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NOTE ON MACAULAY SEMIGROUPS

By

Rytiki MATSUDA

Almost all of ideal theory of a commutative ring R concerns properties of
ideals of R with respect to the multiplication ““x”” on R. Abandoning the addition
“+” on R we extract the multiplication on R. Then we have the idea of the
algebraic system S of a semigroup. We denote the operation on S by addition. S
is called a grading monoid. Concretely, a submonoid S of a torsion-free abelian
(additive) group is called a grading monoid (or a g-monoid). Many terms in
commutative ring theory are defined analogously for S. For example, a non-
empty subset 1 of S is called an ideal of S if S+ 7 < /. Let I be an ideal of S
with I ¢ S. If 51+ s, € I (for 51,5, € S) implies s; € I or s, € I, then [ is called a
prime ideal of S. If there exists an element se S such that 7 = S+, then 7 is
called a principal ideal of S. The group ¢(S) = {s; — 52|s1,52 € S} is called the
quotient group of S. A subsemigroup of ¢(S) containing S is called an over-
semigroup of S. Let I" be a totally ordered abelian (additive) group. A mapping v
of a torsion-free abelian group G onto I' is called a valuation on G if v(x + y) =
v(x) +v(y) for all x,ye G. Then v is called a I'-valued valuation on G. The
subsemigroup {xe G|v(x) >0} of G is called the valuation semigroup of G
associated with v. A Z-valued valuation is called a discrete valuation of rank 1.
The valuation semigroup associated with a discrete valuation of rank 1 is called a
discrete valuation semigroup of rank 1. An element x of an extension semigroup
T of S is called integral over S if nx e S for some ne N. Let S be the set of all
integral elements of ¢(S) over S. Then S is an oversemigroup of S, and is called
the integral closure of S. If S = S, then S is called an integrally closed semigroup
(or a normal semigroup). An ideal 7 of S is called a cancellation ideal of S if
I+Jy =14J, (for ideals J;,J, of S) implies J; = J,. The maximum number »
so that there exists a chain Py P, g -+ & P,(&S) of prime ideals of S is
called the dimension of S. Many propositions for commutative rings are known
to hold for S. The author conjectures that almost all propositions of multi-
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plicative ideal theory of R hold for S. It is usually expected that ideal theory of S
is simpler than that of R. Therefore investigating the ideal theory of S may be an
auxiliary means for investigating that of R. Of course we may say that the ideal
theory of S has its proper significance (cf. [M2])). For an example, Anderson-
Anderson [AA] posed a question: Is every cancellation ideal of a quasi-local
domain principal? The answer to this question is open. However, every can-
cellation ideal of S is principal ((M1]). For another example, let 5'(D) (resp.
3'(S)) be the set of all semistar-operations on D (resp. S). Assume that S is
integrally closed and of dimension #. Then S is a valuation semigroup if and only
it n+1<|3(S)| <2n+1 (JOMS]). If a similar property holds for D is open.
The aim of this paper is to show that almost all the propositions in Chapter 3 of
Kaplansky’s Commutative Rings [K] hold for g-monoids.

Since this paper is a semigroup version of commutative ring theory, a g-
monoid is denoted by R. Let 4 be a non-empty set. Assume that, for every r e R
and a € A, there is defined r + a € 4 such that, for every r;,r, € R and a € 4, we
have (ri+r)+a=r +(r,+a) and 0+a=a. Then A4 is called an R-module.
Let 4 be an R-module and re R. If r+a; =r+ay (for a;,a; € A) implies a; =
ay, then r is called a non-zerodivisor on A. If r is not a non-zerodivisor, then r is
called a zerodivisor on A. The set of zerodivisors on A4 is denoted by Z(4). Let B
be a submodule of an R-module 4, and re R. If r+ a € B (for a € 4) implies a €
B, then r is called a non-zerodivisor on 4 modulo B. A non-zerodivisor on A
modulo B is also called a non-zerodivisor on A/B. If r is not a non-zerodivisor
on A/B, then r is called a zerodivisor. The set of zerodivisors on 4/B is denoted
by Z(A4/B). If {x,...,X,} is a finite subset of R, then the ideal | )] (R + x;) of
R is denoted by (x|,...,x,). The ordered sequence of elements xi,...,x, of R is
called a regular sequence on A, if (x1,...,x4) + A4S A and if x; ¢ Z(A4), x» ¢
ZA/(x1)+A)y ., xn € Z(A)/((x1, ..., Xn-1) + A)).

THEOREM 1. Let A be an R-module, and let x, y be a regular sequence on A.
Then x ¢ Z(A/(y + A)).

PROOF. Assume that x +a = y+a; (for a,a; € 4). Since y ¢ Z(4/(x+ A)),
we have ajex+ 4. Since x¢Z(A), we have aey+ A, and hence x¢
Z(4/(y+ 4)).

Let A be an R-module. If Z(4) = ¥, then 4 is called torsion-free. Theorem
1 implies the following,
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THEOREM 2. Let A be a torsion-free R-module, and x,...,x, a regular
sequence on A. Then the sequence obtained by interchanging x; and x| is a
regular sequence on A if and only if xiiy ¢ Z(A/((x1,...,x;1) + A4)).

Let 4 be an R-module. If r, +a=r,+a (for r;,r€ R and a € A) implies
ri =r, then A4 is called cancellative. If every ideal of a g-monoid R is finitely
generated, then R is called a Noetherian semigroup.

Lemma 3 ([M3, Proposition 1]). Let R be a Noetherian semigroup, and A
a finitely generated R-module. Then A satisfies the ascending chain condition on
submodules.

THEOREM 4. Let R be a Noetherian semigroup, and A a finitely generated
torsion-free cancellative R-module. Let xi,...,x, be a regular sequence on A. Then
any permutation of the x's is a regular sequence on A.

PrOOF.  Set §'= ((x1,...,X,—2) + 4 : x,) ;. By Theorem 2, it suffices to show
that S < (x1,...,x,-2) + 4. Suppose the contrary. Take s in S with s ¢ (X150 .y
Xn-2) + A. Since x, ¢ Z(A/((x1,...,X._1) + A)), we have se (X15- .y Xn1) + A4,
and hence s = x,_; + a for some a € 4. It follows that x, + a € (xy,... s Xn—2) + A,
and hence a € S. Then we have S = x,_; + S; a contradiction to Lemma 3.

THEOREM 5. Let A be an R-module, and x,, ..., x, a regular sequence on A.
Then (x1),(x1,%2),...,(x1,...,X,) form a properly ascending chain.

Let 4 be an R-module, and I an ideal of R. Let x;,...,x, be a regular
sequence in / on A. If xy,...,x,,x is not a regular sequence on A for each x e 1,
then xi,...,x, is called a maximal regular sequence in / on A.

REMARK. Let R be a Noetherian semigroup. Then two maximal regular
sequences on R need not have the same length.

For example, let Z, be the monoid of non-negative integers and let R =
Zy® Zy. Set p=(1,0),g=(0,1) and x = (1,1). Then p,q is a maximal regular
sequence on R. Also, x is a maximal regular sequence on R.

Let 4 be an R-module, and 7 an ideal of R. Then the maximum of lengths of
all regular sequences in / on A is called the grade of 7 on A4, and is denoted by
G(I,A).



192 Rylki MATSUDA

THEOREM 6. Let A be an R-module, and I an ideal of R with I + A & A. Let
X1, ..., X, be a maximal regular sequence in I on A. Then there exists a prime ideal
P such that xi,...,x, is a maximal regular sequence in P on A.

Proor. Set P = Z(A/((x1,...,xs) + A)). Then P is a prime ideal containing
I, and xi,...,x, is a maximal regular sequence in P on A4.

LemMMa 7. Let R be a Noetherian semigroup. Then there exists only a finite
number of prime ideals of R.

Proor. Let xi,...,x, be the set of all irreducible elements of R any two of
which are not associated. Let P be a prime ideal of R. Then P is generated by a
subset of {xi,...,x.}.

TueoREM 8. Let R be a Noetherian semigroup, A a finitely generated torsion-
free cancellative R-module, and J a k-generated ideal of R with J + A < A. Then
G(J,A4) < k.

Proor. Let J = (xi,...,xx). Suppose that there exists a regular sequence
Pis--+s Vg1 in J on A. By Theorem 4, we may assume that y; =x;1+r, y, =
Xy + 1 for ri,r» € R. Choose ae€ A — (J + A). Then we have r +a¢ y, + A4 and
¥, +(r1 +a) ey, +A. Hence y, e Z(4/(y, + A)); a contradiction.

Let 4 be an R-module. If any two maximal regular sequences in / on 4 have
the same length for every ideal I with I+ A < A4, then 4 is said to satisfy
property (*). If 4 satisfies property (*), we say also that (R, 4) satisfies property

(*)-

THEOREM 9. In Theorem 8, let J = (x1,...,xx), and assume that G(J,A) =k
and (R, A) satisfies property (*). Then xi,...,Xx is a maximal regular sequence in
J on A.

ProOF. Assume  that  x; ¢ Z(A4),x, ¢ Z(A/((xi)) + A4)),...,x;, ¢ Z(A/
((xi1....x;, ) +A)) for 1 <h < k. Then we have J & Z(A4/((xi, ..., %;) + 4)).
Hence there exists i, such that x;,. ¢ Z(A4/((xi,...,x;,) + A)). Thus x;,..., x;
is a regular sequence on 4. Then Theorem 4 completes the proof.
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THEOREM 10. Let R be a Noetherian semigroup, and A a finitely generated
torsion-free cancellative R-module which satisfies property (*). Let I be an ideal of
R, and xe R with J = (I,x) g R. Then G(J,4) <1+ G(I,A4).

Proor. Let xi,...,x, be a maximal regular sequence in / on 4. If J <
Z(A/((x1,...,xm) +A)), we have G(J,A4) <1+ G(I,A). Assume that J ¢
Z(A/((x1,...,%m)+ A)). Then xy,...,xp,,x is a regular sequence in J on 4.
Suppose that J & Z(A/((x1,...,%m,Xx)+ A4)). Then there exists y eI such that
Xl,...,X%m, X,y 1s a regular sequence in J on 4. Then xi,...,x,, y is a regular
sequence in / on A by Theorem 4; a contradiction.

THEOREM 11. Let R be a Noetherian semigroup, and A a finitely generated
torsion-free cancellative R-module which satisfies property (*). Let I be an ideal of
R contained in a maximal ideal M. Assume that G(I,A) < G(M,A). Then there
exists a prime ideal P of R such that G(P,A) =1+ G(I, 4).

ProoF. Let xi,...,x; be a maximal regular sequence in / on 4, and set
Iy = (x1,...,xx). We may take xe M — Z(4/(ly + A)). By Theorem 10, we have
G((I,x),A)=k+1. Then P=Z(A/((I,x) + A)) is a desired prime ideal.

THEOREM 12. Let R be a Noetherian semigroup, and A a finitely generated
torsion-free cancellative R-module with property (*). Let I = (xy,...,x,) be a
proper ideal of R. Then G(I,A) = n if and only if x1,...,x, is a regular sequence
on A.

Proor. The necessity: Let J = (x],...,X,—1), and assume that the assertion
holds for xi,...,x,—1. We have G(J,4)=n—1 by Theorem 10, and hence
Xl,...,Xp—1 IS a regular sequence on A. Since G(I,4)=rn, we have I &

Z(A/((x1,...,X%4-1) + A)). It follows that xj,...,x, is a regular sequence on 4.

Let P be a prime ideal of R. Then the maximum number n so that there
exists a chain P & P, & -+ & P, = P of prime ideals of R is called the height of
P, and is denoted by ht(P). For an ideal / of R, the minimum of ht(P), P ranging
over the prime ideals containing 7 is called the height of I, and is denoted by
ht(7).

THEOREM 13. Let I be an ideal of R, and x1, ..., x, a reqular sequence in I on
R. Then n < ht(I).
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ProOF. Assume that the assertion holds for n — 1. We may assume that P =
I is a prime ideal. Set T = {kx, + s|k > 0,s € R — P}. Suppose that TN (xy,...,
Xn_1) # &, say kx, + s € (x1,...,x,-1). By the choice of s and k,, we have k > 1
and (k—Dx,+se(x1,...,xp-1). Thus x, +s€ (x,...,x,-1); a contradiction.
Hence TN (xq,...,X%,—1) = . Then there exists a prime ideal Q such that 0 o
(x1,...,x,_1) and QN T = ¢&. By the assumption, we have At(Q) = n—1, and
hence ht(P) = n.

Let R be a Noetherian semigroup with maximal ideal M. If G(M,R) =
dim(R), then R is called a Macaulay semigroup. Let 4 be an R-module, and S
an additive system in R. If, for a;,ay € 4 and 51,5, € S, we have a; +s5 +s5=
ay +s1 + s for some se S, we define a; — 51 =a, —55. Thus Ag={a—s|laec4,
se€ S} is an Rg-module. If P is a prime ideal of R, then 4Ax_p is denoted by Ap.

THeOREM 14. Let A be an R-module, and xy,...,x, a regular sequence on
A. Let S be an additive system in R such that (x,,...,x,)+ As & As. Then
Xi,...,Xn Is a regular sequence in Rg on Ag.

Theorem 14 implies the following,

THEOREM 15. Let P be a prime ideal of R, and I an ideal contained in P.
Then G(I,P) < G(Ip,Rp).

THEOREM 16. Let R be a Macaulay semigroup such that (R,R) satisfies
property (*). Then we have G(I,R) = ht(I) for every ideal I of R.

ProoF. Suppose the contrary. Let P be a maximal member in the set of all
ideals I with G(I, R) < ht(I). Then P is a prime ideal by Theorem 6. By Theorem
11, there exists a prime ideal Q containing P such that G(Q,R) =1+ G(P, R).
Then G(Q, R) < ht(P) + 1 < ht(Q) + 1,and hence G(Q, R) < ht(Q); a contradiction.

Let P be a prime ideal of R. Then the minimum of n+ 1 such that there
exists a saturated chain of prime ideals P2 P; 2 --- 2 P, of R is called the little
height of P, and is denoted by /i(P). If R satisfies the following conditions (1)
and (2), we say that R satisfies the saturated chain condition:

(1) Ih(P) = ht(P) for every prime ideal P of R.

(2) For all prime ideals P, Q with P 2 Q, any two saturated chains from P
to Q have the same length.
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TueoreM 17. Let R be a Noetherian semigroup such that (Rp, Rp) satisfies
property (*) for every prime ideal P. Then we have G(P, R) < Ih(P) for every prime
ideal P.

PROOF. We may assume that M = P is a maximal ideal of R. Let [h(M) =
m, and assume that the assertion holds for m — 1. There exists a prime ideal Q
with /h(Q) = m — 1. Then G(Q + Rp, Rp) <m — 1 by the assumption, and hence
G(Q,R) <m—1. Then G(M,R)=1+ G(Q,R) by Theorem 11, and hence
G(M,R) < m.

TuroreM 18. Let R be a Macaulay semigroup such that (R,R) satisfies
property (*). Then Rs is a Macaulay semigroup for every additive system S of R.

ProoF. There exists a prime ideal P of R such that N=P+ R is a
maximal ideal of Rs. Then we have G(P,R) = ht(P) by Theorem 16. It follows
that h7(N) < G(N, Rs) by Theorem 15, and G(N, Rs) < ht(N) by Theorem 13.

LemMMA 19 ([M3, Theorem 1]). Let R be a Noetherian semigroup, and x a
nonunit of R. If P is a minimal prime ideal over (x), then ht(P) = 1.

Let S be a g-monoid and R a submonoid of S. If x is an element of S, then
the submonoid R + Zys of S is denoted by R[s]. Let X be an indeterminate over
R. Then the g-monoid R+ ZyX is denoted by R[X], and is called the polynomial
semigroup of X over R.

Lemma 20 ([TM]). (1) Assume that R satisfies the ascending chain condition
on radical ideals, and let I be an ideal. Then there exists only a finite number of
prime ideals minimal over I.

(2) Assume that R satisfies the ascending chain condition on radical ideals. If R
has an infinite number of prime ideals of height 1, then their intersection is empty.

(3) Let R be a g-monoid with G = q(R), and let u € R. Then every prime ideal
of R contains u if and only if G = R[-ul.

If g(R) is generated by one element over R as a monoid, that is, if g(R) is of
the form R[x] for some x € ¢(R), then R is called a G-semigroup. Lemmas 7 and

20 imply the following,

THEOREM 21.  Any Noetherian semigroup is a G-semigroup.
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LemMMma 22 ([TM]). (1) Let P be a prime ideal of R of height 1. Then P+
R[X] is a prime ideal of R[X] of height 1.

(2) Let P be a prime ideal of R with n=ht(P). Let Q be a prime ideal of
R[X] properly containing P+ R[X| and with P = QN R. Then ht(P+ RX])=n
and ht(Q) =n+ 1.

QuestioN. If R is Noetherian, what are conditions for (R[X],R[X]) to
satisfy property (*)?

TueoREM 23. Let R be a Noetherian semigroup such that (R[X], R[X])
satisfies property (*). Then R is a Macaulay semigroup if and only If R(X] is a
Macaulay semigroup.

ProOF. Let M be a maximal ideal of R with n = ht(M). The necessity: Let
Xl,...,%, be a regular sequence in M on R, Then xi,...,x,, X is a regular
sequence in R[X] on R[X]. Hence R[X] is a Macaulay semigroup by Theorem 13
and Lemma 22. The sufficiency: Let X, f;,...,f, be a regular sequence in R[X]
on R[X]. Set f; = a; + k;X for each i (for a; € R and k; > 0). Then we have k; =0
for each i. It foliows that aj,...,a, is a regular sequence on R.

LEMMA 24 ((M3, Theorem 1]). Let R be a Noetherian semigroup, and I an n-
generated proper ideal. Let P be a prime ideal minimal over I. Then hi(P) < n.

Let P be a prime ideal, and I an ideal contained in P. The maximum of # so
that there exists a chain of prime ideals P2 Py 2 --- 2 P, oI is called the
height of P/I, and is denoted by ht(P/I).

THEOREM 25. Let R be a Noetherian semigroup, P a prime ideal, and I an n-
generated ideal contained in P. Then ht(P) < n+ ht(P/I).

Proor. Let I = (ay,...,a,) with a; # a; (for i # j), and set ht(P/I) = k. For
any prime ideal Q, the cardinality of QN {a,...,a,} is called the capacity of 0,
and is denoted by ¢(Q). Let ht(P) =1+ 1, and let P2 P; 2 --- 2 P; be a chain
of prime ideals. Then Z{ c(P;) is called the capacity of the chain. We will show
[ +1 <k +n by the induction on the number S e(P;). Thus, if S e(p) = nl,
then / < k. Hence /+ 1 < k+ n. Assume that 0 = c(P)) = - = ¢(Py) < ¢(Py-1).
The case that ht(P,) = 1: Since ht(Py_y) =2, P, is not a prime ideal minimal
over (a;). Hence there exists a prime ideal Q with a; € Q such that P, 2 0.
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Then the capacity of the chain P2 Py 2 -+ 2 P, 20 is larger than that of the
chain P2 Py 2 --- 2 P,y 2 P;. By the induction hypothesis, we have / + 1 <
k +n. The case that ht(P,) > 1: If P,. is a prime ideal minimal over (P,_,,a;),
then P, is a prime ideal minimal over P, ;; a contradiction. Hence P, is not a
prime ideal minimal over (P,_i,a;). Then there exists a prime ideal Q such that
Py1 2 Q2 P, 1. Then the capacity of the chain P2 P12 - 2P, 202
Py_1 2 -+ 2 P, is larger than that of the chain P2 P2 - 2P, 2P, 2
P, 1 2 --- 2 P;. By the induction hypothesis, we have [ +1 > k +n.

THEOREM 26. Let R be a Noetherian semigroup, P a prime ideal, and x € P.
Then ht(P/(x)) = ht(P) — 1.

By Theorem 26, we have the following,

THEOREM 27. Let R be a Noetherian semigroup, M a maximal ideal of R,
and xe M. Let k=ht(M/(x)), and x\,...,xx be elements of M such that
x1 ¢ Z(R/(x)), x2 ¢ Z(R/(x,x1)),...,Xk—1 ¢ Z(R/(x,x1,...,xx_1)). Then R is a
Macaulay semigroup.

Lemma 28 ([TM]). Let R be a Noetherian semigroup with maximal ideal
M, and A a finitely generated R-module. Assume that A= (ay,...,a,, M + A).
Then M = (ay,...,a).

Let R be a Noetherian semigroup with maximal ideal M. If M is generated
by a finite subset {ai,...,a,} of R, and If M is not generated by any proper
subset of {ai,...,a,}, then {aj,...,a,} is called a minimal generators of M. Let
{a1,...,a,} and {by,... by} be two set of minimal generators of M. Then each
a; is contained in the ideal (b)) for some m(i), and each b; is contained in some
(@n)). Then it follows that i = n(m(i)) and j = m(n(j)) for all i and j. Hence n =
m. The cardinality of a minimal generators of M is called the V-dimension of R,
and is denoted by V(R).

THEOREM 29. Let R be a Noetherian semigroup with maximal ideal M, and
let xe M —2M. Let r be the minimum number so that there exist x,...,x, with
(%, x1,...,%) =M. Then r = V(R) — 1.

For a Noetherian semigroup R, we have ¥V (R) > dim(R) by Lemma 24. A
Noetherian semigroup R is called a regular semigroup if V(R) = dim(R).
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TaEOREM 30. Let R be a Noetherian semigroup with maximal ideal M.
Assume that M is generated by a regular sequence ay,...,a; on R. Then k =
dim(R) = V(R), and R is a regular semigroup.

Proor. We have k < G(M,R) < ht(M) by Theorem 13. Also we have
ht(M) < V(R) <k by Lemma 24.

TueoreM 31. Let R be a regular semigroup with maximal ideal M, and
xeM —2M. Put ht(M/(x)) =k. Then there exist xi,...,xy such that M =

(%, X1, -y Xk)-

Proor. We have dim(R) =k + 1 by Theorem 26. By Theorem 29, there
exist xi,...,x; such that M = (x,x,...,xg).

THEOREM 32. Let R be a Noetherian semigroup with maximal ideal M, and
let xe M —2M. Put ht(M/(x)) = k. Assume that there exist elements xi,...,Xk
such that M = (x,x1,...,xx). Then R is a regular semigroup.

PrOOF. Because ht(M) =k +1 by Theorem 26.

THEOREM 33. Let R be a regular semigroup of dimension n with maximal
ideal M. Let M = (x\,...,x,). Then x; ¢ 2M for each i, and x\,. .., x, is a regular
sequence on R.

Proor. By Lemma 28, we have x;¢2M. It follows that xj,...,x, is
a complete representatives of irreducible elements of R. Suppose that x; e
Z(R/(x1,...,xk-1)). There exists ye M —(xi,...,x-1) such that x;+ye
(x1,...,xk-1). Let P be a prime ideal minimal over (xi,...,xx—1). Then there
exists / > k such that x; € P. There exist irreducible elements aj,...,a,-x of R
such that M = (P,ay,...,a,—). Then we have ht(M) < ht(P)+n—-k<k—-1+
n-—k=n-1, namely at(M) < n—1; a contradiction.

Theorem 33 implies the following,
THEOREM 34. Any regular semigroup is a Macaulay semigroup.

THEOREM 35. Let R be a Noetherian semigroup such that Rp is regular for
every prime ideal P of R. Then R[X, is regular for every prime ideal Q of R[X].
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Proor. Set R[X] = T. We may assume that R is a regular semigroup with
maximal ideal M, and RN N = M for a prime ideal N of T. Then M is generated
by a regular sequence ai,...,a,. If M + R[X] = N, then our assertion holds. If
N 2 M + R[X], then N = (ay,...,a,,X), and ay,...,a,, X is a regular sequence
on R[X]. Theorem 30 completes the proof.

THEOREM 36. Let R be a Macaulay semigroup such that (R,R) satisfies
property (*¥). Let I be a proper ideal of height n, which can be generated by n
elements xi,...,x,. Then P=Z(R/I) is a prime ideal of R, has height n and a
minimal prime over I.

Proor. We see that P is a prime ideal of R ((TM]). Theorem 16 implies that
G(I,R) = n. Theorem 9 implies that xp,...,x, is a maximal regular sequence in /
on R. Theorem 6 implies that xi, ..., x, is a maximal regular sequence in P on R.
Then Theorem 16 implies that At(P) = n.
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