H(h) - HK{h))*k> = O{h^K+m^)
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Lemma 3.2. We have asymptotic orthogonality of the asymptotically

approximated eigenfucntions {^j{x))^=l

<^pijfky = Sjk + O(exp(-chs^))J

for an arbitrary constant 5 with 0 < 5 < fi, where c is a positive constant and 3jk is

Krnnp.cicp.r''.vdelta.

Proof. One can verify thislemma by a similar method used to

Lemma 3.1 and the exponential decay property of (^)/li-

prove

□

Proof of Theorem 3.1. To prove Theorem 3.1 we shall show that we can

get the value e,-as both the upper bound and the lower bound.

(1) lim sup^0 Ek{j)(h)/^ < ej.

First of all,we shall estimate (＼jjj,H(h)＼jjky,using the same notations as in

Section 1. To this end we estimate <j^/-,i7K:(^)^A.>.

Recall the fact that (^O^i are the eigenfunctions of HK with eigenvalues

(ej)JLi-Then we have

Wj,HK(h)tky = <J°{h)U-＼h)+j,HK{h)J°(h)U-1(h)ik>

=
＼
<J°(h)U-1 (hty, J°(h)HK(h) U-l(h)<{>k}

+ ^<J°(h)HK(h)u-l(h)^jQ(h)u-lmky + <^2(v/°W)V*>

= ^ <ikj, haekijfk> + i <ftV;. **> + <*/> ^2(V/°(ft))2^>-

Since we have (V/°(ft))2 = Oih'23) by the definition of J°{h), we get, for any

constant 8 < (2 ― oc)/2 = fi, the semiclassical estimate

Thus we have by Lemmas 3.1 and 3.2,

(3.1) <*A,-,#(W*> = tTerfft + O(ft(2-^) a^+-+D).

From Lemma 3.2 we conclude that (jAaJjUi sPan an r-dimensional subspace for

small h. Then we can find, for arbitrary (£/)/=i ― L2{Rd) and for sufficiently small

h, a linear combination ＼J/of (i/^, s^2, ･ ･ ･, iAr) sucn tnat 'A e [^i
>
&>
･ ･ ･ > ^r-i]"1- Note

if(li) has only pure discrete spectrum, then the semiclassical estimate (3.1) enables

us to use the min-max principle to estimate the upper bound for Ek^{h).
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(2) liminffc_>oiiit(y)(^)/^a> £/.We use the following localization formula with

the semiclassical parameter to obtain the lower bound.

Lemma 3.3. One has the formula

H{h) =
1

j＼h)H(h)Jl(h) + J°(h)H{h)J°{h) -Y^fi2{VJa{h))2

a=0

in theform sense.

Proof. It is easy to see for an arbitraryC°°function/

[/,[/,I^)]] = -2fc2(V/)2.

Then taking Jl(h) and J°(h)as/and summing them up, we obtain the formula.

□

From the conditionfor Vo(x), we have the followingasymptotic evaluation

＼＼J°(h)(H(h)- HK(h))J°(h)＼＼= O(hs(-K+m+V).

Then we have

J°(h)H(h)J°(h) > J°(h)R(h)J°(h)+ h≪e{j＼h))2+ 0{hd{lc+m+l)),

where R(h) is the restrictionof HK(h) to the span of all eigenfunctions of the

HK(h) with eigenvalues lying below hae for e e (ey-_i,e7-)and the rank of R(h) is at

most I + Yyi=2mi- Moreover, since |jc|> chd on supp Jl(h), we see for any S

satisfying 8(k + m) < a

j＼h)H{h)j＼h) > cX(x)＼x＼k+m(j＼h))2+ c(l -X(x))

> h3{K+m)c(Jl{h))2 > hae{j＼h))2,

with sufficientlysmall h and every e e (£/_!,£/),where x(x) is a C°°cut-off

function with 0 < x(x) < 1 in Rd and supp x{x) £{x g Rd＼＼x＼< 1}.

From Lemma 3.3, summing up and using (yja(h))2 = O(^~^), a = 0,1, we

obtain for cl/(k+ m + 1) < ≪5< p,

H{h) > h"el+J°(h)R(h)J°(h) + O(h{2-ls)ASiK+m+1)),

where 1 is the identity operator. This inequality shows the lower bound.
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From (1) and (2) we have proved Theorem 3.1 by taking the constant 8 so as to

satisfy/?(#c+ /w)/(jc+ /w+1) <3<fi, notingP(k + m)/(jc + m + 1) = a/(jc+ #w+l).

D

Next we proceed to obtain the asymptotic expansion of the eigenvalue of the

Schrodinger operator. We shall recall some notations used in the proof of

Theorem 3.1. We put

(H(h)-z)-ldz,

where s > 0 is so small that there are no other eigenvalues in the disc

{z e C＼＼z―haej＼< ha e} except for Ek^{h). For higher order perturbation the

next lemma is crucial.

Lemma 3.4. ||(1 ― Pj(h))^/k＼＼― 0 as h―> 0 for every positive integer j, where

k e (ki(j),ki(J),
■■-^mAj))

= (ki{j)MU) + 1. ･･ .,ki(j)+mj - 1).

Proof. We show the lemma by induction on j. Suppose the lemma has been

proved for all i <j. Then for every i with / <j, Pi(h)＼j/S― ＼f/s― 0 as h ―> 0 for

se (s＼(i),S2(i),...,jW/(*'))･ From Lemma 3.2, we see that (^)^i is linearly

independent and hence (-^i(ft)≫A^)/^isPan an wirdimensional subspace RanP,-(ft).

Take an orthonormal basis {ui) ^ of Ran Pi(h). Then we can write ui =

^UafPiih)^. Then for k g (hU), k2(j),... ,kmj(j)) we have

ffii TYli fflj

/=1 p=＼ q=＼

f＼l{TYli ffli
E E E ^a? <^'p'w^* >p'(*)^

/=! ^=1 g=l

On the other hand, since ||u/||= 1, we have from Lemma 3.2 ＼af＼< C, where

C is independent of small h. Then it follows from the assumption of the induction

and Lemma 3.2 that

as h ―>0. Therefore we have that Pi(h)ij/k― 0 as h ―>0 from every / with / <j

and for k e (ki(j), k2(j),...,km.(j)). That is, P(-ao,ej - e)ipk-> 0 as h -> 0 for
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every positive e, where P(A) is the spectral measure of tT^Hty). If we preserve

the consistency with the fact that <i^fc,h~aH(h) ^fc> ―≫･q, we conclude that

＼＼P(ej- e, ej + s)＼l/k＼＼converges to 1 for k e {k＼U),k2(j),..., kmj(j)), which implies

the lemma for j. D

We are going to prove Theorem 3.2, firstin the case ej is simple and then in

the case e, is degenerate.

(1) The case ey-is simple.

In this case we have rrij= 1. Let k ― k＼(j) = fcmy.(j). Put

pj(h) =
i
2^

(

H(h) - z)"1dz

If <j)kis the k-th eigenfunction of HK in (1.8) with the eigenvalue e^ = ej,then by

Lemma 3.4 we have Pj(h)$k -^ 0k as h ―>0. Thus ($k,Pj(h)$ky is convergent to

1 and so it is non-vanishing. Note the trivialrelation

(3.2) h-aEk{j)(h) =

Then for the proof of Theorem

asymptotic expansion of Pj(h)$k.

(H(h)</>k1Pj(h)<t>ky

yk,pj{h)tk>

3.2 we need further to obtain the L2

Lemma 3.5. For each fixed positive integer I, (x}l(HK ―z) <x> l is a

bounded operator.

Proof. The case / = 0 is trivial.Let / = 1. Then we can show the lemma

noting that

[<x>, (HK - z)-1] = (HK - z)-l[HK, (x>}(HK - z)-1

and djis HK bounded. Assume the case / = k is valid. Then we can show the case

I = k+＼ in the same way as the case / = 1. □

Proof of Theorem 3.2 (The simple case). Note h~*U(h)HK(h)U{hyl = HK.

If V(x) = aow(x) then from (3.2) we have h~aEk^)(h) = ek = ej. Therefore

Cj = 0, (1 < / < oo) in the case V(x) = ao＼v(x).If V(x) ^ aow(x) we expand

the resolvent of H(h) as a geometric series

(#(ft)-z)-V* = E*≫(ft) + r/(ft),

n=0
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tn{h) = (-l)n(HK - z)-l[V(HK - z)-1]^,

n{h) = (-l)l(H(h)-zrl[v(HK-z)-lUk,

V = h-≪(V{hPx) - aQw(hpx)).

Therefore we need to estimate ||?≪(^)||and ||r/(^)||.

Recall Fo(jc) has an asymptotic expansion in (1.7) in a neighborhood of the

origin. Let y(x) be an C00 function such that

*(*) =

{
1, ＼x＼<＼/2,

0, |jc| > 1,

and put Xh ―x(^x)- Then we have

XhV ~h-"w{hpx) J2 ayhPMxy

|y|=l

as h ―>0, that is, near x ― 0. This implies that Xh V takes for / > 0 the form

XtiV = XhQi(kx)+Ri(h;x),

where

Qi(h;x) = tT≪w{hpx) J2 a7hwxv.

|y|=l

Then we have on supp x(^x)

(3.3) ＼Ri(h;x)＼<CRh%＼{K+m+l＼

where Cr is some positive constant. Put

rn(h) = {-vr{HK-z)-＼Xhv(HK-z)-i)n*k,

fi(h)= {-l)l{H{h)-z)-l[XhV(HK-z)-l)l*k.

We obtain by Lemma 3.5 and exponential decay property of </>k,

(3.4) wnm = ＼＼{-＼)＼H{h)- zy＼xy^+2＼ixy^+2^hv)(HK - z)-＼xy^2'

≪x>-(m+vXhvKx>2(m+2＼HK - z)-＼xy-2(m+v. ･･{Xyl^+2Uk＼＼

= o(hlh.
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On the other hand, we have

(3.5)

ri(h)-n(h)
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(-l)'(tf (ft)- z)-＼l - Xh) V(HK - z)"1 V(HK - z)-1･･･ V(HK - zyl0k

+ (-＼)l(Hm-zrlXhV(HK-z)-＼＼-Xh)V{HK-z)-l---V{HK-z)-l(t>k

+ ･･･ + (

Noting | V＼

-l)l(H(h)-z)-lXhV{HK-z)-lxhV---(l-Xk)V{HK-z)-1tk

< Ch a<x>(/c+w+1)v^, the exponential decay property of 4,

11(1-XhKx>~N＼L = 0(hNp) for allN > 0 and Lemma 3.5implies

＼M*)-n{h)＼＼

= ＼＼(-i)l(H(h)-zr＼(i-x,Kx>-N)≪xyNv)

x <xy2N(HK - zy＼xy-2N≪xy-NvKxy3N(HK - zyl

■■･ v(x>{1+1)n(Hk- z)-1<x>-(/+1)Ar<x>(/+1)Ar4||

+ ･･･＼＼(-i)l(HK(h)- z)-＼(xyNXhv)(xyN{HK - zy＼xyN

x (<x>-^F)<x>2"---((i -xhKxyN)≪xy-Nv)<xy-^＼xy^N

x(HK-zy＼xy^N<xy-^Nsk＼＼

= o(tf-la+N≫),

for allN>[{K + m + l)vp] + l.

Hence we conclude that

＼＼rl{h)-rl{h)＼＼= O{^)

so that ||#7(fc)||= O(hip) from (3.4).

Similarlywe have ＼＼tn{h)- fn{h)＼＼= Oih ).

Moreover we put

Then it is seen from (3.3)that

＼＼rH(h)-rH{h)＼＼= o(tP)

holds for all 1 <≪</―1. Since Tn{h)is a polynomial in hp, this yields the

asymptotic expansion of Eua. □
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(2) The case 5/ is degenerate.

We prove Theorem 3.2 in the degenerate case.

Lemma 3.6. Let C(h) be an r x r Hermitian matrix whose elements have

asymptotic expansion in h^ for ft> 0. Then the eigenvalues of C(h) have

asymptotic expansion in for.

Proof. See [11, Lemma 5.21.

Proof of Theorem 3.2 (The degenerate case). Since the multiplicity of ej is

ftij,we can take nij eigenfunctions of HK, {<f>s)r^Ll.We construct rrijeigenfunctions

of HK(h), <f>Sp(h)= U(h)-l<j>Sp for/>e (1,2,..'.,*,) such that ^Sp(h),Pj(h)^q(h)}

―>･8pq for p, q e (1,2,..., m7-) as fe―≫･0. As in the proof of Theorem 3.2 we can

show that the matrices

A(h) = <^(ft),P/(ft)^(*)>, M(ft) = <^(h),H{h)Pj(h)^{h)>

have the asymptotic expansion in h^ for /?, g e (1,2,... ,/w,-),noting A(ft) =

(W + o(^).

Therefore A(h) 1'2M(h)A(h) ' has asymptotic expansion in h^. By Lemma

3.6 we conclude the eigenvalues (E^j^h)) ^ have asymptotic expansion in h^.

Moreover if V{x) ―aow(x) then M(h) =

ej, h (j) < k(j) < hi(j) +mj-L Hence

V(x) ―oqw(x).

A{h)=6pq, that is, h-≪Ek{j){h) =

= 0, (1 < / < oo) in the case

□

4. Proof of Theorem 1.1 and Example

In thissectionwe prove Theorem 1.1.This can be done by using Theorem

2.1 and Theorem 3.2.

Proof of Theorem 1.1. Recall E＼{h) and Eiih) are the two smallest eigen-

values of H(h). Applying Theorem 2.1 and min-max principle, we have

exp{-Ej(h))-fif(h) = O(h^m^A2)i ft^O, 7 = 1,2.

Hence

(4.1) Mh)/Mh) = ^p(-(E2(h) - EM))) + O(h^K+m^2)

= 1 - (E2(h) - Ei(h)) + O(h{K+m)A2), h^O.

This is a generalization of the estimate (1.4).
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Applying Theorem 3.2,we have the asymptotic expansion of E＼{h)and £2^)

such that

Ej(h) ~ ft"

oo
£

k=i

<*** 1,2,

where cJk= Q, (1 < k < 00,7 = 1,2) if V{x) ― oqw{x). Since the ground state of

the Schrodinger operator H{h) is simple, it follows that

(4.2) Ei{h) - E2(h)
~ {ex - e2)h≪

+ (c＼ - <$)ti*fi + (c＼ - c22)ha+2p + 0(fca+3/?),

where c＼― c＼= 0 if V(x) = oq＼v(x).

If k + m = a + ft, where a and fi are the same notations as used in Theorem

3.1, then K-＼-m― ＼/l, so that k + m < a + ($ (resp. K + m> a + fi)if and only if

K + m<＼/2 (resp. ic + m>＼/2). Then from (4.1) and (4.2) we obtain for the

semiclassical eigenvalue splitting of K(h) the expressions in (1.9) and H = c＼-

c＼= 0 if V{x) = aow{x). D

Example. Consider the Kac operator K(h) with potential V(x) =

＼x＼ay/＼+ |x|2, 0 < a < oo. Using a cut-off function /(jc) with 0 < x(x) < 1 which

is supported in {x eRd＼ ＼x＼< 1}, we put Vq{x) = x{x)V(x) and V＼(x) ―

(1 ―x(x))V(x). Then F(x) satisfies the assumptions (1.6) and (1.7) with m =

[a] ― 1, k ― a ― m and p ― a + 1. So we can apply Theorem 2.1. We have from

Theorem 1.1 with Theorem 3.2

Mh)/fii(h) -
: -^-e^ + Oih*),

as h -> 0, where e＼ and e2

a< V2,

(e2-el)^-Eh^ + O(h'JA2), a>V2,

are the firsttwo eigenvalues of the Schrodinger

operator -A+1x1" and a = 2a/(a + 2), 6 = 2/(a + 2).
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