AN EQUIVALENT CONDITION FOR CONTINUOUS MAPS OF A CLASS OF CONTINUA TO HAVE ZERO TOPOLOGICAL ENTROPY

By

Jie Lü[†], Jincheng Xiong[‡] and Xiangdong YE*

Abstract. Extending the famous Bowen-Franks-Misiurewicz's theorem concerning the topological entropy of continuous maps of an interval we prove that continuous maps of a class of continua have zero topological entropy if and only if the periods of all periodic points are powers of 2.

§ 1. Introduction

All maps considered in this paper are continuous. According to the well-known Bowen-Franks-Misiurewicz's theorem, a map of the unit interval has zero topological entropy if and only if the periods of all periodic points of the map are powers of 2. In [12], the authors shown that the above result is still true when replacing the unit interval by a Warsaw circle. Since Sarkovskii's theorem holds for maps of a hereditarily decomposable chainable continuum (HDCC) [3], it is natural to ask whether Bowen-Franks-Misiurewicz's theorem can be extended to maps of this kind of continua. In this paper, we show that maps of a class of HDCC have zero topological entropy if and only if the periods of all periodic points are powers of 2. To be more precise we introduce some notations.

By a *continuum* we mean a connected compact metric space. A *sub-continuum* is a subset of a continuum and it is a continuum itself. A continuum is *decomposable* (*indecomposable*) if it can (cannot) be written as the union of two of its proper subcontinua. A continuum is *hereditarily decomposable* if each of its nondegenerate subcontinuum is decomposable. X is said to be *chainable or arc-like* if for each given $\varepsilon > 0$ there exists a continuous map f_{ε} from X onto [0,1]

Project supported by NNSF of China. 1991 Mathematics Subject Classification 58F20, 54F20, 54C20. Received September 1, 1998 Revised June 4, 1999 such that $diam(f_{\varepsilon}^{-1}(t)) < \varepsilon$ for each $t \in [0, 1]$. A continuum is *Suslinean* if each collection of its pairwise disjoint nondegenerate subcontinua is countable.

Let X be a continuum and $A \subset X$ be closed. Then there is a subcontinuum X_0 of X containing A such that no proper subcontinuum of X_0 contains A ([6]), and X_0 will be called *irreducible* with respect to A. Particularly, if X is irreducible with respect to $\{a,b\}$ with $a \neq b \in X$, then X is called an *irreducible continuum*.

Let X be a continuum which is hereditarily decomposable irreducible with respect to $\{a,b\}$. Then there is a map $g:X\to [0,1]$ such that g(a)=0, g(b)=1 and $g^{-1}(t)$ is a maximal nowhere dense subcontinuum for each $t\in [0,1]$ ([2]). The map g is called the *Kuratowski function* of X. $g^{-1}(t)$ is called a *layer* of X for each $t\in [a,b]$; $g^{-1}(0)$ and $g^{-1}(1)$ are called *end layers* of X and the others are called *interior layers*. For any $x,y\in X$, by [x,y] we denote the subcontinuum irreducible with respect to $\{x,y\}$; and by (x,y) we denote [x,y] minus its end layers. When X is chainable, [x,y] will be unique ([7]).

Let X be a HDCC and $\mathscr{D}_0 = \{X\}$. For an ordinal $\alpha = \beta + 1$, \mathscr{D}_{α} is the set consisting of degenerate elements of \mathscr{D}_{β} and the layers of the nondegenerate elements of \mathscr{D}_{β} , and for a limit ordinal α , \mathscr{D}_{α} is the set consisting of the intersections $\bigcap_{\beta < \alpha} D_{\beta}$, where $D_{\beta} \in \mathscr{D}_{\beta}$. \mathscr{D}_{α} will be called an α -th layer of X. By $\mathscr{D}_{\alpha}^{ND}$ we denote the set of nondegenerate elements of \mathscr{D}_{α} , and by $D_{\alpha}(x)$ we denote the element of \mathscr{D}_{α} containing x for each $x \in X$. It was proved in [5] that there is a countable ordinal τ such that $D_{\tau}(x) = \{x\}$ for each $x \in X$. The minimal such τ is said to be the *Order* of X and will be denoted by Order(X). Note that we write $\mathscr{D}_{\alpha}(X)$ and $\mathscr{D}_{\alpha}^{ND}(X)$ instead of \mathscr{D}_{α} and $\mathscr{D}_{\alpha}^{ND}$ respectively when emphasizing the dependence of them on X.

Let C(X,X) be the collections of all continuous maps on a compact metric space X and ω_0 be the first limit ordinal. Moreover, let

```
\mathcal{H}_{\omega_0+1} = \{X | X \text{ is a HDCC and satisfies } Order(X) = \omega_{0+1}, (a) \text{ and } (b)\}.
```

- (a) for each $n \in \mathbb{N}$, $\mathcal{D}_n^{ND}(X)$ is finite.
- (b) $\mathscr{D}^{ND}_{\omega_0}(X)$ is countable and each of its element is homeomorphic to the unit interval [0,1].

and for each ordinal $\alpha \leq \omega_0$ let

```
\mathcal{H}_{\alpha} = \{X | X \text{ is a HDCC and satisfies } Order(X) = \alpha \text{ and the above } (a)\}.
```

MAIN RESULT. (Theorem 4.4). For each $X \in \bigcup_{\alpha \leq \omega_0+1} \mathcal{H}_{\alpha}$ and $f \in C(X,X)$, f has zero topological entropy if and only if the periods of all periodic points of f are powers of 2.

Remark. (i) If $\varphi \in C(I,I)$ is a piecewise monotone continuous map with zero topological entropy then the inverse limit space $\varprojlim \{I,\varphi\} \in \bigcup_{\alpha \leq \omega_0+1} \mathscr{H}_{\alpha}$ ([10]).

(ii) In fact, the "only if" part of the main result holds for any X which is a HDCC (see theorem 4.4).

§ 2. Preliminary

According to [3], a total order " \prec " can be defined on a HDCC X such that if $a,b,c\in X$ and $a\prec c\prec b$ then $c\in [a,b]$. The total order is not unique on X ([3]), but in the following we will assume that a total order \prec on X was given. Let $A,B\subset X$. We say $A\prec B(A\succ B)$ if $a\prec b(a\succ b)$ for any $a\in A$ and $b\in B$; say $A\preceq B$ if $a\prec B$ or $a\in B$ for any $a\in A$ ($A\succeq B$ is defined similarly).

For $f \in C(X,X)$ we define $f^0 = id$ and inductively $f^n = f \circ f^{n-1}$ for $n \in N$. An $x \in X$ is a *periodic point* of f of period f if $f^n(x) = x$ and $f^i(x) \neq x$ for $1 \le i \le n-1$. An $x \in X$ is a *recurrent point* of f if for any $\varepsilon > 0$, there exists $f \in N$ such that $f^n(x) = x$ where $f^n(x) = x$ is a *non-wandering point* of $f^n(x) = x$ if for any non-empty neighbourhood $f^n(x) = x$ is a *non-wandering point* of $f^n(x) = x$. The collections of periodic points, recurrent points and non-wandering points of $f^n(x) = x$ will be denoted by $f^n(x) = x$ and $f^n(x) = x$ and $f^n(x) = x$ for $f^n(x) = x$ is a non-wandering points of $f^n(x) = x$ for $f^n(x) = x$ is a non-wandering point of $f^n(x) = x$ for $f^$

For $x \in X$, $O(x, f) = \{x, f(x), f^2(x), \ldots\}$ is called the *orbit* of x under f. The set of accumulation points of O(x, f), denoted by $\omega(x, f)$, is called ω -limit set of x under f. Note that we use $A \xrightarrow{f} B$ to denote $f(A) \supset B$, where $f \in C(X, X)$ and $A, B \subset X$.

We use h(f) to denote the topological entropy of $f \in C(X,X)$ (for the definition and the basic properties of topological entropy see [1] or [8]). Let $\Sigma = \prod_{i=1}^{\infty} \{0,1\}$. For $\alpha = (\alpha_1 \alpha_2 \cdots)$, $\beta = (\beta_1 \beta_2 \cdots) \in \Sigma$, $d(\alpha,\beta) = \sum_{i=1}^{\infty} (2^{-i}) \cdot |\alpha_i - \beta_i|$ is a metric on Σ , and the sum $\alpha + \beta = (g_1 g_2 \cdots)$ is defined by: if $\alpha_1 + \beta_1 < 2$ then $g_1 = \alpha_1 + \beta_1$; if $\alpha_1 + \beta_1 \geq 2$ then $g_1 = \alpha_1 + \beta_1 - 2$ and we carry 1 to the next position, and so on. Let $\delta : \Sigma \to \Sigma$ be defined by $\delta(\alpha) = \alpha + (100 \cdots)$ for $\alpha \in \Sigma$. It is easy to prove that $\omega(\alpha,\delta) = \Sigma$ for any $\alpha \in \Sigma$ and δ has zero topological entropy. We shall call (Σ,δ) an *adding machine* (see [8]).

We need some known theorems and simple lemmas for the proof of the main result.

THEOREM A. Let I be a closed interval and $f: I \to I$ be continuous. Then f has zero topological entropy if and only if the periods of all periodic points of f are powers of 2.

See [1], [4], [11] and [13] for the proof of Theorem A.

THEOREM B. Let Y be a hereditarily decomposable chainable continuum and let X be a subcontinuum of Y. If $m \triangleleft n$, f is a continuous map of X into Y and f has a periodic point of period n, then f has a periodic point of period m.

Here, "⊲" means Sarkovskii's order on the set of all natural numbers. See [3] for the proof of Theorem B.

THEOREM C. Let X be a compact metric space and $f \in C(X,X)$. Then $h(f) = \sup_{x \in R(f)} h(f|_{\omega(x,f)})$.

Theorem C is a simple corollary of Variational Principle (see [8]). See Lemma 2.1 and Lemma 2.4 of [3] for the proofs of the Lemma 2.1 and Lemma 2.2 respectively.

- LEMMA 2.1. Let X and Y be HDCC, $f: X \to Y$ be a continuous surjection, A, B be the end layers of X and C be an end layer of Y. If there is an $a \in A$ such that $f(a) \in C$ and $f(X (A \cup B)) \cap C = \emptyset$, then $f(A) \supset C$.
- LEMMA 2.2. Let X and Y be HDCC, $f: X \to Y$ be a continuous surjection, A, B be the end layers of X and $a \in A$, $b \in B$, $c \in Y$. If $c \in (f(a), f(b))$, then either there exists $t \in (a,b)$ such that f(t) = c or $[f(a), f(b)] \subset f(A) \cap f(B)$.
- Lemma 2.3 [9]. Let X be a compact metric space, $T \in C(X,X)$ and (Σ,δ) be the adding machine. If there is a continuous surjection $\varphi: X \to \Sigma$, such that $\varphi \circ T = \delta \circ \varphi$ and $A = \{\alpha \in \Sigma : Card(\varphi^{-1}(\alpha)) \ge 2\}$ is countable, then h(T) = 0.
- LEMMA 2.4. Let X be a HDCC and $f \in C(X,X)$. If there is a periodic point of f of period 3 then there exist disjoint nondegenerate subcontinua J_1, J_2 and $g \in \{f, f^2, f^3\}$ such that $g^2(J_1) \cap g^2(J_2) \supset J_1 \cup J_2$.
 - See [3, p. 184] for the proof of Lemma 2.4.
- LEMMA 2.5. Let I be a connected subset of the real line and $f: I \to I$ be continuous. Then (i) $\overline{R(f)} = \overline{P(f)}$; and (ii) If the periods of all periodic points of f are powers of 2 then $\omega(x, f)$ is a compact set for any $x \in \overline{P(f)}$.

The claim (i) in the above Lemma is a known result (see [1] for a proof), and (ii) was proved in [12] when I = (0, 1] and the method can be applied to prove the Lemma when I = (0, 1).

§ 3. Some Elementary Properties

To prove the main result, we will supply several lemmas in this section.

LEMMA 3.1. Let X be a HDCC and $g: X \to [0,1]$ be a Kuratowski function of X. If there are $a,b \in [0,1]$ such that for any $t \in (a,b), g^{-1}(t)$ is a degenerate element of $\mathcal{D}_1(X)$, then $g|_{g^{-1}((a,b))}: g^{-1}((a,b)) \to (a,b)$ is a homeomorphism. Moreover, if L is a path connected component of X then L is homeomorphic to a connected subset of the real line.

PROOF. It is easy to check that $g|_{g^{-1}((a,b))}$ is a continuous bijection and an open map. Hence $g|_{g^{-1}((a,b))}: g^{-1}((a,b)) \to (a,b)$ is a homeomorphism.

Let L be a path connected component of X, then the subcontinuum \overline{L} of X is a HDCC ([6]). Assume $g:\overline{L}\to [0,1]$ be a Kuratowski function of \overline{L} . Then for each $t\in (0,1), g^{-1}(t)$ is a degenerate element of \overline{L} by the path connectivity of L. Thus $\overline{L}-(g^{-1}(0)\cup g^{-1}(1))$ is homeomorphic to (0,1). Therefore, L is homeomorphic to one of (0,1], [0,1] and (0,1).

LEMMA 3.2. Let $X \in \mathcal{H}_{\alpha}$ ($\alpha \leq \omega_0 + 1$) and \mathcal{L}_k be the collection of path connected components of $\bigcup \mathcal{D}_k^{ND} - \bigcup \mathcal{D}_{k+1}^{ND}$, $(k \in N \cup \{0\})$. Then for any $C \in \mathcal{L}_{k+1}$, $\bigcup_{i=0}^k (\bigcup \mathcal{L}_i) \cup C$ is an open subset of X.

PROOF. It is clear that $\bigcup \mathscr{L}_0 = X - \bigcup \mathscr{D}_1^{ND}$ is open in X. For any $C_1 \in \mathscr{L}_1$, there is a $D_1 \in \mathscr{D}_1^{ND}$ such that $C_1 \subset D_1$. By considering the Kuratowski function of D_1 , we have that $B_1 = D_1 - C_1$ is closed in D_1 , and thus B_1 is closed in X.

Since $\bigcup \mathscr{D}_1^{ND}$ is the union of finitely many of pairwise disjoint subcontinua, there is an open neighbourhood W of D_1 in X such that $W \cap (\bigcup \mathscr{D}_1^{ND} - D_1) = \emptyset$. Hence $(\bigcup \mathscr{L}_0) \cup D_1 = (\bigcup \mathscr{L}_0) \cup W$ is open in X, and

$$(\bigcup \mathcal{L}_0) \cup C_1 = ((\bigcup \mathcal{L}_0) \cup D_1) - B_1$$

is open in X.

Suppose $\bigcup_{i=0}^k (\bigcup \mathcal{L}_i) \cup C_{k+1}$ is open in X for any $C_{k+1} \in \mathcal{L}_{k+1}$. By a discussion similar to the above, it is easy to check that $\bigcup_{i=0}^{k+1} (\bigcup \mathcal{L}_i) \cup C_{k+2}$ is open in X for any $C_{k+2} \in \mathcal{L}_{k+2}$.

Lemma 3.3. Suppose that $X \in \mathcal{H}_{\alpha}$ ($\alpha \leq \omega_0 + 1$). Then (i) X is the union of finitely many of nondegenerate path connected components of X when $\alpha \in \mathbb{N}$; (ii) X is the union of countably many of nondegenerate path connected components of X and a totally disconnected set when $\alpha \in \{\omega_0, \omega_0 + 1\}$.

PROOF. It follows directly from the definition of
$$\mathcal{H}_{\alpha}$$
 ($\alpha \leq \omega_0 + 1$).

LEMMA 3.4. Assume $X \in \mathcal{H}_{\alpha}$ ($\alpha \leq \omega_0 + 1$), $f \in C(X,X)$ and the periods of all periodic points of f are powers 2. Let W be a subcontinuum of X, $D_0 \prec D_1 \prec \cdots \prec D_n$ be all nondegenerate layers of W, $C_1 \prec C_2 \prec \cdots \prec C_n$ be all path connected components of $W - \bigcup_{i=0}^n D_i$ and G_i be the path connected components of W with $G_i \supset C_i$ ($i = 1, 2, \ldots, n$.). If there exist $a \in D_0$ and $b \in D_n$ such that [f(a), f(b)] = W, then

$$p:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\} \quad (p(i)=j \iff f(C_i)\subset G_j)$$

is a permutation.

PROOF. Since the periods of all periodic points of f are powers of 2, $f(D_0) \cap f(D_n) \neq W$. By Lemma 2.2, for any $x \in W - (D_0 \cup D_n)$ there exists $t \in W - (D_0 \cup D_n)$ such that f(t) = x. Let $x_1 \in C_1$ and $t_1 \in W - (D_0 \cup D_n)$ with $f(t_1) = x_1$. Then there exists an ε -neighborhood $U_{\varepsilon}(x_1)$ of x_1 in W with $U_{\varepsilon}(x_1) \subset C_1$ and a δ -neighborhood $V_{\delta}(t_1)$ of t_1 in W such that $f(V_{\delta}(t_1)) \subset U_{\varepsilon}(x_1)$. Since $\bigcup_{i=1}^n D_i$ is nowhere dense in W, there exists $t'_1 \in V_{\delta}(t_1) \cap (\bigcup_{i=1}^n C_i)$ such that $f(t'_1) \in U_{\varepsilon}(x_1) \subset C_1$. Assume $t'_1 \in C_{j(1)}$. Then $f(C_{j(1)}) \subset G_1$. By the same argument we get that there are j(i) such that $f(C_{j(i)}) \subset G_i$ for $i = 2, 3, \ldots, n$.

If there are $j(i) \neq j'(i)$ such that $f(C_{j(i)}) \cup f(C_{j'(i)}) \subset G_i$, then $f(W) = f(\bigcup_i C_i) \subsetneq \bigcup_i G_i = W$, as $f(C_i)$ is path connected and $G_k \cup G_l$ is not if $k \neq l$. This contradicts the assumption that $f([a,b]) \supset W$. Thus if $f(C_{j(i)}) \cup f(C_{j'(i)}) \subset G_i$ then j(i) = j'(i). That is, p^{-1} is a permutation, so is p.

In the rest of the paper, for each ordinal $\alpha \leq \omega_0 + 1$ and each $X \in \mathcal{H}_{\alpha}$ let

$$\mathcal{L}_{i} = \mathcal{L}_{i}(X) = \left\{ L : L \text{ is a path connected component of } \bigcup \mathcal{D}_{i}^{ND} - \bigcup \mathcal{D}_{i+1}^{ND} \right\},$$
(3.1)

where $0 \le i < \min\{\alpha, \omega_0\}$ and \mathcal{D}_i^{ND} is the set consisting of all nondegenerate *i*-th layers of X. Furthermore, let

$$\mathscr{L} = \bigcup_{i < \omega_0} \mathscr{L}_i \tag{3.2}$$

LEMMA 3.5. Assume $X \in \mathcal{H}_{\alpha}$ ($\alpha \in \{\omega_0, \omega_0 + 1\}$), $f \in C(X, X)$ and the periods of all periodic points of f are powers of 2. If $x \in R(f)$ such that (i) $\omega(x, f)$ is infinite; (ii) $\omega(x, f) \cap (\bigcup \mathcal{L}) = \emptyset$; (iii) $D \neq \omega(x, f)$ for each $D \in \mathcal{D}_{\omega_0}^{ND}$, then f(W) = W, where $W \subset X$ is the subcontinuum irreducible with respect to $\omega(x, f)$.

PROOF. It is obvious that $f(W) \supset W$, so we need only to prove that $f(W) \subset W$. Let $D_0 \prec D_1 \prec \cdots \prec D_n$ be all nondegenerate layers of W, $C_1 \prec C_2 \prec \cdots \prec C_n$ be all path connected components of $W - \bigcup_{i=0}^n D_i$ and G_i be the path connected components of W with $G_i \supset C_i$ (i = 1, 2, ..., n). Thus $\bigcup_{i=0}^n D_i \supset \omega(x, f)$ since $\omega(x, f) \cap (\bigcup \mathcal{L}) = \emptyset$.

CLAIM. There are $m \in \mathbb{N}$, $a \in D_0$ and $b \in D_n$ such that $f^m(a) \in D_0$ and $f^m(b) \in D_n$.

Since D_i $(0 \le i \le n)$ are disjoint and closed subset in X and $x \in R(f)$, for any given $a_0 \in D_0 \cap \omega(x, f)$ there is an $m_0 \in N$ such that $f^{m_0}(a_0) \in D_0$. Furthermore, for any $b \in D_n \cap O(x, f)$ there are $m, r \in N$ such that $m = rm_0$ and $f^m(b) \in D_n$ as $b \in R(f) = R(f^{m_0})$. If $f^m(a_0) \in D_0$, then obviously the Claim is true. If $f^m(a_0) \notin D_0$, then there exists $2 \le s \le r$ such that $f^{sm_0}(a_0) \in W - D_0$. Let s be the minimum integer with $f^{sm_0}(a_0) \in W - D_0$. As D_0 is an end layer of W, $f^{m_0}(D_0) \supset [f^{m_0}(a_0), f^{sm_0}(a_0)] \supset D_0$, and hence $f^m(D_0) = f^{mm_0}(D_0) \supset D_0$. Thus, there is an $a \in D_0$ such that $f^m(a) \in D_0$. This ends the proof of Claim.

Replacing f in Lemma 3.4 by f^m , we have that

$$p:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\} \quad (p(i)=j \Leftrightarrow f^m(C_i)\subset G_j)$$

is a permutation, i.e., $\bigcup_{i=1}^n f^m(C_i) \subset \bigcup_{i=1}^n G_i$. Hence $f^m(W) = f^m(\overline{\bigcup_{i=1}^n C_i}) = \bigcup_{i=1}^n \overline{f^m(C_i)} \subset \bigcup_{i=1}^n \overline{G_i} \subset W$ since f^m is a closed map. Thus, we have that $W \subset f(W) \subset f^2(W) \subset \cdots \subset f^m(W) \subset W$. That is, f(W) = W.

§ 4. The Proof of Main Result

In this section we will prove the main result of the paper. In order to show that for any $x \in R(f)$ $h(f|_{\omega(x,f)}) = 0$ providing $X \in \mathscr{H}_{\alpha}$ ($\alpha \leq \omega_0 + 1$), $f \in C(X,X)$ and the periods of all periodic points of f are powers 2, we will consider two cases:

Case 1. $x \in R(f)$, $O(x, f) \cap (\bigcup \mathcal{L}) \neq \emptyset$, where \mathcal{L} is defined by (3.2).

Case 2.
$$x \in R(f)$$
, $O(x, f) \cap (\bigcup \mathcal{L}) = \emptyset$.

LEMMA 4.1. Assume that $X \in \bigcup_{\alpha \leq \omega_0+1} \mathcal{H}_{\alpha}$, $f \in C(X,X)$ and the periods of all periodic points of f are powers of 2. Then for each $x \in R(f)$ with $O(x,f) \cap (\bigcup \mathcal{L}) \neq \emptyset$, $h(f|_{\omega(x,f)}) = 0$.

PROOF. If O(x, f) is finite, it is clear that $\omega(x, f)$ is periodic orbit and $h(f|_{\omega(x,f)}) = 0$. Hence we assume that O(x,f) is infinite. Let $k = \min\{n \in N \cup \{0\} : O(x,f) \cap (\bigcup \mathcal{L}_n) \neq \emptyset\}$ and $C_0 \in \mathcal{L}_k$ with $O(x,f) \cap C_0 \neq \emptyset$. Let C be the path connected component of X containing C_0 . As $x \in R(f)$ and $\bigcup_{i=0}^{k-1} (\bigcup \mathcal{L}_i) \cup C_0$ is open in X (Lemma 3.2), there exists $m \in N$ such that $f^m(C) \subset C$.

Since C is homeomorphic to a connected subset of the real line (Lemma 3.1), the periods of all periodic points of $f^m|_C$ are powers of 2 and $O(x,f)\cap C_0\subset R(f^m|_C)\subset \overline{P(f^m|_C)}$ (Lemma 2.5). Then for any $y\in O(x,f)\cap C_0$ we have that $\omega(y,f^m)$ is a compact subset of C by Lemma 2.5. Let J=[a,b] be the subcontinuum of X irreducible with respect to $\omega(y,f^m)$. Then J is a compact subset of C. Let $r:C\to J$ be the retraction defined by: $r|_{[a,b]}=id;\ r(x)=a$ when $x\in C$ and $x\prec a;\ r(x)=b$ when $x\in C$ and $x\succ b$. It is clear that $r\circ f^m|_J\in C(J,J)$ and that $P(r\circ f^m|_J)\subset P(f)$. Thus, the periods of all periodic points of $r\circ f^m|_J$ are powers of 2. By Theorem A we have that $h(r\circ f^m|_J)=0$. Hence $h(f^m|_{\omega(y,f^m)})=h(r\circ f^m|_{J\cap\omega(y,r\circ f^m|_J)})\leq h(r\circ f^m|_J)=0$.

As $f^m(f^i(C)) \subset f^i(C)$, by a similar argument we can show that $h(f^m|_{\omega(f^i(y),f^m)}) = 0$ for each $1 \le i \le m-1$. Hence

$$h(f|_{\omega(x,f)}) = \frac{1}{m}h(f^m|_{\omega(x,f)}) = \frac{1}{m}\max_{0 \le i \le m-1}h(f^m|_{\omega(f^i(y),f^m)}) = 0.$$

LEMMA 4.2. Let $X \in \mathcal{H}_{\alpha}$ $(\alpha \in \{\omega_0, \omega_0 + 1\})$, $f \in C(X, X)$ and the periods of all periodic points of f be powers of 2. For any given $x \in R(f)$, if $O(x, f) \cap (\bigcup \mathcal{L}) = \emptyset$ and $x \prec f(x)$, then there are closed subsets M_0 and M_1 of X such that: (i) $M_0 \prec M_1$; (ii) $M_0 \supset \omega(x, f^2)$ and $M_1 \supset \omega(f(x), f^2)$.

PROOF. Let W be the subcontinuum irreducible with respect to $\omega(x.f)$, $D_0 \prec D_1 \prec \cdots \prec D_n$ be all nondegenerate layers of W, $C_1 \prec C_2 \prec \cdots \prec C_n$ be all path connected components of $W - \bigcup_{i=0}^n D_i$ and G_i be the path connected components of W with $G_i \supset C_i$ (i = 1, 2, ..., n). It is easy to check that $\overline{G_i} \subset (D_{i-1} \cup C_i \cup D_i)$. By Lemma 3.5,

$$p: \{1,2,\ldots,n\} \to \{1,2,\ldots,n\} \quad (p(i)=j \Leftrightarrow f(C_i) \subset G_j)$$

is a permutation. We complete the proof by considering the following two cases.

Case 1. n=1. Let $M_0=D_0$ and $M_1=D_1$. Then (i) holds. Since $\omega(x,f)\cap C_1=\varnothing$, $f(M_i\cap\omega(x,f))\subset M_i\cup M_j$ $(i\neq j\in\{0,1\})$. In order to show (ii), we need only to prove that $f(M_i\cap\omega(x,f))\cap M_i=\varnothing$ for i=0,1. Assume that $f(M_0\cap\omega(x,f))\cap M_0\neq\varnothing$. Note that $f(C_1)\subset C_1$ and f(W)=W. Then, by Lemma 2.1, $f^2(M_0)\cap f^2(M_1)\supset M_0\cup M_1$. It contradicts to our assumption that the periods of all periodic points of f are powers of 2. This proves that $f(M_0\cap\omega(x,f))\cap M_0=\varnothing$. By the same reasoning $f(M_1\cap\omega(x,f))\cap M_1=\varnothing$. Hence the Lemma is true if n=1.

Case 2. n > 1. By the minimum property of $\omega(x, f)$, p(1) > 1 and p(n) < n. Let $l = \max\{i | p(k) > k \text{ when } k \le i\}$ and $r = \min\{i | p(k) < k \text{ when } k \ge i\}$. It is obvious that either l + 1 = r or l + 1 < r.

Subcase 2.1. l+1=r. Let $A_{l,l+1}=\bar{C}_l\cap\bar{C}_{l+1}$. It is obvious that $D_l\supset A_{l,l+1}\neq\varnothing$. Firstly, we show that $f(A_{l,l+1})\subset A_{l,l+1}$ and $A_{l,l+1}\cap\omega(x,f)=\varnothing$. If there exists $x\in A_{l,l+1}$ such that $f(x)\prec A_{l,l+1}$, then there exists an open neighborhood U of x in W such that $f(U)\prec A_{l,l+1}$. Hence, by the nowhere density of $A_{l,l+1}$ in W, there exists $x'\in C_l$ such that $f(x')\prec A_{l,l+1}$. It implies that $f(l)\leq l$, a contradiction. Similarly, $f(l)>A_{l,l+1}$ dose not hold for any l>0 and l>0 the minimum property of l>0 and l>0 and l>0 and l>0 the minimum property of l>0 and l>0 and l>0 and l>0 and l>0 are l>0 and l>0 and l>0 are l>0 and l>0 and l>0 are l>0 and l>0 are l>0 and l>0 are l>0 are l>0 are l>0 and l>0 are l>0 are l>0 are l>0 and l>0 are l>0 and l>0 are l>0 are l>0 are l>0 are l>0 are l>0 are l>0 and l>0 are l>0 are

Secondly, we show that p(l-i)=r+i and p(r+i)=l-i $(0 \le i < l)$ and n=2l. Let $A_{i,i+1}=\overline{C}_i\cap \overline{C}_{i+1}$ (0 < i < n-1). Since $f(A_{l,l+1})\subset \overline{G}_{p(l)}\cap \overline{G}_{p(l+1)}$, we have $l \le p(r) < p(l) \le r$, i.e., p(r)=l and p(l)=r. Suppose that for $0 \le i \le k < l$ we have p(l-i)=r+i and p(r+i)=l-i. Then, on one hand, r+k < p(l-k-1) by p being a permutation; on the other hand, $p(l-k-1) \le r+k+1$ by the fact that $f(\overline{C_{l-k-1}})\cap f(\overline{C_{l-k}})\supset f(A_{l-k-1,l-k})\ne\varnothing$. Hence p(l-k-1)=r+k+1. Similarly, we have that p(r+k+1)=r-k-1. Note the facts that p is a permutation, p(l-k-1)=r+k+1 and p(l-k-1)=r+k+1. Then p(l-k-1)=r+k+1 is a permutation, p(l-k-1)=r+k+1. Then p(l-k-1)=r+k+1 is a permutation, p(l-k-1)=r+k+1 is and p(l-k-1)=r+k+1. Then p(l-k-1)=r+k+1 is a permutation, p(l-k-1)=r+k+1. Then p(l-k-1)=r+k+1 is a permutation, p(l-k-1)=r+k+1 is and p(l-k-1)=r+k+1. Then p(l-k-1)=r+k+1 is a permutation, p(l-k-1)=r+k+1. Then p(l-k-1)=r+k+1 is a permutation p(l-k-1)=r+k+1. Then p(l-k-1)=r+k+1 is a permutation p(l-k-1)=r+k+1.

Finally, we give the structure of M_0 and M_1 . If $A_{l,l+1} = D_l$, let $M_0 = \bigcup_{i < l} D_i$ and $M_1 = \bigcup_{i > l} D_i$. Then it is easy to check that (i) and (ii) hold. If $A_{l,l+1} \neq D_l$, since $\omega(x,f)$ and $A_{l,l+1}$ are disjoint closed subsets, there exists an open set U in W such that $U \supset A_{l,l+1}$ and $U \cap \omega(x,f) = \emptyset$. Set $D'_l = D_l - (U \cup \overline{C}_{l+1})$ and $D''_l = D_l - (U \cup \overline{C}_l)$. Then $M_0 := (\bigcup_{i < l} D_i) \cup D'_l$ and $M_1 := (\bigcup_{i > l} D_i) \cup D''_l$ are the subsets we need.

SUBCASE 2.2. l+1 < r. Let $V = \bigcup_{i=l+1}^{r-1} \overline{C_i}$. We will first show that $f(V) \subset V$ and $\omega(x, f) \cap V = \emptyset$. In fact, since V is connected, $p(l+1) \leq l+1$ and

 $p(r-1) \ge r-1$, we have $p(\{l+1,l+2,\ldots,r-1\}) \supset \{l+1,l+2,\ldots,r-1\}$. As p is a permutation, $p(\{l+1,l+2,\ldots,r-1\}) = \{l+1,l+2,\ldots,r-1\}$, and hence $f(V) \subset V$. By the minimum property of $\omega(x,f)$, $\omega(x,f) \cap V = \emptyset$. Let $M_0 = \bigcup_{i \le l} D_i$ and $M_1 = \bigcup_{i \ge r} D_i$. Then (i) holds. In order to show (ii), it is sufficient to prove that:

$$\{1,2,\ldots,l\} \underset{p}{\overset{p}{\longleftrightarrow}} \{r,r+1,\ldots,n\}. \tag{4.1}$$

Since p is a permutation and p(l) > l, then $p(l) \ge r$. As $f(\overline{C_l}) \cap f(V) \supset f(A_{l,l+1}) \ne \emptyset$, we have $p(l) \le r$, and hence p(l) = r. Similarly, p(r) = l. By an induction argument similar to paragraph 2 in Subcase 2.1, we can show that p(l-i) = r+i and p(r+i) = l-i $(0 \le i < l)$, that is, (4.1) holds.

LEMMA 4.3. Let $X \in \mathcal{H}_{\alpha}$ $(\alpha \in \{\omega_0, \omega_0 + 1\})$, $f \in C(X, X)$ and the periods of all periodic points of f be powers of 2. If $x \in R(f)$ and $O(x, f) \cap (\bigcup \mathcal{L}) = \emptyset$, then for each $s \in N$ and $i_1, i_2, \ldots, i_s \in \{0, 1\}$ there exist closed subset $M_{i_1 i_2 \cdots i_s}$ of X such that

- (i) $\omega(f^k(x), f^{2^s}) \subset M_{i_1 i_2 \cdots i_s}$, where $k = i_1 + i_2 2 + \cdots + i_s 2^{s-1}$.
- (ii) $M_{i_1i_2\cdots i_s} \prec M_{i_1i_2\cdots i_s}$ or $M_{i_1i_2\cdots i_s} \succ M_{i_1i_2\cdots i_s}$, where $i_s + \overline{i_s} = 1$.
- (iii) $M_{i_1i_2\cdots i_s}\supset M_{i_1i_2\cdots i_{s+1}}\cup M_{i_1i_2\cdots \overline{i_{s+1}}}.$
- (iv) For any $\gamma=(i_1i_2\cdots)\in\Sigma$, $\bigcap_{s\geq 1}M_{i_1i_2\cdots i_s}$ is contained in some element of th- ω_0 layer of X, that is, there exists $A\in\mathcal{D}_{\omega_0}$ such that $\bigcap_{s>1}M_{i_1i_2\cdots i_s}\subset A$.

PROOF. As for each $s \in N$, $\omega(x, f) = \bigcup_{k=0}^{2^{s}-1} \omega(f^{k}(x), f^{2^{s}})$, (i)—(iii) are direct consequence of Lemma 4.2. In order to prove (iv), it is sufficient to show that if for an $m \in N$ there exists $D \in \mathcal{D}_{m}^{ND}$ such that $\bigcap_{s \geq 1} M_{i_1 i_2 \cdots i_s} \subset D$ then there exists $D' \in \mathcal{D}_{m+1}^{ND}$ such that $\bigcap_{s \geq 1} M_{i_1 i_2 \cdots i_s} \subset D'$. Suppose, for some $m \in N \cup \{0\}$, $M_{i_1} \subset D \in \mathcal{D}_{m}^{ND}$ and $M_{i_1} \neq D'$ for any $D' \in \mathcal{D}_{m+1}^{ND}$. Then there exists $k \in N$ such that the number of nondegenerate layers of D is less than D_{m+1}^{k} . By the way that $D_{i_1 i_2 \cdots i_s}^{k} = D$ which intersect $D_{i_1 i_2 \cdots i_s}^{k} = D$ which intersect $D_{i_1 i_2 \cdots i_s}^{k} = D$. Inductively, for each $D_{i_1 i_2 \cdots i_s}^{k} = D$ thence $D_{i_1 i_2 \cdots i_k}^{k} = D$ intersects only one nondegenerate layer of D, i.e., there exists $D' \in \mathcal{D}_{m+1}^{ND}$ such that $D_{i_1 i_2 \cdots i_k}^{ND} = D$. Hence $D_{i_1 i_2 \cdots i_k}^{ND} = D$. Hence $D_{i_1 i_2 \cdots i_k}^{ND} = D$.

THEOREM 4.4. For each $X \in \bigcup_{\alpha \leq \omega_0 + 1} \mathcal{H}_{\alpha}$ and $f \in C(X, X)$, h(f) = 0 if and only if the periods of all periodic points of f are powers of f.

PROOF. Suppose f has a periodic point whose period is not a power of 2. By theorem B, there exists $m \in N$, such that f^m has a periodic point of period 3. By Lemma 2.4, there are disjoint nondegenerate subcontinua J_1 and J_2 of X, and $g \in \{f^m, f^{2m}, f^{3m}\}$ such that $J_1 \cup J_2 \subset g^2(J_1) \cap g^2(J_2)$, and topological entropy $h(g^2) \ge \log 2$, hence h(f) > 0. Thus, if h(f) = 0 then the periods of all periodic points of f are powers of 2.

Now we suppose that the periods of all periodic points of f are powers 2 and want to prove that h(f)=0. By theorem C, we need only to prove that for any $x \in R(f)$, $h(f|_{\omega(x,f)})=0$. If $O(x,f)\cap (\bigcup \mathscr{L})\neq \varnothing$, then $h(f|_{\omega(x,f)})=0$ by Lemma 4.1. Hence we assume $O(x,f)\cap (\bigcup \mathscr{L})=\varnothing$ and $\omega(x,f)$ is an infinite set. By Lemma 4.3, for each $s \in N$ and $i_1,i_2,\ldots,i_s \in \{0,1\}$ there exists a closed subset $M_{i_1i_2\cdots i_s}$ of X with properties listed in the Lemma. Define $\varphi:\omega(x,f)\to \Sigma$ such that $\varphi(y)=\gamma$ if $y\in\bigcap_{s>1}M_{i_1i_2\cdots i_s}$ and $\gamma=(i_1i_2\cdots)$.

It is easy to check that φ is a continuous surjection and satisfies that $\varphi(f(y)) = \delta(\varphi(y))$. By (iv) of Lemma 4.3, $(\omega(x,f),f|_{\omega(x,f)})$ is topologically conjugate to the adding machine (Σ,δ) if $Order(X) = \omega_0$, or $(\omega(x,f),f|_{\omega(x,f)})$ is semi-conjugate to the adding machine (Σ,δ) if $Order(X) = \omega_0 + 1$. As $\mathscr{D}^{ND}_{\omega_0}$ is countable, by lemma 2.3, $h(f_{\omega(x,f)}) = 0$.

Let I = [0, 1] and $\varphi \in C(I, I)$. The *inverse limit space* $\varprojlim \{I, \varphi\}$ is the subspace of $\prod_{i=1}^{\infty} I$ defined by

$$\underline{\lim} \{I, \varphi\} = \{\underline{x} = (x_1 x_2 \cdots) \in \prod_{i=1}^{\infty} I : \varphi(x_{i+1}) = x_i, i \in \mathbb{N}\}.$$

The following corollary shows that the class of HDCC is a larger class in some sense.

COROLLARY 4.5. Let $\varphi \in C(I,I)$ be a piecewise monotone continuous map with zero topological entropy and $M = \varprojlim \{I, \varphi\}$. If $f \in C(M,M)$ then h(f) = 0 if and only if the periods of all periodic points of f are powers of f.

Proof. By [10],
$$M \in \bigcup_{\alpha < \omega_0 + 1} \mathcal{H}_{\alpha}$$
.

In the end, we would like to ask the following question: on which hereditarily decomposable chainable continua the Bowen-Franks-Misiurewicz's theorem holds? Our conjecture is:

Conjecture. Assume that X is a Suslinean chainable continuum and $f \in C(X,X)$. Then h(f)=0 if and only if the periods of all periodic points of f are powers of 2.

References

- [1] L. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics 1513 Springer-Verlag, 1992.
- [2] K. Kuratowski, Topology II Academic Press, New York; PWN, Warsaw, 1968.
- [3] P. Minc and W. R. R. Transue, Sarkovskii's Theorem for hereditarily decomposable chainable continua, Trans. Amer. Math. Soc. 315 (1989), 173-188.
- [4] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979), 167-169.
- [5] L. Mohler, A depth of tranches in λ-dendroida, Proc. Amer. Math. Soc., 96 (1986), 715–720.
- [6] S. B. Nadler Jr., Continuum Theory, Pure and Appl. Math. 158 (1992).
- [7] W. S. Tomas Jr., Monotone decomposition of irreducible continua, Rozprawy Mat, 50 (1960).
- [8] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
- [9] X. D. Ye, The dynamics of homeomorphisms of hereditarily decomposable chainable continua, Topology Appl., 64 (1995), 85-93.
- [10] X. D. Ye, On inverse limit spaces of maps of an interval with zero entropy, Topology Appl., 91 (1999), 105-118.
- [11] J. C. Xiong, A brief proof of Misiurewicz's Theorem (Chinese), Journal USTC 19 (1989), 21-24.
- [12] J. C. Xiong, X. D. Ye, Z. Q. Zhang and J. Huan, Some dynamics of the continuous maps on Warsaw-circle (Chinese), Acta. math. Sinica, 39 (1996), 294–299.
- [13] Z. L. Zhou, A proof of the conjecture on small entropy (Chinese), Science of China(A) 10 (1985), 882-889.
 - [†] Department of Mathematics, South China Normal University, Guangzhou, Guangdong, 510631, P.R. China
 - [‡] Department of Mathematics, Suzhou University, Suzhou, Jiangsu, 215006, P.R. China
 - * Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China