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NOTE ON MACAULAY SEMIGROUPS

By

Ryuki Matsuda

Almost ail of ideal theory of a commutative ring R concerns properties of

ideals of R with respect to the multiplication "x" on R. Abandoning the addition

"+" on R we extract the multiplication on R. Then we have the idea of the

algebraic system S of a semigroup. We denote the operation on S by addition. S

is called a grading monoid. Concretely, a submonoid S of a torsion-free abelian

(additive) group is called a grading monoid (or a g-monoid). Many terms in

commutative ring theory are defined analogously for S. For example, a non-

empty subset / of S is called an ideal of S if S + / <= /. Let / be an ideal of S

with / g S. If s＼+ s2 e I (for s＼,s2e S) implies s＼e I or s2 e /, then / is called a

prime ideal of S. If there exists an element s e S such that / = S + s, then / is

called a principal ideal of S. The group q(S) = {^i ― s2 | s＼,s2 e S) is called the

quotient group of S. A subsemigroup of q(S) containing S is called an over-

semigroup of S. Let F be a totally ordered abelian (additive) group. A mapping v

of a torsion-free abelian group G onto T is called a valuation on G if v(x + y) =

v(x) + v(y) for all x, jeG. Then y is called a F-valued valuation on G. The

subsemigroup {xeG|y(x)>0} of G is called the valuation semigroup of G

associated with v. A Z-valued valuation is called a discrete valuation of rank 1.

The valuation semigroup associated with a discrete valuation of rank 1 is called a

discrete valuation semigroup of rank 1. An element x of an extension semigroup

T of S is called integral over S if nx e S for some n e N. Let S be the set of all

integral elements of q(S) over S. Then S is an oversemigroup of S, and is called

the integral closure of S. If S = S, then S is called an integrally closed semigroup

(or a normal semigroup). An ideal / of S is called a cancellation ideal of S if

I + J＼ = I + J2 (for ideals J＼,J2 of S) implies J＼= J2. The maximum number n

so that there exists a chain P＼^P2^ ■■■<^Pn(g=$) of prime ideals of S is

called the dimension of S. Many propositions for commutative rings are known

to hold for S. The author conjectures that almost all propositions of multi-
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plicativeideal theory of R hold for S. It is usually expected that ideal theory of S

is simpler than that of R. Therefore investigating the ideal theory of S may be an

auxiliary means for investigating that of R. Of course we may say that the ideal

theory of S has its proper significance(cf. [M2])). For an example, Anderson-

Anderson [AA] posed a question: Is every cancellation ideal of a quasi-local

domain principal? The answer to this question is open. However, every can-

cellation ideal of S is principal ([Ml]). For another example, let ]T^(D) (resp.

Y^'(S)) be the set of all semistar-operations on D (resp. S). Assume that S is

integrally closed and of dimension n. Then S is a valuation semigroup if and only

if n + 1 < | Y!is)＼ < 2≪+ 1 ([QMS]). If a similar property holds for D is open.

The aim of this paper is to show that almost all the propositions in Chapter 3 of

Kaplansky's Commutative Rings [K] hold for g-monoids.

Since this paper is a semigroup version of commutative ring theory, a g-

monoid is denoted by R. Let A be a non-empty set.Assume that,for every r e R

and a e A, there is defined r + a e A such that, for every n, ri e R and a e A, we

have (r＼+ ri) + a = r＼+ {rj + a) and 0 + a = a. Then A is called an i?-module.

Let A be an i?-module and r e R. If r + a＼= r + aj (for ai,≪2e A) implies a＼=

≪2,then r is called a non-zerodivisor on A. If r is not a non-zerodivisor, then r is

called a zerodivisor on A. The set of zerodivisors on A is denoted by Z(A). Let B

be a submodule of an i?-module A, and r e R. If r + ae B (for a e A) implies a e

B, then r is called a non-zerodivisor on ^ modulo B. A non-zerodivisor on
^4

modulo B is also called a non-zerodivisor on
^4/5.
If r is not a non-zerodivisor

on A/B, then r is called a zerodivisor. The set of zerodivisors on A/B is denoted

by Z(A/B). If {x＼,...,xn} is a finitesubset of R, then the ideal ＼J"=l(R+ xt) of

R is denoted by (xi,..., xn). The ordered sequence of elements x＼,...,xn of R is

called a regular sequence on A, if (x＼,...,xn) + A §=A and if x＼$ Z(A), X2 4

Z(A/({Xl) +A)),...,xH$ Z(A/((xu..., xn-i) + A)).

Theorem 1. Let A be an R-module, and let x, y be a regular sequence on A

Then x $ Z(A/(y + A)).

Proof. Assume that x + a = y + a＼(for a,a＼g A). Since y $ Z(A/(x + A)),

we have a＼ex + A. Since x$Z(A), we have aey + A, and hence x <£

Let A be an i?-module. If Z(A) = 0, then A is called torsion-free.Theorem

1 implies the following,
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Theorem 2. Let A be a torsion-free R-module, and x＼,...,xn a regular

sequence on A. Then the sequence obtained by interchanging x,-and Xj+＼is a

regular sequence on A if and only if x,-+î Z{A/{{x＼1... ,x,_i) + A)).

Let A be an i?-module. If r＼+ a = r^ + a (for r＼,rie R and a e A) implies

r＼= rj, then A is called cancellative.If every ideal of a g-monoid R is finitely

generated, then R is called a Noetherian semigroup.

Lemma 3 ([M3, Proposition 1]). Let R be a Noetherian semigroup, and A

a finitely generated R-module. Then A satisfiesthe ascending chain condition on

Theorem 4. Let R be a Noetherian semigroup, and A a finitely generated

torsion-freecancellativeR-module. Let xi,... ,xn be a regular sequence on A. Then

any permutation of the x's is a reqular sequence on A.

Proof. Set S = ((xi,...,xn-i) + A : xn)A. By Theorem 2, it sufficesto show

that S <=(xj,...,xw_2) + A Suppose the contrary. Take s in S with s $ (xi,...,

x≪_2)+^- Since x≪^ Z(^/((xi,... ,xn-i) +A)), we have s e (xu
■･･
,xn-i) + A,

and hence s = xM_i + a for some a £A. It follows that xw + a e (x＼,...,xn-2) + A,

and hence a e S. Then we have S = x≪_i4-5": a contradiction to Lemma 3.

Theorem 5. Let A be an R-module, and xi,... ,xn a regular sequence on A

Then (x＼),(x＼,x?),...,(xi,...,xn) form a properly ascending chain.

Let A be an i?-module, and / an ideal of R. Let x＼,...,xn be a regular

sequence in / on A. If x＼,...,xn, x is not a regular sequence on A for each x e I,

then x＼,...,xn is called a maximal regular sequence in /on ,4.

Remark. Let R be a Noetherian semigroup. Then two maximal regular

sequences on R need not have the same length.

For example, let Zq be the monoid of non-negative integers and let R =

Zq c Zq. Set p = (1,0), # = (0,1) and x ―(1,1). Then p, q is a maximal regular

sequence on R. Also, x is a maximal regular sequence on R.

Let A be an J?-module, and / an ideal of R. Then the maximum of lengths of

all regular sequences in / on A is called the grade of / on A, and is denoted by

G(I.A).
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Theorem 6. Let A be an R-module, and I an ideal of R with I + A g A. Let

xi,... ,xn be a maximal regular sequence in I on A. Then there existsa prime ideal

P such that x＼,...,xn is a maximal regular sequence in P on A.

Proof. Set P = Z{A/{(x＼,. ..,xn)+ A)). Then P is a prime ideal containing

/, and x＼,...,xn is a maximal regular sequence in P on i.

Lemma 7. Let R be a Noetherian semigroup. Then there exists only a finite

number of prime ideals of R.

Proof. Let x＼,...,xn be the set of allirreducible elements of R any two of

which are not associated. Let P be a prime ideal of R. Then P is generated by a

subset of {x＼,...,xn}.

Theorem 8. Let R be a Noetherian semigroup, A a finitelygenerated torsion-

free cancellativeR-module, and J a k-generated ideal of R with J + A g; A. Then

G{J,A) <k.

Proof. Let / = (xi,... ,Xk). Suppose that there exists a regular sequence

}>i,...,yk+＼in / on A. By Theorem 4, we may assume that yl = x＼+ r＼,y2 =

x＼+ r2 for ri,r2 e R. Choose a e A - (J + A). Then we have n + a 4 y＼+ A and

y2 + (n + ≪)e y, + A. Hence y2 e ZiA/iy, + A)); a contradiction.

Let A be an i?-module. If any two maximal regular sequences in / on A have

the same length for every ideal / with I + A g A, then A is said to satisfy

property (*). If A satisfiesproperty (*), we say also that (R,A) satisfiesproperty

(*)･

Theorem 9. In Theorem 8, let J = (x＼,...,Xk), and assume that G(J,A) = k

and (R,A) satisfiesproperty (*). Then x＼,...,Xk is a maximal regular sequence in

J on A.

Proof. Assume that xh $ Z(A),xh $ Z(A/((xh) + A)),..., xk 4 Z(A/

{{xil,...,xih_l)+A)) for 1 <h<k. Then we have J <£Z{A/{(xil,...,xih)+A)).

Hence there exists ih+＼ such that xih+1£Z(A/((xtl,..., x,-J + ^4)). Thus xi],..., xik

is a regular sequence on A. Then Theorem 4 completes the proof.
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Theorem 10. Let R be a Noetherian semigroup, and A a finitelygenerated

torsion-freecancellativeR-module which satisfiesproperty (*). Let I be an ideal of

R, and xeR with J = (I,x) g R. Then G(J,A) < 1 + G(I,A).

Proof. Let xi,...,xm be a maximal regular sequence in / on A. If J a

Z(A/((xi,...,xm)+A)), we have G(J,A) < 1 + G(I,A). Assume that J <£

Z(A/((x＼,... ,xm) + A)). Then x＼,...,xm,x is a regular sequence in / on A.

Suppose that J <£Z(A/((xi,...,xm,x) + A)). Then there exists yel such that

x＼,...,xm, x, y is a regular sequence in /on A. Then x＼,...,xm, y is a regular

sequence in / on A by Theorem 4; a contradiction.

Theorem 11. Let R be a Noetherian semigroup, and A a finitelygenerated

torsion-freecancellativeR-module which satisfiesproperty (*). Let I be an ideal of

R contained in a maximal ideal M. Assume that G(I,A) < G(M,A). Then there

exists a prime ideal P of R such that G(P,A) = 1 + Gil, A).

Proof. Let xi,...,X£ be a maximal regular sequence in /on A, and set

/o = (xi,...,Xk). We may take x e M ―Z(A/{Iq +
^4)).
By Theorem 10, we have

G((I,x),A) = k + 1. Then i3 = Z(A/((I,x) + A)) is a desired prime ideal.

Theorem 12. Let R be a Noetherian semigroup, and A a finitelygenerated

torsion-free cancellative R-module with property (*). Let I = (x＼,...,xn) be a

proper ideal of R. Then G{I,A) ― n if and only if xi,... ,xn is a regular sequence

on A.

Proof. The necessity: Let / = (x＼,...,xn-＼),and assume that the assertion

holds for x＼,...,xn-＼. We have G(J,A) = n―l by Theorem 10, and hence

x＼,...,xn-＼is a regular sequence on A. Since G(I,A)=n, we have I <fi

Z(A/((x＼,... ,xn-＼)+ A)). It follows that x＼,...,xn is a regular sequence on A.

Let P be a prime ideal of R. Then the maximum number n so that there

exists a chain P＼ g p2 c ... c; pn = p of prime ideals of i? is called the height of

P, and is denoted by ht(P). For an ideal / of R, the minimum of ht(iJ),P ranging

over the prime ideals containing / is called the height of /, and is denoted by

ht(/).

Theorem 13. Let I be an ideal of R, and x＼,...,xn a regular sequence in I on

R. Then n < ht(I).
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Proof. Assume that the assertion holds for n ― 1. We may assume that P =

I is a prime ideal. Set T = {kxn + s＼k>0,seR ―P}. Suppose that TO (x＼,...,

x≫-i)^ 0, saY kxn + s e (jci,...,xn-i). By the choice of s and kn, we have k>＼

and (A:- l)xn + se {x＼,...,xn_i). Thus xw + s e (xi,... ,xn_i); a contradiction.

Hence Tf＼(xi,...,jcw_i)= 0. Then there exists a prime ideal Q such that Q =>

(xi,...,xn-i) and QOT = 0. By the assumption, we have ht(Q) >n―＼, and

hence ht(P) > n.

Let R be a Noetherian semigroup with maximal ideal M. If G(M,R) =

dim(R), then R is called a Macaulay semigroup. Let A be an J?-module, and S

an additive system in R. If, for a＼,ai e A and s＼,S2e S, we have a＼+ S2 + s =

≪2 + ^1 + s f°r some 5 e S, we define ai ― $＼= a2 ― 52. Thus As = {a ― s＼a e A,

s e S} is an jR5-module. If P is a prime ideal of R, then AR_P is denoted by
^4p.

Theorem 14. Let A be an R-module, and x＼,...,xna regularsequence on

A. Let S be an additivesystem in R such that (x＼,...,xn)+ A$ £ A$. Then

x＼,...,xnis a regular sequence in R$ on As-

Theorem 14 implies the following,

Theorem 15. Let P be a prime ideal of R, and I an ideal contained in P

Then G{I,P) <G(IP,RP).

Theorem 16. Let R be a Macaulay semigroup such that (R,R) satisfies

property (*). Then we have G(I,R) = ht(I)for every idealI of R.

Proof. Suppose the contrary.Let P be a maximal member in the setof all

ideals/with G(I,R) < ht{I).Then P is a prime idealby Theorem 6. By Theorem

11, there existsa prime ideal Q containingP such that G(Q,R) = 1 + G(P,R).

ThenG(Q,R) < ht(P)+ 1 < ht(Q) + 1,and hence G(Q,R) < ht(Q);a contradiction.

Let P be a prime ideal of R. Then the minimum of n + 1 such that there

exists a saturated chain of prime ideals P g P＼ ^ ■･■=2 /*, of i? is called the little

height of P, and is denoted by lh{P). If R satisfies the following conditions (1)

and (2), we say that R satisfies the saturated chain condition:

(1) lh(P) = ht(P) for every prime ideal P of R.

(2) For all prime ideals P, Q with P g Q, any two saturated chains from P

to Q have the same length.
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Theorem 17. Let R be a Noetherian semigroup such that (Rp,Rp) satisfies

property (*) for every prime ideal P. Then we have G(P, R) < lh(P) for every prime

Proof. We may assume that M = P is a maximal ideal of R. Let lh{M) =

m, and assume that the assertion holds for m― 1. There exists a prime ideal Q

with lh(Q) = m ―1. Then (j(£?+ i?g,i?g) < m ―1 by the assumption, and hence

G(Q,R) <m-l. Then G(M,R) = ＼+ G{Q,R) by Theorem 11, and hence

G(M.R) <m.

Theorem 18. Let R be a Macaulay semigroup such that (R,R) satisfies

property (*). Then Rs is a Macaulay semigroup for every additive system S of R.

Proof. There existsa prime ideal P of R such that N = P + Rs is a

maximal ideal of Rs. Then we have G(P,R) = ht{P) by Theorem 16.It follows

that ht(N) < G(N,RS) by Theorem 15, and G(N,RS) < ht(N) by Theorem 13.

Lemma 19 ([M3, Theorem 1]). Let R be a Noetherian semigroup,and x a

nonunit of R. If P is a minimal prime ideal over (x), then ht(P) = 1.

Let S be a g-monoid and R a submonoid of S. If x is an element of S, then

the submonoid R + Zqs of S is denoted by R[s＼.Let X be an indeterminateover

R. Then the g-monoid R + Z0X is denoted by R[X], and is calledthe polynomial

semieroun of X over R.

Lemma 20 ([TM]). (1) Assume that R satisfiesthe ascending chain condition

on radical ideals, and let I be an ideal. Then there exists only a finite number of

prime ideals minimal over I.

(2) Assume that R satisfiesthe ascending chain condition on radical ideals.If R

has an infinitenumber of prime ideals of height 1, then theirintersectionis empty.

(3) Let R be a g-monoid with G = q{R), and let u e R. Then every prime ideal

of R contains u if and only if G = R＼―u].

If q(R) is generated by one element over R as a monoid, thatis,if q(R) is of

the form R[x] for some x e q(R), then R is called a G-semigroup. Lemmas 7 and

20 imply the following,

Theorem 21. Any Noetherian semiqroup is a G-semiqroup.
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Lemma 22 ([TM]). (1) Let P be a prime ideal of R of height 1. Then P +

R[X] is a prime ideal of R[X] of height 1.

(2) Let P be a prime ideal of R with n = ht(P). Let Q be a prime ideal of

R[X] properly containing P + R[X] and with P= QHR. Then ht(P + R[X]) = n

and ht{Q) =≪+ 1.

Question. If R is Noetherian, what are conditions for (i^X],J?[X]) to

satisfy property (*)?

Theorem 23. Let R be a Noetherian semigroup such that (R[X],R[X＼)

satisfiesproperty (*). Then R is a Macaulay semigroup if and only If R[X] is a

Macaulay semigroup.

Proof. Let M be a maximal ideal of R with n = ht(M). The necessity: Let

x＼,...,xn be a regular sequence in M on J£,Then x＼,...,xn,X is a regular

sequence in R[X] on i?[X]. Hence R[X) is a Macaulay semigroup by Theorem 13

and Lemma 22. The sufficiency: Let X,/j,...,/n be a regular sequence in R[X]

on R[X]. Set f{ = a,;+ A;,X for each /(for a,-e R and kt > 0). Then we have k( = 0

for each /. It follows that a＼,...,an is a regular sequence on R.

Lemma 24 ([M3, Theorem 1]). Let R be a Noetherian semigroup, and I an n-

generated proper ideal. Let P be a prime ideal minimal over I. Then ht(P) < n.

Let P be a prime ideal,and / an idealcontainedin P. The maximum of n so

that there existsa chain of prime ideals P g Pi =2 ･･･ gPn=)/ is called the

height of P/I, and is denoted by ht(PII).

Theorem 25. Let R be a Noetherian semigroup, P a prime ideal, and I an n-

generated ideal contained in P. Then ht(P) < n + ht(PlI).

Proof. Let / = (<zi,..., an) with at ^ ≪,-(for i =£j), and set ht(P/I) = k. For

any prime ideal Q, the cardinality of QC＼ {a＼,... ,an} is called the capacity of Q,

and is denoted by c{Q). Let ht(P) =1+1, and let P ^ Pi =2 ･■･ g ?; be a chain

of prime ideals. Then J2＼ c(^<) ^s called the capacity of the chain. We will show

/ + 1 < k + n by the induction on the number J2i c(^d- Thus, if ]TJ c(Pj) = nl,

then / < k. Hence / + 1 <k + n. Assume that 0 = c{Pi) = ■■■= c(Pa) < c(Pa_i).

The case that ht(Pa) = 1: Since ht{PaL-＼) = 2, Pa_i is not a prime ideal minimal

over (a＼). Hence there exists a prime ideal Q with a＼e Q such that jP/_i ^ 2-
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Then the capacity of the chain P g Pi =2 ･･･ g Pi-i g Q is larger than that of the

chain P =2 P＼ =2 ■■･ =2P/_i gP/. By the induction hypothesis, we have /+ 1 <

k + n. The case that ht(Px) > 1: If Pa+i is a prime ideal minimal over (Pa_i,ai),

then Pa is a prime ideal minimal over Pa_i; a contradiction. Hence Pg+i is not a

prime ideal minimal over (Pa_i,ai). Then there exists a prime ideal (? such that

P<*+＼g fig Pa-i- Then the capacity of the chain P =2 P＼^ ■■■g Pa+i 3 fig

-Pa-i g ･･･ =iP/ is larger than that of the chain P =2 Pi =2 ■･･ g Pa+i ^^d

Pa-i S ･■･li ^/- By the induction hypothesis, we have /+ 1 > k + n.

Theorem 26. Let R be a Noetherian semigroup, P a prime ideal, and x e P.

Then ht(P/(x)) = ht(P) - 1.

By Theorem 26, we have the following,

Theorem 27. Let R be a Noetherian semigroup, M a maximal ideal of R,

and xeM. Let k = ht(M/(x)), and xi,...,Xk be elements of M such that

xi$Z(R/(x)), x2$Z(R/(x,xi)),...,xk-i$Z(R/(x,x＼,...,xk-＼)). Then R is a

Macaulav semiaroun.

Lemma 28 ([TM]). Let R be a Noetherian semigroup with maximal ideal

M, and A a finitelygenerated R-module. Assume that A = (a＼,...,ar,M + A).

Then M = (a＼,...,ar).

Let R be a Noetherian semigroup with maximal ideal M. If M is generated

by a finitesubset {a＼,...,an} of R, and If M is not generated by any proper

subset of {a i,...,≪,},then {a＼,...,an} is called a minimal generators of M. Let

{a＼,...,an} and {b＼,...,bm} be two set of minimal generators of M. Then each

atis contained in the ideal (bm^) for some m(i), and each Z>7-is contained in some

(a≪(,-)).Then it follows that / = n(m(i)) and 7 = m(n{j)) for alli and/ Hence n =

m. The cardinality of a minimal generators of M is called the V-dimension of R,

and is denoted by V(R).

Theorem 29. Let R be a Noetherian semigroup with maximal ideal M, and

let x e M ―2M. Let r be the minimum number so that there exist x＼,...,xr with

(x, x＼,...,xr) = M. Then r = V(R) - 1.

For a Noetherian semigroup R, we have V(R) > dim(R) by Lemma 24. A

Noetherian semigroup R is called a regular semigroup if V(R) ―dim(R).
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Theorem 30. Let R be a Noetherian semigroup with maximal ideal M.

Assume that M is generated by a regular sequence a＼,...,a^ on R. Then k =

dim(R) = V(R), and R is a regular semigroup.

Proof. We have k < G(M, R) < ht(M) by Theorem 13. Also we have

ht{M) < V(R) < k by Lemma 24.

Theorem 31.

xeM-2M. Put

(x,xx,...,xk).

Let R be a regular semigroup with maximal ideal M, and

ht(M/(x)) = k. Then there exist x＼,...,xic such that M =

Proof. We have dim(R) =k+l by Theorem 26. By Theorem 29, there

existx＼,...,Xk such that M ―(x,x＼,...,Xk).

Theorem 32. Let R be a Noetherian semigroup with maximal ideal M, and

let xe M ―2M. Put ht(M/(x)) ―k. Assume that there exist elements x＼,...,Xk

such that M = (x, x＼,...,Xk). Then R is a regular semigroup.

Proof. Because ht(M) = k + 1 by Theorem 26.

Theorem 33. Let R be a regular semigroup of dimension n with maximal

ideal M. Let M = (x＼,..., xn). Then x{ <fc2M for each i, and x＼,..., xn is a regular

sequence on R.

Proof. By Lemma 28, we have x{£2M. It follows that x＼,...,xn is

a complete representatives of irreducible elements of R. Suppose that Xk e

Z(R/(x＼,...,Xk-i)). There exists y e M ―(x＼,...,Xk~＼) such that Xk + y e

(x＼,...,Xk-＼).Let i5 be a prime ideal minimal over (x＼,...,Xk-i). Then there

exists / > k such that xi e P. There exist irreducible elements a＼,...,an-k of R

such that M = (P,a＼,...,an-k). Then we have ht(M) < ht(P) +n- k < k - 1 +

n ―k = n ―1, namely ht(M) < n ―1; a contradiction.

Theorem 33 implies the following,

Theorem 34. Any regular semigroup is a Macaulay semigroup.

Theorem 35. Let R be a Noetherian semigroup such that Rp is regular for

every prime ideal P of R. Then R[X]q is regular for every prime ideal Q of R[X].
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Proof. Set R[X] = T. We may assume that R is a regular semigroup with

maximal ideal M, and RON = M for a prime ideal N of T. Then M is generated

by a regular sequence a＼,...,an.If M + R[X＼― N, then our assertion holds. If

N =? M + i?[X], then TV = (ai,...,an, X), and a＼,...,≪,,X is a regular sequence

on i?fX|. Theorem 30 completes the proof.

Theorem 36. Let R be a Macaulay semigroup such that (R,R) satisfies

property (*). Let I be a proper ideal of height n, which can be generated by n

elements x＼,...,xn. Then P = Z(R/I) is a prime ideal of R, has height n and a

minimal prime over I.

Proof. We see that P is a prime ideal of R ([TM]). Theorem 16 implies that

G(I, R) = n. Theorem 9 implies that jci,...,xn is a maximal regular sequence in /

on R. Theorem 6 implies that jci,...,xn is a maximal regular sequence in P on R.

Then Theorem 16 implies that ht(P) = n.
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