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AN EQUIVALENT CONDITION FOR CONTINUOUS MAPS

OF A CLASS OF CONTINUA TO HAVE ZERO

TOPOLOGICAL ENTROPY

By

Jie Lijt,Jincheng Xiong* and Xiangdong Ye*

Abstract. Extending the famous Bowen-Franks-Misiurewicz's the-

orem concerning the topological entropy of continuous maps of an

interval we prove that continuous maps of a class of continua have

zero topological entropy if and only if the periods of all periodic

points are powers of 2.

§1. Introduction

All maps considered in this paper are continuous. According to the well-

known Bowen-Franks-Misiurewicz's theorem, a map of the unit interval has zero

topological entropy if and only if the periods of allperiodic points of the map are

powers of 2. In [12], the authors shown that the above result is stilltrue when

replacing the unit interval by a Warsaw circle.Since Sarkovskii's theorem holds

for maps of a hereditarilydecomposable chainable continuum (HDCC) [3],it is

natural to ask whether Bowen-Franks-Misiurewicz's theorem can be extended to

maps of this kind of continua. In this paper, we show that maps of a class of

HDCC have zero topological entropy if and only if the periods of all periodic

points are powers of 2. To be more precise we introduce some notations.

By a continuum we mean a connected compact metric space. A sub-

continuum is a subset of a continuum and itis a continuum itself.A continuum is

decomposable (indecomposable) ifit can (cannot) be written as the union of two of

its proper subcontinua. A continuum is hereditarily decomposable if each of its

nondegenerate subcontinuum is decomposable. X is said to be chainable or arc-

like if for each given e > 0 there exists a continuous map f£from X onto [0,1]
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such that diam(fE l(t)) < s for each te [0,1]. A continuum is Suslinean if each

collection of its pairwise disjoint nondegenerate subcontinua is countable.

Let X be a continuum and A c X be closed. Then there is a subcontinuum

Xo of X containing A such that no proper subcontinuum of Xo contains A ([6]),

and Xo willbe called irreduciblewith respect to A. Particularly,if Xis irreducible

with respect to {a, b} with a ^ b e X, then X is called an irreducible continuum.

Let X be a continuum which is hereditarily decomposable irreducible with

respect to {a,b}. Then there is a map g : X ―>[0,1] such that g(a) = 0, g(b) = 1

and gT1^) is a maximal nowhere dense subcontinuum for each re [0,1] ([2]).

The map g is called the Kuratowski function of X. g~~l(t)is called a /ayer of X for

each fe [a,b}; g~l{0) and gr^l) are called end layers of X and the others are

called interiorlayers. For any x, y e X, by [x, _y]we denote the subcontinuum

irreducible with respect to {x, y}; and by (x, _y) we denote [jc,>>] minus its end

layers. When X is chainable, [x,y] will be unique ([7]).

Let X be a HDCC and So = {X}. For an ordinal a = /?+ 1, 0a is the set

consisting of degenerate elements of Sp and the layers of the nondegenerate

elements of Sip, and for a limit ordinal a, S>a is the set consisting of the

intersections f]p<a Dp, where Dp e Sip. S>a will be called an oc-thlayer of X. By

Si^D we denote the set of nondegenerate elements of S>a,and by Da(x) we denote

the element of S>a containing x for each x e X. It was proved in [5] that there is a

countable ordinal x such that DT(x) = {x} for each x e X. The minimal such x is

said to be the Order of X and will be denoted by Order(X). Note that we write

Sa(X) and S^D(X) instead of S>a and Si^D respectively when emphasizing the

dependence of them on X.

Let C(X, X) be the collectionsof all continuous maps on a compact metric

space X and coq be the firstlimit ordinal. Moreover, let

Jfao+i = {X|X is a HDCC and satisfiesOrder(X) =co0+u(a) and (b)}.

(a) for each n e N, S> {X) is finite.

(b) S>^D(X) is countable and each of its element is homeomorphic to the

unit interval [0,1].

and for each ordinal a < coo let

jra = {X|X is a HDCC and satisfiesOrder(X) = a and the above (a)}.

Main Result. (Theorem 4.4). For each X e Ua<≫o+i ^ and f E C(X>X)'

/ has zero topological entropy if and only if the periods of allperiodic points off

are powers of 2.
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Remark, (i) If q>e C(/, /) is a piecewise monotone continuous map with

zero topological entropy then the inverse limit space lim{/, <p)s (Ja<co
+1 J^a.
([10]).

(ii) In fact, the "only if" part of the main result holds for any X which is a

HDCC (see theorem 4.4).

§ 2. Preliminary

According to [3], a total order "-<" can be defined on a HDCC X such that

if a,b,c e X and a -< c -< b then c e [a,b]. The total order is not unique on X

([3]), but in the following we will assume that a total order -< on X was given.

Let A,Bc X. We say A -< B(A y B) if a -< b(a >- b) for any a e A and b e B;

say A ^ B if a -< B or a e B for any a e
^4
(/I ^ 2? is defined similarly).

For / g C(Jf, X) we define /° = id and inductively /" = / o fn~x for n e TV.

An x e X is a periodic point of / of period n if /"(x) = x and /'(jc) # x for

1 < / < ≪ ― 1. An jc X is a recurrent point of / if for any e > 0, there exists

w e TV such that d(fn(x),x) < e, where d is a metric of X. An x e X is a ntw-

wandering point of / if for any non-empty neighbourhood U of x there exists

fte TV such that fn(U)C＼U # 0. The collections of periodic points, recurrent

points and non-wandering points of/will be denoted by P{f), R(f) and Q(/)

respectively.

For xeX, O(x,f) = {x,/(x),/2(x),...} is called the orbit of x under/.

The set of accumulation points of O(x,f), denoted by co(x,f), is called

m-limit set of x under / Note that we use A ―>■5 to denote /(^4) => 5, where

feC(X,X) and ^5cl.

We use /?(/) to denote the topological entropy of feC(X,X) (for the

definition and the basic properties of topological entropy see [1] or [8]). Let

X = Il^iO, 1}. For a = (alOc2■■･),B= (fafi2 ･■･) e X, d(aj) = X"^-') ■|a,-- fi,＼

is a metric on X, and the sum a +/? = (#102 ･･ ･) is defined by: if ai + /?i < 2 then

01 = ai +/?i; if ai +^j > 2 then #i = ai +^! ― 2 and we carry 1 to the next

position, and so on. Let S : X ―>･X be defined by <5(a) = a + (100 ･･ ･) for a e X. It

is easy to prove that co(ol,S) = X for any a g X and 8 has zero topological entropy.

We shall call (X,<5) an adding machine (see [8]).

We need some known theorems and simple lemmas for the proof of the main

result.

Theorem A. Let I be a closed interval and f : I ―>■/ be continuous. Then f

has zero topological entropy if and only if the periods of all periodic points of f are

powers of 2.



542 Jie Li),Jincheng Xiong and Xiangdong Ye

See [1],[4],[11] and [13] for the proof of Theorem A.

Theorem B. Let Y be a hereditarilydecomposable chainable continuum and

let X be a subcontinuum of Y. If m <＼n, f is a continuous map of X into Y and f

has a periodic point of period n, then f has a periodic point of period m.

Here, " -o " means Sarkovskii'sorder on the set of all natural numbers.

See [3] for the proof of Theorem B.

Theorem C. Let X be a compact metric space and feC(X, X). Then

h{f) = swpX R{f)h(f＼m{xf)).

Theorem C is a simple corollary of Variational Principle (see [8]).See Lemma

2.1 and Lemma 2.4 of [3] for the proofs of the Lemma 2.1 and Lemma 2.2

respectively.

Lemma 2.1. Let X and Y be HDCC, f : X ―>Y be a continuoussurjection,

A, B be the end layers of X and C be an end layer of Y. If thereis an a e A

such that f(a) e C and f(X - (A U B)) H C = 0, then f(A) =>C.

Lemma 2.2. Let X and Y be HDCC, f : X ―> Y be a continuous surjection,

A, B be the end layers of X and a e A, b e B, ceY.Ifce (f(a),f(b)), then either

there exists te(a,b) such that f(t) = c or ＼f(a),f(b)]<= f(A)r＼f(B).

Lemma 2.3 [9]. Let X be a compact metric space, T e C(X,X) and (E,S) be

the adding machine. If there is a continuous surjection (p: X ―■>2, such that

(po T ―3 o(p and A = {a e S : Card{wrx (a)) > 2} w countable, then h(T) = 0.

Lemma 2.4. Let X be a HDCC and f e C(X, X). If there is a periodic point

of f of period 3 then there exist disjointnondegenerate subcontinua J＼,J2 and

ge{fJ2J3} such that g2(Ji) ng2(J2) => A U/2.

See [3, p. 184] for the proof of Lemma 2.4.

Lemma 2.5. Let I be a connected subset of the real line and f :I ―>/ be

continuous. Then (i) R(f) = P{f)', and (ii)If the periods of allperiodic points of

f are powers of 2 then co(x,f) is a compact set for any xeP(f).
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The claim (i)in the above Lemma is a known result(see [1] for a proof), and

(ii)was proved in [12] when / = (0,1] and the method can be applied to prove

the Lemma when / = (0,1).

§3. Some Elementary Properties

To prove the main result,we willsupply severallemmas in thissection.

Lemma 3.1. Let X be a HDCC and g : X ―>[0,1] be a Kuratowski function

of X. If there are a,be [0,1] such that for any te (a,b),g~l(t) is a degenerate

element of <2)＼(X),then g＼g-i^ab^ : g~l((a,b))^> (a,b) is a homeomorphism.

Moreover, if L is a path connected component of X then L is homeomorphic to a

connected subset of the real line.

Proof. It is easy to check that g＼g-＼^at,))is a continuous bijection and an

open map. Hence g＼g-＼((a^))'■9~l((a,b))― (a,b) is a homeomorphism.

Let L be a path connected component of X, then the subcontinuum L of X is

a HDCC ([6]).Assume g :L ― [0,1] be a Kuratowski function of L. Then for

each te (0,1), g~l(t)is a degenerate element of L by the path connectivity of L.

Thus L - (g~l(0)＼Jg~x(＼))is homeomorphic to (0,1). Therefore, L is homeo-

morphic to one of (0,1], [0,1] and (0,1). □

Lemma 3.2. Let X e Jf a (a < a>0 + 1) ≪≪<^̂ /t be the collection of path

connected components of ＼j^D ~＼JRk+＼>(k E NlJ W). Then for any C e &k+l,

y.
0((J^()UC

is an open subset of X.

Proof. It is clear that (Jif0 = X - ＼JR"D is open in X. For any C＼e &u

there is a D＼ e <3)^D such that C＼c D＼. By considering the Kuratowski function

of D＼, we have that B＼ = D＼ ― C＼is closed in D＼, and thus B＼ is closed in X.

Since [JS>^D is the union of finitelymany of pairwise disjoint subcontinua,

there is an open neighbourhood Wof D＼ in X such that WC＼(＼J^D -D＼) = 0.

Hence ((J^0)UDi = ((J^o)U ^ is open in X, and

(U^o)UCi = ((U^o)llZ)i)-*i

is open in X.

Suppose U,-=0(U^/) U Q+i is open in X for any Q+i g^+i- By a dis-

cussion similar to the above, it is easy to check that (J/=o ([J^i) U Q+2 is open

in X for any Q+2 e ^jt+2- D
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Lemma 3.3. Suppose that X e Jfa (a < coo + 1). Then (i) X is the union of

finitelymany of nondegenerate path connected components of X when a e N; (ii)X

is the union of countably many of nondegenerate path connected components of X

and a totallydisconnected set when a e {coo,coo+1}.

Proof. It follows directly from the definition of Jfa (a < coo + 1). □

Lemma 3.4. Assume X e 2tf{x(a < co0 + 1), / e C(X,X) and the periods of

all periodic points off are powers 2. Let W be a subcontinuum of X, D$ -< D＼

-< ■■■-< Dn be all nondegenerate layers of W, C＼ -< Ci -< ■■■~<Cn be all path

connected components of W ― [J"=0Dj and Gt be the path connected components

of W with Gi dC,- (/= 1,2,...,≪.). If there exist a e Do and b e Dn such that

[f{a)J(b)]=W, then

p:{＼, 2,. ..,/!}->{!, 2,. ..,#!} (p(i)=j & f(Q)^Gj)

is a permutation.

Proof. Since the periods of allperiodic points of/are powers of 2, /(Do) H

f(Dn) 7$ W. By Lemma 2.2, for any xeW - (Do U /),) there exists fe W -

(D0UDn) such that f(t) = x. Let jq e Ci and *i£ W - (D0UDn) with /(rj) =

jci.Then there exists an e-neighborhood UE(x＼) of x＼in fFwith C/£(xi)<= Ci and

a ^-neighborhood V§{t＼)of t＼in ^Fsuch that /(Kj(?i)) c C/e(xi).Since (J"=1A is

nowhere dense in IF, there exists t[e F^(/i)n (y"=1C,-) such that f{t[) e t/£(xi)

<= Q. Assume ?{ e C,-(i).Then /(C,-(i))<= Gj. By the same argument we get that

there are j{i) such that f(Cj^) <=:Gt for / = 2,3,...,≪.

If there are j{i)*j'{i) such that f{Cm)＼Jf{Cr{())<=Gi, then f{W) =

/((J;.C,-)g (J*G<-= ^' as /(c0 is Path connected and Gk U G/ is not if k # /.

This contradicts the assumption that /([≪,&])=> fF. Thus if f(Cjn)) U/(C-/(a) <=

Gi then j(i) = /(/). That is, p l is a permutation, so is /≫ □

In the rest of the paper, for each ordinal a < coq + 1 and each X e Jf a let

Se{ = Set{X) = {L:L is a path connected component of ＼J2)?D - (J^},

(3.1)

where 0 < / < min{a,coo} and <&fD is the set consisting of all nondegenerate z-th

layers of X. Furthermore, let

$£

― ＼Ji<m^[
(3.2)
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Lemma 3.5. Assume Ie/a (a e {a>o,coo + 1}), / e C(X, X) and the periods

of all periodic points off are powers of 2. If x e R(f) such that (i) co(x,f) is

infinite;(ii) co(xj) D {[j^) = 0; (iii) DJ>co{x,f) for each D e @ ＼ then

f(W) = W, where W a X is the subcontinuum irreducible with respect to co(x,f).

Proof. It is obvious that /(W) => W, so we need only to prove that /(W)

c W. Let Do -< D＼ -<■■■-<Dn be all nondegenerate layers of W, C＼ -< C2

-<■■･ -< Cn be all path connected components of W - (J"=0A and G,- be the

path connected components of W with G( => Q (/= 1,2,...,≪.).Thus (J"=o Dt =>

co(x,/) since co(x,/) n ((JjSP) = 0.

Claim. There are meN, a e Do and b e Dn such that fm(a)eDo and

Since D, (0 < / < n) are disjoint and closed subset in X and x e R(f), for

any given aR e Do flco(x,/) there is an mo e N such that fm{ao) e Dq. Fur-

thermore, for any b e Dnf)O(x,f) there are m,reN such that m = rmo and

fm{b)eDn as b e R(f) = R(fm°). If fm(ao)eDo, then obviously the Claim is

true. If /w(a0) £A), then there exists 2 < j < r such that /*m°Oo) e IF - Do.

Let s be the minimum integer with fsm°(ao)e W - Do. As Do is an end layer

of W, fm°(D0) 3 [/WoW,rwo(≪o)] =/>o, and hence fm(D0) =/""(Do) => Do.

Thus, there is an a e Do such that /w(a) eD0. This ends the proof of Claim.

Replacing / in Lemma 3.4 by fm, we have that

/>:{1,2,...,#!}-{1,2,...,≫} (/≫(≪)=y <* fm(Q)^Gj)

is a permutation, i.e^ (JL /"(Q) c U^G,-. Hence /w(^) =/l"((Ji1C/) =

ULi fm(Ci) c U≫"=î ' c ^ since fm is a closed map. Thus, we have that W c

/(JT) c/2(j^) <= ... ^fm(W) a W. That is, f(W)= W. □

§4. The Proof of Main Result

In this section we will prove the main result of the paper. In order to

show that for any x e R{f) /*(/L(x,/))= 0 providing X e M{x (a < coo + 1), / e

C(X, X) and the periods of all periodic points of/ are powers 2, we will consider

two cases:

Case 1. xeR(f), O(x,f)n(＼J&) # 0, where jgfis defined by (3.2).

Case 2. x e R{f), 0{xJ) n (＼J^) = 0.
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Lemma 4.1. Assume that X e Ua^o+i*^"' feC(X,X) and l^e Peri°ds

of all periodic points off are powers of 2. Then for each x e R(f) with 0(x, f) D

(U^)/0, Kf＼a{xj)) = o.

Proof. If O(x,f) is finite,it is clear that co(x,f) is periodic orbit and

h(f＼a>(xf))=Q' Hence we assume that O(x,f) is infinite. Let k = min{n e

NU{0}:O{x,f)n ((]&,) #0} and Coe&k with O(x,f)f)Co^0. Let C

be the path connected component of X containing Q. As xe R(f) and

(J.Jq ((Jiff) U Co is open in X (Lemma 3.2), there exists meN such that

fm(C) cz C.

Since C is homeomorphic to a connected subset of the realline (Lemma 3.1),

the periods of all periodic points of fm＼c are powers of 2 and O(x,f)f) Cq a

R(fm＼c) czP(fm＼c) (Lemma 2.5). Then for any yeO(xJ)nC0 we have that

co(y,fm) is a compact subset of C by Lemma 2.5. Let J =[a,b] be the sub-

continuum of X irreducible with respect to co(y,fm). Then / is a compact subset

of C. Let r : C ―≫/ be the retraction defined by: r＼,a
^ =
id; r(x) = a when x e C

and x ■<a; r{x) = b when x e C and x >- b. It is clear that r o /'"ly e C(/, /) and

that P(ro fm＼j) cz P(f). Thus, the periods of all periodic points of ro/m|; are

powers of 2. By Theorem A we have that h(rofm＼j) = 0. Hence h(fm＼co(yfm)) =

Kr°fm＼jnm(y,rof%))^Kr°fm＼j)=0.

As fm(f'(C)) a f＼C), by a similar argument we can show that

h(fm＼co{f'{y) fm)) = 0 ^or eacn 1 < ^'< w ― 1. Hence

*(/U≫./>) =
^*(/"U./))

= ^
0 _,

*(/"U/-w./-)) = ≪･ □

Lemma 4.2. Let X e 2tf{＼(a e {coq,qjq+ 1}), f e C(X, X) and the periods of

all periodic points of f be powers of 2. For any given xe R(f), if O(x,f)f)

{＼Jy) = 0 and x -<f(x), then there are closed subsets Mq and M＼ of X such

that: (i) Mo -< Mx; (ii) Mo ^ co{x,f2) and Mx zd co(f{x),f2).

Proof. Let W be the subcontinuum irreducible with respect to co(x.f),

Do -< D＼ -< ■■■-< Dn be all nondegenerate layers of W, C＼ -< C2 -< ■■■-< Cn be all

path connected components of W ― [j "=0D{ and Gj be the path connected

components of W with Gt 3 Q (i = 1,2,...,≪.). It is easy to check that Gt c

(A-iUC/UA). By Lemma 3.5,

/;:{1,2,...,/i}->{1,2,...,/i} (p(i) = j ^ f(Q) cz Gj)

is a permutation. We complete the proof by considering the following two cases.
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Case 1. n = 1. Let Mo = Do and M＼ = D＼.Then (i)holds. Since co(x,f)D

d=0, f(Mjf)cQ(x,f)) czMiUMj (/^ ye {0,1}). In order to show (ii),we

need only to prove that /(M/flco(x,/)) DM,- = 0 for / = 0,1. Assume that

f(Mof)co(x,f))nM0 #0. Note that /(d) c d and f{W)=W. Then, by

Lemma 2.1,f2(Mo)f]f2(M＼) =>MoUMj. ft contradictsto our assumption that

the periods of all periodic points of / are powers of 2. This proves that

/(Monft)(x,/))nMo = 0. By the same reasoning f{M＼ f)co(x,f))f)M＼= 0.

Hence the Lemma is trueif n = 1.

Case 2. n > 1.By the minimum propertyof co(x,f),p(l) > 1 and p(n) < n.

Let / = max{i＼p(k)> k when k < i} and r = min{i＼p(k)< k when k > i). It is

obvious that either/+l=r or /+1 <r.

Subcase 2.1. l+＼=r. Let Aij+＼ = Q fl C/+i. It is obvious that £)/3

A/+i # 0- Firstly, we show that f(Au+l) a Al)l+i and Au+i D co(x,/) = 0.

If there exists x e A/j+i such that f(x)^Aij+＼, then there exists an open

neighborhood U of x in W such that f(U) -< Aij+＼. Hence, by the nowhere

density of Aij+＼ in W, there exists x' e Ci such that f(x') -< A[j+＼. It implies that

p(l)<l, a contradiction. Similarly, f(x)yAij+i dose not hold for any jce

A[j+i. By the minimum property of co(x,f), co(x,f)r＼Aij+＼ = 0.

Secondly, we show that p(l ―i) = r + i and /?(r + i) = I ―i (0 < i < I) and

≪ = 2/. Let ^I-/+i = C/nC/+1 (0</<n-l). Since f(AiJ+l)^Gp{i)f)Gp{i+l),

we have / < p(r) < p(l) < r, i.e., p(r) = / and p{l) = r. Suppose that for 0 < / <

k < I we have p(l ―i) = r + / and /?(r + /) = / ― j. Then, on one hand, r + k <

p(l ―k ― 1) by /? being a permutation; on the other hand, p(l ― k ― ＼)<r + k +

1 by the fact that f(Qik-i) n/(C/_*) => f{A,.k^i-k) # 0. Hence p(l - k - 1)

= r + A:+ 1. Similarly, we have that p(r + k+＼)=r ―k― ＼.Note the facts that

p is a permutation, / = Card{Cj＼p(i) > 1} and n ―I = GjrJ{Q|/?(z) < r}. Then

/ <n-l <l, that is, ≪= 2/.

Finally, we give the structure of Mo and M＼. If Aij+＼ = Di, let Mq = IJ;</A

and M＼ ― (J;>/i)/-Then it is easy to check that (i) and (ii)hold. If Aij+i ^ D＼,

since co(x,/) and Aij+i are disjoint closed subsets, there exists an open set U

in W such that U zd Au+l and ur＼co(x,f) = 0. Set Dj = Dl - (C/U C/+i) and

D'l= Di-{UVCi). Then Mo

the subsetswe need.

:=(Uy</A)UD; and Mx := {[) Dt) UDf are

Subcase 2.2. / + 1 < r. Let V = UL/+iC'- We wi0 firstshow that f(v)

a V and co(x,f) C＼V = 0. In fact, since V is connected, p(l + 1) < /+ 1 and
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p{r- 1) > r- 1, we have />({/+ 1,/ + 2,...,r- 1}) =>{/ + 1,/ + 2,..., r- 1}. As

p is a permutation, /?({/+1,/ +2,... ,r-1}) = {/+l,/ + 2,...,r-1}, and

hence f(V) c F. By the minimum property of co(x,/), co(x,/) fl V = 0. Let

Mo = Ui</^' anc^ -^i = U/>r^'- Then (i) holds. In order to show (ii),it is

sufficientto prove that:

{1,2,...,/} £{r,r+l,...,*}. (4.1)

p

Since p is a permutation and p(l) > I, then p(l) > r. As /(C/)n/(F)=)

/(^/j+i) ^ 0, we have p(l) < r, and hence p(l) = r. Similarly, ^(r) = /. By

an induction argument similar to paragraph 2 in Subcase 2.1, we can show

that p(l -i) = r+i and p(r + /)=/-/ (0 < /< /), that is, (4.1) holds. □

Lemma 4.3. Let X e Jfa (a e {ojq,coo + 1}), feC(X, X) and the periods

of allperiodic points off be powers of 2. If x e R(f) and 0(x, f) f)((Ji?) =0,

then for each seN and i＼,h,･･
■,
4 e {0,1} ?Aere exw? closed subset Mili2...isof

X such that

(i) co{fk{x)Jv) cz Mhh..,s, where k = h + i22 +■■■+ &>-*.

(ii) Mhh...is -< Mixh_Ts or Mhh...is >- M^...^, where is+Ts= 1.

(iii) Mhi2...h 3 Mhh...is+x{JMhir,―.

(iv) For any y― (?ii2 -･■)e S, f]s>l Mixil...^is contained in some element of

th-coo layer of X, that is, there exists A e @mo such that f＼>i ^-hh-U ^ ^.

Proof. As for each s e N, co(x,f) = ＼JkJ0 co(fk(x),f2S), (i)-(iii) are direct

consequence of Lemma 4.2. In order to prove (iv), it is sufficient to show that if

for an me N there exists D e <2>%D such that f]s>l Mhil...isc D then there exists

D' &%+! such that f]s>{ Mi]h...h c D'. Suppose, for some meNU{0}, Mh cz

D 2%D and Mh <£D1 for any D' e &
＼-
Then there exists keN such that the

number of nondegenerate layers of D is less than 2k. By the way that M/,,2 is

obtained (see Lemma 4.2), we know that the number of nondegenerate layers of

D which intersect Mili2 is less than 2k~l. Inductively, for each ＼<j<k the

number of nondegenerate layers of D which intersect M;,...^.is less than 2k+l~J.

Hence Mi{i2...ikintersects only one nondegenerate layer of D, i.e., there exists D' e

9 x such that Mhh...ik cz D'. Hence H,>i Mhh...is cz D'. D

Theorem 4.4. For each X e Ua<≪0+i ^ and f e C(X'Z)' h^ = ° & and

only if the periods of all periodic points off are powers of 2.
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Proof. Suppose / has a periodic point whose period is not a power of 2. By

theorem B, there exists me N, such that fm has a periodic point of period 3. By

Lemma 2.4, there are disjoint nondegenerate subcontinua J＼ and J2 of X, and

g e {fm, f2m J3m} such that Jx U/2 c g2{J}) ng2(J2), and topological entropy

h(g2) > log 2, hence /?(/) > 0. Thus, if h(f) = 0 then the periods of all periodic

points of / are powers of 2.

Now we suppose that the periods of all periodic points of/are powers 2 and

want to prove that h(f) = 0. By theorem C, we need only to prove that for any

xeR(f), h(f＼w{xJ)) = 0. If O(x,f)n(＼JJ?)*0, then h{f＼m{xf)) = 0 by

Lemma 4.1. Hence we assume 0(x,/) fl((Jif) = 0 and co(x,f) is an infinite

set. By Lemma 4.3, for each s e N and i＼,12,
■■■,
is£{0,1} there exists a closed

subset M,li2...,-5of X with properties listed in the Lemma. Define (p : co(x,f) ―≫X

such that (p{y) = y if y e f]s>l Mhh...is and y = {hi2 ■■■).

It is easy to check that (p is a continuous surjection and satisfies that

<p(f(y)) =${<P{y))- By (iv) of Lemma 4.3, {(D(xJ)J＼m{xf)) is topologically

conjugate to the adding machine (S,^) if Order(X) = coo, or (co{x,f),f＼m^x^)

is semi-conjugate to the adding machine (£,£>)if Order(X) = cqq + 1. As ^^° is

countable, by lemma 2.3, h(fm,x
^) =
0. □

Let / = [0,1] and <pe C(I,I). The inverselimit space lim{7, <p}is the subspace

of n?V defined by '

lim{/,p} = {x = {xix2 ■■･) e 11",/ :(p{xi+x)= xt,i e N}.

The following corollary shows that the class of HDCC is a larger class in

some sense.

Corollary 4.5. Let <peC(I,I) be a piecewise monotone continuous map

with zero topological entropy and M = lim{/, (p).If f e C(M,M) then h(f) = 0

// and only if the periods of all periodic points of f are powers of 2.

Proof. By [10], MeU^/, □

In the end, we would like to ask the following question: on which hereditarily

decomposable chainable continua the Bowen-Franks-Misiurewicz's theorem

holds? Our conjecture is:

Conjecture. Assume that X is a Suslinean chainable continuum and / e

C(X,X). Then /?(/) = 0 if and only if the periods of all periodic points of/are

powers of 2.
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