NOTE ON MACAULAY SEMIGROUPS

By

Ryûki Matsuda

Almost all of ideal theory of a commutative ring R concerns properties of ideals of R with respect to the multiplication " \times " on R. Abandoning the addition "+" on R we extract the multiplication on R. Then we have the idea of the algebraic system S of a semigroup. We denote the operation on S by addition. Sis called a grading monoid. Concretely, a submonoid S of a torsion-free abelian (additive) group is called a grading monoid (or a g-monoid). Many terms in commutative ring theory are defined analogously for S. For example, a nonempty subset I of S is called an ideal of S if $S + I \subset I$. Let I be an ideal of S with $I \subsetneq S$. If $s_1 + s_2 \in I$ (for $s_1, s_2 \in S$) implies $s_1 \in I$ or $s_2 \in I$, then I is called a prime ideal of S. If there exists an element $s \in S$ such that I = S + s, then I is called a principal ideal of S. The group $q(S) = \{s_1 - s_2 \mid s_1, s_2 \in S\}$ is called the quotient group of S. A subsemigroup of q(S) containing S is called an oversemigroup of S. Let Γ be a totally ordered abelian (additive) group. A mapping v of a torsion-free abelian group G onto Γ is called a valuation on G if v(x + y) =v(x) + v(y) for all $x, y \in G$. Then v is called a Γ -valued valuation on G. The subsemigroup $\{x \in G | v(x) \ge 0\}$ of G is called the valuation semigroup of G associated with v. A Z-valued valuation is called a discrete valuation of rank 1. The valuation semigroup associated with a discrete valuation of rank 1 is called a discrete valuation semigroup of rank 1. An element x of an extension semigroup T of S is called integral over S if $nx \in S$ for some $n \in N$. Let \overline{S} be the set of all integral elements of q(S) over S. Then \overline{S} is an oversemigroup of S, and is called the integral closure of S. If $\overline{S} = S$, then S is called an integrally closed semigroup (or a normal semigroup). An ideal I of S is called a cancellation ideal of S if $I + J_1 = I + J_2$ (for ideals J_1, J_2 of S) implies $J_1 = J_2$. The maximum number n so that there exists a chain $P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n(\subsetneq S)$ of prime ideals of S is called the dimension of S. Many propositions for commutative rings are known to hold for S. The author conjectures that almost all propositions of multi-

Received January 12, 1998.

Revised July 3, 1998.

plicative ideal theory of R hold for S. It is usually expected that ideal theory of S is simpler than that of R. Therefore investigating the ideal theory of S may be an auxiliary means for investigating that of R. Of course we may say that the ideal theory of S has its proper significance (cf. [M2])). For an example, Anderson-Anderson [AA] posed a question: Is every cancellation ideal of a quasi-local domain principal? The answer to this question is open. However, every cancellation ideal of S is principal ([M1]). For another example, let $\sum'(D)$ (resp. $\sum'(S)$) be the set of all semistar-operations on D (resp. S). Assume that S is integrally closed and of dimension n. Then S is a valuation semigroup if and only if $n + 1 \le |\sum'(S)| \le 2n + 1$ ([OMS]). If a similar property holds for D is open. The aim of this paper is to show that almost all the propositions in Chapter 3 of Kaplansky's Commutative Rings [K] hold for g-monoids.

Since this paper is a semigroup version of commutative ring theory, a gmonoid is denoted by R. Let A be a non-empty set. Assume that, for every $r \in R$ and $a \in A$, there is defined $r + a \in A$ such that, for every $r_1, r_2 \in R$ and $a \in A$, we have $(r_1 + r_2) + a = r_1 + (r_2 + a)$ and 0 + a = a. Then A is called an R-module. Let A be an R-module and $r \in R$. If $r + a_1 = r + a_2$ (for $a_1, a_2 \in A$) implies $a_1 = a_2$, then r is called a non-zerodivisor on A. If r is not a non-zerodivisor, then r is called a zerodivisor on A. The set of zerodivisors on A is denoted by Z(A). Let B be a submodule of an R-module A, and $r \in R$. If $r + a \in B$ (for $a \in A$) implies $a \in B$, then r is called a non-zerodivisor on A modulo B. A non-zerodivisor on A modulo B is also called a non-zerodivisor. The set of zerodivisors on A/B is denoted by Z(A/B). If $\{x_1, \ldots, x_n\}$ is a finite subset of R, then the ideal $\bigcup_{i=1}^n (R + x_i)$ of R is denoted by (x_1, \ldots, x_n) . The ordered sequence of elements x_1, \ldots, x_n of R is called a regular sequence on A, if $(x_1, \ldots, x_n) + A \subsetneq A$ and if $x_1 \notin Z(A)$, $x_2 \notin Z(A/((x_1) + A)), \ldots, x_n \notin Z(A/((x_1, \ldots, x_{n-1}) + A))$.

THEOREM 1. Let A be an R-module, and let x, y be a regular sequence on A. Then $x \notin Z(A/(y+A))$.

PROOF. Assume that $x + a = y + a_1$ (for $a, a_1 \in A$). Since $y \notin Z(A/(x + A))$, we have $a_1 \in x + A$. Since $x \notin Z(A)$, we have $a \in y + A$, and hence $x \notin Z(A/(y + A))$.

Let A be an R-module. If $Z(A) = \emptyset$, then A is called torsion-free. Theorem 1 implies the following,

THEOREM 2. Let A be a torsion-free R-module, and x_1, \ldots, x_n a regular sequence on A. Then the sequence obtained by interchanging x_i and x_{i+1} is a regular sequence on A if and only if $x_{i+1} \notin Z(A/((x_1, \ldots, x_{i-1}) + A))$.

Let A be an R-module. If $r_1 + a = r_2 + a$ (for $r_1, r_2 \in R$ and $a \in A$) implies $r_1 = r_2$, then A is called cancellative. If every ideal of a g-monoid R is finitely generated, then R is called a Noetherian semigroup.

LEMMA 3 ([M3, Proposition 1]). Let R be a Noetherian semigroup, and A a finitely generated R-module. Then A satisfies the ascending chain condition on submodules.

THEOREM 4. Let R be a Noetherian semigroup, and A a finitely generated torsion-free cancellative R-module. Let x_1, \ldots, x_n be a regular sequence on A. Then any permutation of the x's is a regular sequence on A.

PROOF. Set $S = ((x_1, \ldots, x_{n-2}) + A : x_n)_A$. By Theorem 2, it suffices to show that $S \subset (x_1, \ldots, x_{n-2}) + A$. Suppose the contrary. Take s in S with $s \notin (x_1, \ldots, x_{n-2}) + A$. Since $x_n \notin Z(A/((x_1, \ldots, x_{n-1}) + A)))$, we have $s \in (x_1, \ldots, x_{n-1}) + A$, and hence $s = x_{n-1} + a$ for some $a \in A$. It follows that $x_n + a \in (x_1, \ldots, x_{n-2}) + A$, and hence $a \in S$. Then we have $S = x_{n-1} + S$; a contradiction to Lemma 3.

THEOREM 5. Let A be an R-module, and x_1, \ldots, x_n a regular sequence on A. Then $(x_1), (x_1, x_2), \ldots, (x_1, \ldots, x_n)$ form a properly ascending chain.

Let A be an R-module, and I an ideal of R. Let x_1, \ldots, x_n be a regular sequence in I on A. If x_1, \ldots, x_n, x is not a regular sequence on A for each $x \in I$, then x_1, \ldots, x_n is called a maximal regular sequence in I on A.

REMARK. Let R be a Noetherian semigroup. Then two maximal regular sequences on R need not have the same length.

For example, let Z_0 be the monoid of non-negative integers and let $R = Z_0 \oplus Z_0$. Set p = (1,0), q = (0,1) and x = (1,1). Then p,q is a maximal regular sequence on R. Also, x is a maximal regular sequence on R.

Let A be an R-module, and I an ideal of R. Then the maximum of lengths of all regular sequences in I on A is called the grade of I on A, and is denoted by G(I, A).

Ryûki Matsuda

THEOREM 6. Let A be an R-module, and I an ideal of R with $I + A \subsetneq A$. Let x_1, \ldots, x_n be a maximal regular sequence in I on A. Then there exists a prime ideal P such that x_1, \ldots, x_n is a maximal regular sequence in P on A.

PROOF. Set $P = Z(A/((x_1, ..., x_n) + A))$. Then P is a prime ideal containing I, and $x_1, ..., x_n$ is a maximal regular sequence in P on A.

LEMMA 7. Let R be a Noetherian semigroup. Then there exists only a finite number of prime ideals of R.

PROOF. Let x_1, \ldots, x_n be the set of all irreducible elements of R any two of which are not associated. Let P be a prime ideal of R. Then P is generated by a subset of $\{x_1, \ldots, x_n\}$.

THEOREM 8. Let R be a Noetherian semigroup, A a finitely generated torsionfree cancellative R-module, and J a k-generated ideal of R with $J + A \subsetneq A$. Then $G(J, A) \leq k$.

PROOF. Let $J = (x_1, ..., x_k)$. Suppose that there exists a regular sequence $y_1, ..., y_{k+1}$ in J on A. By Theorem 4, we may assume that $y_1 = x_1 + r_1$, $y_2 = x_1 + r_2$ for $r_1, r_2 \in R$. Choose $a \in A - (J + A)$. Then we have $r_1 + a \notin y_1 + A$ and $y_2 + (r_1 + a) \in y_1 + A$. Hence $y_2 \in Z(A/(y_1 + A))$; a contradiction.

Let A be an R-module. If any two maximal regular sequences in I on A have the same length for every ideal I with $I + A \subsetneq A$, then A is said to satisfy property (*). If A satisfies property (*), we say also that (R, A) satisfies property (*).

THEOREM 9. In Theorem 8, let $J = (x_1, ..., x_k)$, and assume that G(J, A) = kand (R, A) satisfies property (*). Then $x_1, ..., x_k$ is a maximal regular sequence in J on A.

PROOF. Assume that $x_{i_1} \notin Z(A), x_{i_2} \notin Z(A/((x_{i_1}) + A)), \dots, x_{i_h} \notin Z(A/((x_{i_1}, \dots, x_{i_{h-1}}) + A))$ for 1 < h < k. Then we have $J \not \subset Z(A/((x_{i_1}, \dots, x_{i_h}) + A))$. Hence there exists i_{h+1} such that $x_{i_{h+1}} \notin Z(A/((x_{i_1}, \dots, x_{i_h}) + A))$. Thus x_{i_1}, \dots, x_{i_k} is a regular sequence on A. Then Theorem 4 completes the proof. THEOREM 10. Let R be a Noetherian semigroup, and A a finitely generated torsion-free cancellative R-module which satisfies property (*). Let I be an ideal of R, and $x \in R$ with $J = (I, x) \subseteq R$. Then $G(J, A) \leq 1 + G(I, A)$.

PROOF. Let x_1, \ldots, x_m be a maximal regular sequence in I on A. If $J \subset Z(A/((x_1, \ldots, x_m) + A))$, we have $G(J, A) \leq 1 + G(I, A)$. Assume that $J \not \subset Z(A/((x_1, \ldots, x_m) + A))$. Then x_1, \ldots, x_m, x is a regular sequence in J on A. Suppose that $J \not \subset Z(A/((x_1, \ldots, x_m, x) + A))$. Then there exists $y \in I$ such that x_1, \ldots, x_m, x, y is a regular sequence in J on A. Then x_1, \ldots, x_m, y is a regular sequence in I on A.

THEOREM 11. Let R be a Noetherian semigroup, and A a finitely generated torsion-free cancellative R-module which satisfies property (*). Let I be an ideal of R contained in a maximal ideal M. Assume that G(I, A) < G(M, A). Then there exists a prime ideal P of R such that G(P, A) = 1 + G(I, A).

PROOF. Let x_1, \ldots, x_k be a maximal regular sequence in I on A, and set $I_0 = (x_1, \ldots, x_k)$. We may take $x \in M - Z(A/(I_0 + A))$. By Theorem 10, we have G((I, x), A) = k + 1. Then P = Z(A/((I, x) + A)) is a desired prime ideal.

THEOREM 12. Let R be a Noetherian semigroup, and A a finitely generated torsion-free cancellative R-module with property (*). Let $I = (x_1, ..., x_n)$ be a proper ideal of R. Then G(I, A) = n if and only if $x_1, ..., x_n$ is a regular sequence on A.

PROOF. The necessity: Let $J = (x_1, \ldots, x_{n-1})$, and assume that the assertion holds for x_1, \ldots, x_{n-1} . We have G(J, A) = n - 1 by Theorem 10, and hence x_1, \ldots, x_{n-1} is a regular sequence on A. Since G(I, A) = n, we have $I \notin Z(A/((x_1, \ldots, x_{n-1}) + A)))$. It follows that x_1, \ldots, x_n is a regular sequence on A.

Let P be a prime ideal of R. Then the maximum number n so that there exists a chain $P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n = P$ of prime ideals of R is called the height of P, and is denoted by ht(P). For an ideal I of R, the minimum of ht(P), P ranging over the prime ideals containing I is called the height of I, and is denoted by ht(I).

THEOREM 13. Let I be an ideal of R, and x_1, \ldots, x_n a regular sequence in I on R. Then $n \leq ht(I)$.

PROOF. Assume that the assertion holds for n-1. We may assume that P = I is a prime ideal. Set $T = \{kx_n + s \mid k \ge 0, s \in R - P\}$. Suppose that $T \cap (x_1, \ldots, x_{n-1}) \ne \emptyset$, say $kx_n + s \in (x_1, \ldots, x_{n-1})$. By the choice of s and k_n , we have $k \ge 1$ and $(k-1)x_n + s \in (x_1, \ldots, x_{n-1})$. Thus $x_n + s \in (x_1, \ldots, x_{n-1})$; a contradiction. Hence $T \cap (x_1, \ldots, x_{n-1}) = \emptyset$. Then there exists a prime ideal Q such that $Q \supset (x_1, \ldots, x_{n-1})$ and $Q \cap T = \emptyset$. By the assumption, we have $ht(Q) \ge n-1$, and hence $ht(P) \ge n$.

Let R be a Noetherian semigroup with maximal ideal M. If G(M, R) = dim(R), then R is called a Macaulay semigroup. Let A be an R-module, and S an additive system in R. If, for $a_1, a_2 \in A$ and $s_1, s_2 \in S$, we have $a_1 + s_2 + s = a_2 + s_1 + s$ for some $s \in S$, we define $a_1 - s_1 = a_2 - s_2$. Thus $A_S = \{a - s \mid a \in A, s \in S\}$ is an R_S -module. If P is a prime ideal of R, then A_{R-P} is denoted by A_P .

THEOREM 14. Let A be an R-module, and x_1, \ldots, x_n a regular sequence on A. Let S be an additive system in R such that $(x_1, \ldots, x_n) + A_S \subseteq A_S$. Then x_1, \ldots, x_n is a regular sequence in R_S on A_S .

Theorem 14 implies the following,

THEOREM 15. Let P be a prime ideal of R, and I an ideal contained in P. Then $G(I, P) \leq G(I_P, R_P)$.

THEOREM 16. Let R be a Macaulay semigroup such that (R, R) satisfies property (*). Then we have G(I, R) = ht(I) for every ideal I of R.

PROOF. Suppose the contrary. Let P be a maximal member in the set of all ideals I with G(I, R) < ht(I). Then P is a prime ideal by Theorem 6. By Theorem 11, there exists a prime ideal Q containing P such that G(Q, R) = 1 + G(P, R). Then G(Q, R) < ht(P) + 1 < ht(Q) + 1, and hence G(Q, R) < ht(Q); a contradiction.

Let P be a prime ideal of R. Then the minimum of n + 1 such that there exists a saturated chain of prime ideals $P \supseteq P_1 \supseteq \cdots \supseteq P_n$ of R is called the little height of P, and is denoted by lh(P). If R satisfies the following conditions (1) and (2), we say that R satisfies the saturated chain condition:

(1) lh(P) = ht(P) for every prime ideal P of R.

(2) For all prime ideals P, Q with $P \supseteq Q$, any two saturated chains from P to Q have the same length.

THEOREM 17. Let R be a Noetherian semigroup such that (R_P, R_P) satisfies property (*) for every prime ideal P. Then we have $G(P, R) \leq lh(P)$ for every prime ideal P.

PROOF. We may assume that M = P is a maximal ideal of R. Let lh(M) = m, and assume that the assertion holds for m - 1. There exists a prime ideal Q with lh(Q) = m - 1. Then $G(Q + R_Q, R_Q) \le m - 1$ by the assumption, and hence $G(Q, R) \le m - 1$. Then G(M, R) = 1 + G(Q, R) by Theorem 11, and hence $G(M, R) \le m$.

THEOREM 18. Let R be a Macaulay semigroup such that (R, R) satisfies property (*). Then R_S is a Macaulay semigroup for every additive system S of R.

PROOF. There exists a prime ideal P of R such that $N = P + R_S$ is a maximal ideal of R_S . Then we have G(P, R) = ht(P) by Theorem 16. It follows that $ht(N) \le G(N, R_S)$ by Theorem 15, and $G(N, R_S) \le ht(N)$ by Theorem 13.

LEMMA 19 ([M3, Theorem 1]). Let R be a Noetherian semigroup, and x a nonunit of R. If P is a minimal prime ideal over (x), then ht(P) = 1.

Let S be a g-monoid and R a submonoid of S. If x is an element of S, then the submonoid $R + Z_0 s$ of S is denoted by R[s]. Let X be an indeterminate over R. Then the g-monoid $R + Z_0 X$ is denoted by R[X], and is called the polynomial semigroup of X over R.

LEMMA 20 ([TM]). (1) Assume that R satisfies the ascending chain condition on radical ideals, and let I be an ideal. Then there exists only a finite number of prime ideals minimal over I.

(2) Assume that R satisfies the ascending chain condition on radical ideals. If R has an infinite number of prime ideals of height 1, then their intersection is empty.

(3) Let R be a g-monoid with G = q(R), and let $u \in R$. Then every prime ideal of R contains u if and only if G = R[-u].

If q(R) is generated by one element over R as a monoid, that is, if q(R) is of the form R[x] for some $x \in q(R)$, then R is called a G-semigroup. Lemmas 7 and 20 imply the following,

THEOREM 21. Any Noetherian semigroup is a G-semigroup.

LEMMA 22 ([TM]). (1) Let P be a prime ideal of R of height 1. Then P + R[X] is a prime ideal of R[X] of height 1.

(2) Let P be a prime ideal of R with n = ht(P). Let Q be a prime ideal of R[X] properly containing P + R[X] and with $P = Q \cap R$. Then ht(P + R[X]) = n and ht(Q) = n + 1.

QUESTION. If R is Noetherian, what are conditions for (R[X], R[X]) to satisfy property (*)?

THEOREM 23. Let R be a Noetherian semigroup such that (R[X], R[X]) satisfies property (*). Then R is a Macaulay semigroup if and only If R[X] is a Macaulay semigroup.

PROOF. Let M be a maximal ideal of R with n = ht(M). The necessity: Let x_1, \ldots, x_n be a regular sequence in M on R, Then x_1, \ldots, x_n, X is a regular sequence in R[X] on R[X]. Hence R[X] is a Macaulay semigroup by Theorem 13 and Lemma 22. The sufficiency: Let X, f_1, \ldots, f_n be a regular sequence in R[X] on R[X]. Set $f_i = a_i + k_i X$ for each i (for $a_i \in R$ and $k_i \ge 0$). Then we have $k_i = 0$ for each i. It follows that a_1, \ldots, a_n is a regular sequence on R.

LEMMA 24 ([M3, Theorem 1]). Let R be a Noetherian semigroup, and I an ngenerated proper ideal. Let P be a prime ideal minimal over I. Then $ht(P) \le n$.

Let P be a prime ideal, and I an ideal contained in P. The maximum of n so that there exists a chain of prime ideals $P \supseteq P_1 \supseteq \cdots \supseteq P_n \supset I$ is called the height of P/I, and is denoted by ht(P/I).

THEOREM 25. Let R be a Noetherian semigroup, P a prime ideal, and I an ngenerated ideal contained in P. Then $ht(P) \le n + ht(P/I)$.

PROOF. Let $I = (a_1, \ldots, a_n)$ with $a_i \neq a_j$ (for $i \neq j$), and set ht(P/I) = k. For any prime ideal Q, the cardinality of $Q \cap \{a_1, \ldots, a_n\}$ is called the capacity of Q, and is denoted by c(Q). Let ht(P) = l + 1, and let $P \supseteq P_1 \supseteq \cdots \supseteq P_l$ be a chain of prime ideals. Then $\sum_{i=1}^{l} c(P_i)$ is called the capacity of the chain. We will show $l+1 \leq k+n$ by the induction on the number $\sum_{i=1}^{l} c(P_i)$. Thus, if $\sum_{i=1}^{l} c(P_i) = nl$, then $l \leq k$. Hence $l+1 \leq k+n$. Assume that $0 = c(P_l) = \cdots = c(P_{\alpha}) < c(P_{\alpha-1})$. The case that $ht(P_{\alpha}) = 1$: Since $ht(P_{\alpha-1}) = 2$, $P_{\alpha-1}$ is not a prime ideal minimal over (a_1) . Hence there exists a prime ideal Q with $a_1 \in Q$ such that $P_{l-1} \supseteq Q$. Then the capacity of the chain $P \supseteq P_1 \supseteq \cdots \supseteq P_{l-1} \supseteq Q$ is larger than that of the chain $P \supseteq P_1 \supseteq \cdots \supseteq P_{l-1} \supseteq P_l$. By the induction hypothesis, we have $l+1 \le k+n$. The case that $ht(P_{\alpha}) > 1$: If $P_{\alpha+1}$ is a prime ideal minimal over $(P_{\alpha-1}, a_1)$, then P_{α} is a prime ideal minimal over $P_{\alpha-1}$; a contradiction. Hence P_{a+1} is not a prime ideal minimal over $(P_{\alpha-1}, a_1)$. Then there exists a prime ideal Q such that $P_{\alpha+1} \supseteq Q \supseteq P_{\alpha-1}$. Then the capacity of the chain $P \supseteq P_1 \supseteq \cdots \supseteq P_{\alpha+1} \supseteq Q \supseteq P_{\alpha+1} \supseteq Q \supseteq P_{\alpha-1}$ is larger than that of the chain $P \supseteq P_1 \supseteq \cdots \supseteq P_{\alpha+1} \supseteq P_{\alpha} \supseteq P_{\alpha-1} \supseteq \cdots \supseteq P_l$. By the induction hypothesis, we have $l+1 \ge k+n$.

THEOREM 26. Let R be a Noetherian semigroup, P a prime ideal, and $x \in P$. Then ht(P/(x)) = ht(P) - 1.

By Theorem 26, we have the following,

THEOREM 27. Let R be a Noetherian semigroup, M a maximal ideal of R, and $x \in M$. Let k = ht(M/(x)), and x_1, \ldots, x_k be elements of M such that $x_1 \notin Z(R/(x)), x_2 \notin Z(R/(x, x_1)), \ldots, x_{k-1} \notin Z(R/(x, x_1, \ldots, x_{k-1}))$. Then R is a Macaulay semigroup.

LEMMA 28 ([TM]). Let R be a Noetherian semigroup with maximal ideal M, and A a finitely generated R-module. Assume that $A = (a_1, \ldots, a_r, M + A)$. Then $M = (a_1, \ldots, a_r)$.

Let *R* be a Noetherian semigroup with maximal ideal *M*. If *M* is generated by a finite subset $\{a_1, \ldots, a_n\}$ of *R*, and If *M* is not generated by any proper subset of $\{a_1, \ldots, a_n\}$, then $\{a_1, \ldots, a_n\}$ is called a minimal generators of *M*. Let $\{a_1, \ldots, a_n\}$ and $\{b_1, \ldots, b_m\}$ be two set of minimal generators of *M*. Then each a_i is contained in the ideal $(b_{m(i)})$ for some m(i), and each b_j is contained in some $(a_{n(i)})$. Then it follows that i = n(m(i)) and j = m(n(j)) for all *i* and *j*. Hence n =*m*. The cardinality of a minimal generators of *M* is called the V-dimension of *R*, and is denoted by V(R).

THEOREM 29. Let R be a Noetherian semigroup with maximal ideal M, and let $x \in M - 2M$. Let r be the minimum number so that there exist x_1, \ldots, x_r with $(x, x_1, \ldots, x_r) = M$. Then r = V(R) - 1.

For a Noetherian semigroup R, we have $V(R) \ge dim(R)$ by Lemma 24. A Noetherian semigroup R is called a regular semigroup if V(R) = dim(R).

Ryûki Matsuda

THEOREM 30. Let R be a Noetherian semigroup with maximal ideal M. Assume that M is generated by a regular sequence a_1, \ldots, a_k on R. Then $k = \dim(R) = V(R)$, and R is a regular semigroup.

PROOF. We have $k \leq G(M, R) \leq ht(M)$ by Theorem 13. Also we have $ht(M) \leq V(R) \leq k$ by Lemma 24.

THEOREM 31. Let R be a regular semigroup with maximal ideal M, and $x \in M - 2M$. Put ht(M/(x)) = k. Then there exist x_1, \ldots, x_k such that $M = (x, x_1, \ldots, x_k)$.

PROOF. We have dim(R) = k + 1 by Theorem 26. By Theorem 29, there exist x_1, \ldots, x_k such that $M = (x, x_1, \ldots, x_k)$.

THEOREM 32. Let R be a Noetherian semigroup with maximal ideal M, and let $x \in M - 2M$. Put ht(M/(x)) = k. Assume that there exist elements x_1, \ldots, x_k such that $M = (x, x_1, \ldots, x_k)$. Then R is a regular semigroup.

PROOF. Because ht(M) = k + 1 by Theorem 26.

THEOREM 33. Let R be a regular semigroup of dimension n with maximal ideal M. Let $M = (x_1, ..., x_n)$. Then $x_i \notin 2M$ for each i, and $x_1, ..., x_n$ is a regular sequence on R.

PROOF. By Lemma 28, we have $x_i \notin 2M$. It follows that x_1, \ldots, x_n is a complete representatives of irreducible elements of R. Suppose that $x_k \in Z(R/(x_1, \ldots, x_{k-1}))$. There exists $y \in M - (x_1, \ldots, x_{k-1})$ such that $x_k + y \in (x_1, \ldots, x_{k-1})$. Let P be a prime ideal minimal over (x_1, \ldots, x_{k-1}) . Then there exists $l \ge k$ such that $x_l \in P$. There exist irreducible elements a_1, \ldots, a_{n-k} of Rsuch that $M = (P, a_1, \ldots, a_{n-k})$. Then we have $ht(M) \le ht(P) + n - k \le k - 1 + n - k = n - 1$, namely $ht(M) \le n - 1$; a contradiction.

Theorem 33 implies the following,

THEOREM 34. Any regular semigroup is a Macaulay semigroup.

THEOREM 35. Let R be a Noetherian semigroup such that R_P is regular for every prime ideal P of R. Then $R[X]_O$ is regular for every prime ideal Q of R[X].

PROOF. Set R[X] = T. We may assume that R is a regular semigroup with maximal ideal M, and $R \cap N = M$ for a prime ideal N of T. Then M is generated by a regular sequence a_1, \ldots, a_n . If M + R[X] = N, then our assertion holds. If $N \supseteq M + R[X]$, then $N = (a_1, \ldots, a_n, X)$, and a_1, \ldots, a_n, X is a regular sequence on R[X]. Theorem 30 completes the proof.

THEOREM 36. Let R be a Macaulay semigroup such that (R, R) satisfies property (*). Let I be a proper ideal of height n, which can be generated by n elements x_1, \ldots, x_n . Then P = Z(R/I) is a prime ideal of R, has height n and a minimal prime over I.

PROOF. We see that P is a prime ideal of R ([TM]). Theorem 16 implies that G(I, R) = n. Theorem 9 implies that x_1, \ldots, x_n is a maximal regular sequence in I on R. Theorem 6 implies that x_1, \ldots, x_n is a maximal regular sequence in P on R. Then Theorem 16 implies that ht(P) = n.

References

- [AA] D. D. Anderson and D. F. Anderson, Some remarks on cancellation ideals, Math. Japon. 29 (1984), 878–886.
- [K] I. Kaplansky, Commutative Rings, The Univ. Chicago Press, 1974.
- [M1] R. Matsuda, Note on questions of Anderson's, Colloq. Res. Ins. Math. Kyoto Univ. 960 (1996), 118-124.
- [M2] R. Matsuda, Commutative Ring Theory, Lecture Notes in Pure and Appl. Math. 185, (1997), 387–399.
- [M3] R. Matsuda, Some theorems for semigroups, Math. J. Ibaraki Univ. 30 (1998), to appear.
- [OMS] H. Ozawa, R. Matsuda and K. Sato, Semistar-operations on semigroups, Memoirs Tohoku Inst. Tech. 16 (1996), 1-14.
- [TM] T. Tanabe and R. Matsuda, Note on Kaplansky's Commutative Rings, Preprint.