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STRUCTURE THEOREMS OF THE SCALAR CURVATURE

EQUATION ON SUBDOMAINS OF A COMPACT

RIEMANNIAN MANIFOLD

1 Introduction

By

Shin Kato

Let (M, g) be a Riemannian manifold with dim M ―n > 3, Ag the Lap-

lacian of g, Sg the scalar curvature of g and Z^ the conformal Laplacian of g,

i.e. Lg :=-anAg + Sg with an = 4(≪-!)/(≪- 2). Let h be a positive smooth

function on M, and define a conformal metric by g :― u4^n~2^g.Then its scalar

curvature is given by Sg = u~qLgu, where q = (n + 2)/(≪- 2) = 4/(n ―2) + 1.

Hence, a smooth function f on M can be realized as the scalar curvature of

some metric which is pointwise conformal to g if and only if there is a smooth

solution u of the equation

{
Lgu=fifi

w>0
on M

Throughout thispaper, we referto thisequation as "the equation (/, M)".

Now, we are interestedin the structureof the moduli space of (complete)

conformal metrics on M with scalar curvature /. In this work, we study the

equation (f,M) in the case when (M,g) is a subdomain of a compact Rie-

mannian manifold (M,g). More precisely,we consider mainly the case when

h(Lg) > 0,(M,g) is the complement Af＼S of a compact submanifold E, and/

is nonpositive.

Under this assumption, Mazzeo [12] proved that, when d = dimS <

(n - 2)/2 and / = 0 on M, "the fullsolution space of scalar flatcomplete

conformal metrics on M is parametrized by the space of strictlypositive

measures on S." This fact means that £ is the Martin boundary of the

Laplacian with respect to a scalar flatcomplete conformal metric on M.

When / has a compact support, any conformal metric uq~1gon M with

scalarcurvature/is bounded above by some scalarflatconformal metric <pq~lg
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on M. Moreover, if lim*-^ m(x) = +00, then such (p can be chosen to satisfy

lim*-^ (u(x)/(p(x)) = 1. (We describe this in Section 6. See also [9, Section 4].)

Also when supp/is not compact, if/satisfies a certain condition, then there

are infinitely many conformal metrics on M with scalar curvature / each of

which behaves asymptoticallyto a scalar flatconformal metric on M (see [6],

[10], [7]).However, in this case, the space of (complete) conformal metrics with

scalar curvature / is more complicated in general. For example if Sg > 0, / is

negative outside a compact set and the equation (f,M) possesses a positive

subsolution, then there is a maximal solution of the equation (/, M) which does

not behave asymptotically to any solution of the equation (0, M), where we call

a solution U of the equation (/, M) is maximal if and only if U > u holds for

any solution u of (f,M) (see [11], [3],[14], [4],[5], [9]).

In Section 2, we prove the following uniqueness theorem for solutions of the

maximal order.

Theorem 1. Let (M,g) be an open Riemannian manifold(n ―dimM > 3).

Let f he a nonpositivesmooth function on M, U the maximal solutionof the

equation(/, M), and u a solutionof the equation(f,M). If u ~ U on M, then

u= U on M.

Here and throughout thispaper, we use the notation '% ~f" to mean that

the condition C＼f <fo < C%f holds for some positiveconstants C＼and d. We

also denote the distance function to a submanifold 2 (resp. a point p) by r^

(resp. rp).

Next, in Section 3, we prove the followinglower estimate for solutionsof

the equation (/, M) whose order is higher than that of the standard solutions

yGz ;= y Js G(-,y)day of (0,M), where y is a positivenumber, G is the Green

function of Lg and da is the volume element of E.

Theorem 2. Let (M, g) be a compact Riemannian manifold (n =

dimM > 3) with h{Lg) > 0, 2 a compact submanifold (d = dimE < n ―2), and

(M,g) := (M＼Z,g＼^y). Let f be a nonpositive smooth function on M. Suppose f

satisfiesf ~ ―r^ near 2 /or a nonnegative number I > 2 ―Ad/{n ―2), a^J

suppose u is a solution of the equation (/, M) such that u{x)/rj1(x)~n+2―>+oo a^

jc―>2. 7%e≪ u satisfiesthe estimate u > Cr^S
+ ''^q~' for

some positive constant

C, and the metric u9~lgis complete. In particular, u is the maximal solution of

the equation (/, M).
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Remark here that (rs(x)^~n+2)9~1 is the order of the ratio of the scalar

flat conformal metric G%~lg to the original metric g (see the proof of Theo-

rem 2).

The assertions of Theorems 1 and/or 2 are known in some cases (see [11],

[14], [4], [1], [13] for d = n - 1; [5] for (M,g) = (Rn,g0); [2], [12], [7] for 1 with

/ ~ ―1). However, our proof of Theorem 1 is quite simple, although we are

concerned with more general situation. By virtue of the weakness of the

assumption of Theorem 1, we can show, in Theorem 2, the uniqueness of

solutions satisfying limx^z(u(x)/rz(x)d~n+2) = -foo from only the rough estimate

These theorems enable us, in Section 4, to generalize the structure theorem

on the Euclidean space (Rn1 go) (which is conformal to Sn＼{p} with the standard

metric) proved by Cheng-Ni [5] to the following

Theorem 3. Let (M,g) be a compact Riemannian manifold (n =

dimM>3) with k＼(Lg) > 0, p a point in M, and (M,g) := (M＼{p},

9＼m＼{p})-$et &pix) '■―G{p,x), where G is the Green function of Lg. Let f he a

nonpositive smooth function on M. If f satisfies f rl near p for a number

/ > 2, then, for any y e (0, -foo], the equation (/, M) possesses a unique solution uy

such that Uy{x)/Gp{x) ―*■y as x ―*p and the metric u^~lg is complete. Conversely,

any solution u of the equation (/, M) coincides with uy for some y. Namely, the

space of complete conformal metrics on M with scalar curvature f is parametrized

by (0,-hx)].

Now, the following question arises naturally. "For any (Af, g) =

(Af＼2,$|^＼2) and /, does any solution u of the equation (/, M) satisfying

limx_>2;w(x)= +00 coincide with either the maximal solution U or a solution

asymptotic to some solution of (0, M)?" In Section 5, we show that the answer

to this question is "No" in general. The simplest case we can observe thisis the

case when £is a finitenumber (larger than 1) of points. We can also construct

solutions of the equation (―1,Af) which do not behave like any solution of the

equation (0, Af) near a subset of S even when X is connected. These obser-

vations teach us that the space of solutions of the equation (/, Af) has some

more complicated structure in general.

The author wish to thank Professor N. Nakauchi for his interest in this

work and helpful advice.
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2. The uniqueness of solutionsof the maximal order

In thissection,we prove Theorem 1. For thispurpose and to use later,we

recallhere the following well-known formula without a proof.

Method of Supersolutions and Subsolutions. Let (M,g) be a Rie-

mannian manifold (n = dimM > 3),and f a smooth function on M. If thereexist

a supersolutionu+ and a subsolution U- of the equation (f,M) such that

0 < u- <u+, then the equation (/, M) possessesa smooth solutionu satisfying

U- <U < U+.

Proof of Theorem 1. Set P := supM(U/u). Then, by the assumption

u ~ U, we have p < +00.

Suppose u^ U. Then p > 1 and, by the strong maximal principle, it holds

that u<U. It is easy to see that y := {{pq - !)/(/?―l)*}1/^"1) > p/(p - 1).

Set

v+:=y(P-l)u, v-:=y(U-u).

Then clearly v± > 0 and

t?+- y_ = y(i8M- U) > 0.

Moreover, we get

≫;%≫+ = {y(^ - l)}l-*u-<Lgu = {y(P - I)}1"*/ > /J1"'/ >/

and

ul%!;_ = y^^C/ - u)-qLg(U -u)= yl-q{U - uyqf{Uq - uq)

y<i-l{U-u)qJ ~ yi-l{P-l)qJ ･/'

namely, v+ (resp. y_) is a supersolution (resp. subsolution) of the equation

(/, M), where we use the inequality

Therefore, by the method of supersolutions and subsolutions, the equation (/, M)

possesses a solution v satisfying v+ > v > u_.
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Now, by the definition of ft,there exists a sequence {xi}ieN of points in M

such that lim,-_≫4<jo(t/(jcI-)/M(xi))= B. Hence we get

v(Xj)

u(Xi)
u(xt)

y -)

>B>

->y(P-＼)>P as/―>+oo

U(xt)

u(xt) '

the assumption that U is maximal,

q.e.d.

U{xt)

u(Xi)

from which it follows that, for any i large enough,

u(Xi)

namely, v(xj) > £/(*,･).This contradicts

Therefore we have u = U.

Now, by the proofs of [9, Theorem II,III and IV], we know the order of

the maximal solutionU of the equation (/, M) in various cases.Combining this

and Theorem 1, we immediately get the following corollaries.

Corollary 2.1. Let (M,g) he a complete, noncompact, simply connected

Riemannian manifold (n = dim M > 3) with nonpositive curvature whose Ricci

curvature Ricg satisfiesRicg/{n ― 1) > ―A2/(r^ + e2)for positive numbers A and

e such that A2 < (n ―2)/n. Let f be a nonpositive smooth function on M sat-

isfying f ~ ~rpl near infinityfor some point p e M and a number / > 2, u a

solution of the equation (f,M). If u satisfiesu> Crp~ '^q~' for a positive

constant C, then u is the maximal solution of the equation (/, M).

Corollary 2.2. Let (M,g) be a complete, noncompact, simply connected

Riemannian manifold (n = dim M > 3) whose sectional curvature Kg and Ricci

curvature Ricg satisfyKg < ―B2 and Ricg/(n ―1) > ―A2 for positive numbers A

and B such that (A/B) < (n― 1) /n(n ―2). Let f be a nonpositive smooth

function on M satisfying f ~ ―e~lrpnear infinityfor some point p e M and a

nonnegative number I, u a solution of the equation (f,M). If u satisfies

u > Celrp/(q~1^for a positive constant C, then u is the maximal solution of the

equation (f,M).

Corollary 2.3. Let (M,g) be a compact Riemannian manifold (n―

dim M > 3) with X＼{Lg)>0, la compact submanifold (d = dim 2) of M, and

(M,g) := (M＼I,,g＼jtf＼y).Let f be a nonpositive smooth function on M satisfying

f ~ ―rl near X for a nonnegative number / > 2 ―Adi in ―2),ua solution of the
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equation (f,M). If u satisfiesu > CV^ ^ for a positive constant C, then u

is the maximal solution of the equation (f,M).

3. A lower estimate for solutionsof high order

In this section,we prove Theorem 2. First,we prepare a key lemma. Its

proof is quite similar to that of [9, Theorem V], but some more delicate.In

common with Loewner-Nirenberg [11, Theorem 4],we make use of a family of

(sub-)solutions.However, our lemma applies to more complicated cases.

Lemma 3.1. Let (M,g) he an open Riemannian manifold (n = dim M > 3),

{Oz-}ieAr a sequence of relatively compact domains of M which satisfies

Q,-ccz O,-+i and U/6jvQi = M. Let f be a nonpositive smooth function on M, q> a

solution of the equation (0, M), and u＼a solution of the equation (/, M) satis-

fying u＼<(p on M and lim^+oolinf^Q^wi/^)} = 1. Suppose u+ is a super-

solution of the equation (/, M) satisfyinglim^^{infM＼fi,.(M+/V)} = +00- Then it

holds that

u+> (q - l)q-q/{q-l)
V 9

Proof. Put w＼:= 1 -u＼/(p. Then

= 0 and u＼= (p{＼―w＼).

any ee (l,^"1*], set Uef-:= £<p(y- e^Wy).

w where u＼>

Then we get

LgU^- = £qLgUy = EqM -^-{y-B^Wy)

q-＼
W

q

w＼ is nonnegative, lim;_+-Hx)(supM＼^.wi)

Let y be the supremum of yo's sucn that, for any number fie [1,y0], the

equation (/, M) possesses a solution u^ satisfying pup(l ―pfl~lw＼)< u^ < yap.

Clearly y > 1.

Suppose y < +00. Then, for any fie [l,y), the equation (/,M) possesses a

solution Up as above. Since / is nonpositive, it follows from [9, Lemma 2.2] that

{un}＼<ii<y ^S monotonically increasing and bounded above by y(p.Therefore, if

we set uy := lim^-^, then uy is a solution of the equation (/, M) with the same

properties as above.

Put wy :=y - uy/(p.Then itis clear that wy is nonnegative, m&xMwy < y, and

wy < yqw＼.Choose a positive number 5 satisfying 1 < d < y/max^Wy, and, for

9
<fuq onM,

namely, u - is a subsolution of the equation (/, M). On the other hand, if we set
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uty+ := Ej(p,then we have

Lguey+ = 0 >fi4y+ on M,

namely, 11^+ is a supersolution of the equation (/, M). Since 1/^+ > u^- > 0, by

the method of supersolutions and subsolutions, the equation (/, M) possesses a

solution uEy satisfying uey+ > uey > uey-. It is clear that

sy(p> uey > E(p{y―eq~lwy)> &(p{y―&q~lyqw＼)= ey(p{l - (ey)q~w＼}.

This contradicts the definition of y since dl^q~l'y> y.

Hence we conclude that y ― +00. Namely, for any n>＼, the equation

(/, M) possesses a solution u^ satisfying fjup{＼―nq~lw＼)< u^ < pup.

Now, by [9, Lemma 2.2] again, it holds that u+ > u^ for any /i>l.

Therefore we have

u+ > sup{/i(l - iiq~lwi)}(p.

n>＼

Bv using the equality

sup{?(l - i*-la)＼= (q- l)q-9/(9-i)a-m9-i) for a e
t>l (4

we get our assertion. q.e.d.

Proof of Theorem 2. Let G(x,y) be the Green function of Lg, and set

Gx(x) := Jz G(x,y)d(Ty, where da is the volume element of E with respect to the

induced metric. Clearly LgGz = 0 on M and, by [10, Proposition 2], there exist

positive constants C＼ and C2 such that

Ci^-*+2 < Gz < C2rtn+1-

In the case when 2 - Ad/{n - 2) < I < n - (n + 2)d/(n - 2), by [10, Theorem

2 (a) and its Remark] (see also Delanoe [6, Theorem 5]),the equation (/, M)

possesses a solution u＼ satisfying

C3Gz(l - C4rl) <ui< C3G7;

for some positive constants C3, C4 and ct:=l ―2 + 4d/(n ―2). In [10], we

assumed d < [n ―2)/2 for this fact. However, if we do not assert the com-

pleteness of the metric u＼~lg,then the same consequence as above holds also

when (n ―2)/2 < d < n ―2. Apply Lemma 3.1 to this u＼and <p= C3G2. Then,

since w＼― 1 ―u＼/(p< 41%, any supersolution u+ of the equation (/, M) such
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that u+(x)/Gz(x) - +00 as x -*■2 satisfiesthe estimate

u+ > (q- l)^≪-1)(C4f5)"1/(*"1)C3C1F|-"+2

__ c r-{l-2+4d/(n-2)}{n-2)/4+d-n+2

= C5r-(/+2)(K-2)/4

= C5r-V+2^~l＼

where C5 := (q - l)q-q/^-l)C^1/{q~l)C3Ci. In particular, we have u>

Csf^ +2>l(q~l>near E. Remark that the assumption / > 0 is not used here.

In the case when l>n ―{n + 2)d/(n ―2), put u+ :― ueG^~e, where 0 is a

positive number chosen to satisfy

e<

By directcomputation, we get

and hence

Of

n-2-d

1-2 +
Ad (<1)

(l-O)(q-l)

n-2

Lgu+ = Ofifi*-1^9 + an6{＼- e)ue-2G^-l＼(hygu - u^g(h＼2

>dfue+q-lG{-e

u-≪Lgu+>6f(^-

Since we assume

-C6t{ <f<- C-if^ near X

for some positive constants C$ and C-j,by the proof of [9, Theorem IV], there is a

positive constant C% such that

u<Csr-≪+W-l＼

Therefore we get

cW'+w-"

= ―C^-l near 2
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where C9 := eC6{C7l CBf~e)iq~l)and

le-=2
Ad
+ 6
(l-2
+

161

n-2

> KorZ'WW

n

Ad

^2

Note here that, by the assumption on 9, 2 ―4d/(n ―2) < 1$ <

n ―(n + 2)d/(n ―2) holds. Let /o be a nonpositive smooth function on M such

that /o < dfiu/Gzf^^ on M and f0 = - C9r% near £. Then w+ is a

supersolution of the equation (fo,M). Clearly u+(x)/Gz(x) = (u(x)/Gz(x))e ―>

+oo as x ―>E. Hence we can use the estimate given in the case when

2 - 4d/(n - 2) </<≪-(≪ + 2)<//(/i- 2) with / = l9 and ^+ = ueG]re, and get

MeGi-e > Csr^k+2)l{q-l).

Therefore we have

ue > C5r-{h+2m"-l)Gtl

>C5r-{k+2)l{q-l＼C24-n+2)e-x

where Cl0 := CsCt＼ from which it follows that u > c＼{＼~{l+2)l{q~l)near L

Now, in both cases,because o 0 on M, we get u > Cr^l+T>^q ^ on M.

Since /is nonnegative, the metric uq~xgis complete and, by Corollary 2.3,we

conclude u= U. q.e.d.

Corollary 3.2. Let (M,g) and f be as in Theorem 2. Suppose f satisfies

f ~ ~rx near E for a nonnegative number I > 2 ―4d/(n ―2), and suppose U is

the maximal solution of the equation (/, M) and, for any y > 0, uy is a solution of

the equation (/, M) satisfying uy<yGz and limx_>2(My(x)/Gx(x)) = y. Then it

holds that limv_++o0Mr = U on M.

Proof. By [9, Lemma 2.2], {≪y}y>0 is monotonically increasing and

bounded above by U. Therefore, if we set u := lim^+ooW,,, then u is a smooth

solution of the equation (/, M). It is clear that u satisfies

limx^Y,(u(x)/rI,(x)d~n+2)― +00. Hence, by Theorem 2, we have u = U, namely,

liniy-^+ooWy= U on M. q.e.d.

4. A structure theorem In tie case E Is a point

The aim of this section is to prove Theorem 3 which describes the structure

of the scalar curvature equation (/, M＼{p}) in the case when / ~ ―r1 near p
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When S is a point,we can prove a Hamack typeinequalityfor the solutions

of the equation (/, M) by the same way as Cheng-Ni [5, Proposition 5.2].This

and Corollary 3.2 imply Theorem 3.

Lemma 4.1.

dim M > 3) with

Let (M, g) he a compact Riemannian manifold (n =

Sg>Q, p a point in M, and (M,g) := (M＼{p},g＼Mx{ ,).

Suppose f satisfiesf ~ ―rlpnear p for a number / > 2, and suppose u is a solution

of the equation (/, M). Then there is a positive constant C＼＼which is independent

of both u and r and satisfies

max u < C＼＼min u
SBr(p)

for any positive number r small enough.

8Br(p)

Proof. Set d(x) := (Sg + ＼f＼uq-l)/an.Then (Ag - d(x))u = 0. Since we

assume/
~ ―r£,
by the proof of [9, Theorem IV], we have uq~l< Cnip and

hence 0 < d{x) < C＼3r~2,where Cn and Co are positive constants independent

of u. Now, apply the Haraack inequality [8, Theorem 8.20] to (Ag - d(x))u = 0

in a domain Q = M＼B4r(jp) for i? > 0 small enough. Then, for any y e dB%R(p),

since 2?4r(v) <= O, we get the estimate

sup u < C14 inf u
B*{y) Buiy)

for some positiveconstant Cu depending only on n, g and Cn, and independent

of y and R. We can cover dB%R(p) by a finitenumber (independent of R) of

BjtCyYs,and our assertionis proved. q.e.d.

Proof of Theorem 3. We may assume Sg > 0 without loss of generality.

The existence follows from [9, Theorems IV and V] (see also [10, Theorem

2]).In particular, for any y e (0, +oo), we also know the uniqueness of solutions

Mr of the equation (/, Af) satisfying ＼imx^p(uy(x)/Gp(x)) =y.

Suppose u is a solution of the equation (/, M). If uj-prn is bounded, then it
i

s clear that

Ru(x) :=
[

JM

G(x,y)＼f(y)＼u(y)qdy

is a positive smooth function on M and satisfiesLg<&u = ＼f＼u^.Note that

＼f＼uq< Crl~n~2for a positive constant C. Then we get, by standard calculation,
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Ru<

Cr1-"

Clog(r-1)

C

if 2 < / < n

if/ = /!

if/>≪

163

near p for a positive constant C. In particular, it holds that <bu{x)/Gp{x) ―> 0 as

x―> p. Set (p :― u + >M. Then ^>is a solution of the equation (0, M), and hence

there is a positive number y such that <p
~yGp

(see [9, Section 4]). Since

u(x)/Gp(x) ― y ― <&u{x)I'Gp{x) ―> y as x ―>/?, we have w = z/y.

On the other hand, if w/r?"" is unbounded, then lim supx_>/,(tt(x)/r/,(x)2~w)=

+00. Hence, there is a sequence {xt}ieN of points in M such that lim^+oojc,- = p

and u{xi)/rp{xi)2~n > C＼$i for any i, where C15 := C2C11, Ci is a positive

constant satisfying Gp < C2fl~n, and C＼＼is the constant given in Lemma 4.1. By

Lemma 4.1, it holds that u(x)/Gp(x) > i on dBr (Xl)(p) for any i. Hence u > U( on

dBrp(x.)(p), where w?-is the unique solution of the equation (/,M) satisfying

Ui < iGp on M and lim.x^p(ui(x)/Gp(x)) = i. Therefore, by [9, Lemma 2.2],

u > Ui in M＼Brp(Xj){p) for any i, from which it follows that u > linii_,+00M,-on M.

Now, by Corollary 3.2, Hm/^+ooM,- = U. Since t/is the maximal solution, we get

m= (/(^Mqo). This completes the proof. q.e.d.

As a consequence of Theorem 3, we have the followingsymmetry argument.

Corollary 4.2. Let (M,g) and f be as in Theorem 3. Iffis invariant under

the action of some subgroup T o/Isom(M, g), then any solution u of the equation

(f,M) is also T-invariant.

Proof. Since any two solutionsof the equation (/, M) with the same

asymptotic behavior coincide with each other, the assertionabove is clear.

q.e.d.

The most typical example of this corollary is as follows.'

Example 4.3. Let g be a (non-standard) rotationally symmetric metric on

S" with Xi(Lg) > 0, p a central point of the symmetry. Let (M,g):=

{S>n＼{p}ig＼s≫＼{p})-If a nonpositive smooth function/on M satisfies/~ ―rlpnear

p for a number / > 2, and is rotationally symmetric, then any solution u of the

equation (/, M) is also rotationally symmetric.
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5. Solutionswith mixed singularbehavior

In this section,we construct examples of solutions which are not only

maximal but also asymptotic to no solutionsof the equation (0,M). First,we

prepare the following

Lemma 5.1. Let (M,g) he a Riernannian manifold (n = dim M > 3), and fa

nonpositive smooth function on M.

(1) If u＼+ and U2+ are supersolutions of the equation (/, M), then u＼++ U2+

is also a supersolution of the equation (/, M).

(2) If u＼- and ui- are subsolutions of the equation (/, M), then u＼-+ ui- is

a subsolution of the equation (2l~qf,M).

Proof. Note that the following inequality holds.

2l-<7<
s* + ti

(s+t)<
< 1 for s. t > 0.

(1) Set u+ := u＼++ W2+- Then we get

uq +uq
Lgu+ = Lgul+ + Lgu2+ >fu＼+ +fuq2+ =f 1+ 2+ u＼ >fu%,

[U＼++ M2+j

namely, u+ is a supersolution of the equation (f,M).

(2) Set m_ := mi_ +M2-- Then we get

Lgu- - L,Ml_ + L,M2_ <fu＼_ +fu＼_ =f
M?- + M2-

M, < 2i-W)
(Mi_ + M2-J

Lqu- = LgU＼-+ Lqu2- <fu＼_ +M =f -^―'-^

namely, u- is a subsolution of the equation (2l~qf,M) q.e.d.

Now, we observe the case when E consistsof a finitenumber of points.

Proposition 5.2. Let (M, g) be a compact Riemannian manifold (n =

dimM > 3) with l＼{Lg) > 0, £ a set {p＼,... ,Pk} of a finite number of points in

M, and (M,g) := (M＼S,^|^E). Set Gz(x) :=T,'f=lG(pi,x), where G is the Green

function of Lg. Let f be a nonpositive smooth function on M. If f satisfies

―Cr1^ </ < 0 near S for a positive constant C and a number I > 2, then, for any

y = (yj,... ,yk) e (0,-foo] , the equation (/, Af) possesses a solution uy such that

Uy(x)/Gz(x) ―> yt as x ―>■pt for any i ― 1,..., k and the metric u^'lg is complete.

Namely, there are complete conformal metrics on M with scalar curvature f which

are parametrized by (0, +oo] .
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Proof. When y e (0,-foo)fc or y = (+00,.. .,+00), the existence follows

from [9, Theorems IV and V],

When some y/s are finiteand the others are +00, we may assume yt < +00

for 1 < k1 and yt = +00 for i > k' + 1 without loss of generality. Set Si :=

{/?i,...,pk>} and X2 := {pkf+u ■■■iPk}-

Let f[± be nonpositive smooth functions on M＼L＼ such that f＼+ >f >/i_

on M and f＼±=f near Si, and u＼+ (resp. ≪i_) the solution of the equation

(/1+,M＼Si) (resp. (2*"1/!-,JSf＼Ii)) satisfying limx^,.(≪i±W/^,W) = 7/ for

any 1 = 1,...,k'. Then, by the same way as in the proof of [9, Lemma 2.2], we

have u＼+ > u＼-.

Let fi± be nonpositive smooth functions on M＼E2 such that /2+ > / > /2-

on M and fi±=/ near S2, and C/2+ (resp. C/2_) the maximal solution of the

equation (/2+,M＼S2) (resp. (2*-1/2_,M＼S2)). Then, by [9, Proposition 2.3 (1)],

we have t/2+ > C/2_.

Note here that both ≪i+ and t/2+ are supersolutions of the equation (/, M),

and that both u＼- and £/2_are subsolutions of the equation (2?-1/, M). Set

w±:= ≪i±+ Ui±-Then clearly w+ > u- > 0 and , by Lemma 5.1, u+ (resp. uJ) is

also a supersolution (resp. subsolution) of the equation (/, M). Therefore the

equation (/,M) possesses a solution u satisfying u+ >u>u-. Now, since

u±{x)

<h(x)

_ ui±(x) Gz,(*)

(hM + GzJx)

-> yt x 1 + 0 = yt as x -> /?,-

for any i 1 k' and

u-(x) _ui-(x)

(h(x) ~ Gi(x) <ha(x)

―s-O+OO Xl = +00

<h(x)

(hito + Giaix)

as x ―≫･pi

for any i - k' + 1,...,k, we have m(x)/Gx(x) ―>y( as x -≫/?,for any i = 1,...,k.

q.e.d.

Since any solution of the equation (0, M) coincides with I%=lyiG{pi,x) for

some (}>!,..., yk) e [0,+oo)*＼{(0,..., 0)}, if at least one of y/s is +oo, then the

solution uy given in the proof above does not behave asymptotically to any

solution of the equation (0,M).

Next, we consider solutions of the equation (/, M) which do not give

complete metrics.
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Example 5.3. Let (M,g) be a compact Riemannian manifold (n =

dimM>3) with h{Lg) > 0, X a compact submanifold ((n ―2)/2<d ―

diml, < n ―2), and (M,g) :―(M＼Z,g＼^＼y)- Let / be a nonpositive smooth

function on M satisfying/ ~ ―1 near X. Let If be a compact submanifold of

S((n ―2)/2 < d' = dimE' < rf).Then the equation (/, M) possesses a solution u

such that

u(x)

u(x)

-≫+oo

(*)->!

as x ―>l!

as x -> T＼Be(H) foranye>0
G*

where Gz and G^> are as in the proof of Theorem 2.

Indeed, let/± be a nonpositive smooth function on M such that/+ >/ >/_

on M and /+ < 0 near X. Let ≪i+ (resp. u＼J) be a solution of the equation

(f+,M) (resp. (2^~1/_,M)) satisfyinglimx_>2(tt(x)/Gx(*)) = 1 which is given e.g.

by combining Delanoe [6, Theorem 5] and the proof of [9, Theorem V], and

U2+ (resp. U2-) the maximal solution of the equation (/+,Af＼2)') (resp.

(2?-1/_, Af＼X')).Then, by the same consideration as in the proof of Proposition

5.2, we get a solution u of the equation (/, M) with the desired property.

In particular, if u is asymptotic to a solution tp of (0, Af), then

q>(x)/GSf(x) ―>+00 as x ― X'. Therefore, by the maximal principle,(p > yG-g for

any y > 0, namely (p = +00. Hence there are no such <p, namely, u does

not behave asymptotically to any solution of the equation (0,M). This solution

is, of course, of essentiallydifferenttype from the solutions constructed by Finn-

McOwen [7, Section 6], since each of them is asymptotic to a solution

y(h + YGt' °f(0) M) for some y and y'.

Repeating the same process as the proof above, we can construct solutions

with more complicated behavior. Consequently, for generic (Af, gf)=

(Af＼S,g＼^＼y)and /, the space of solutions of the equation (/, Af) has more

complicated structure than that of (f,M＼{p}).

6. The case / has a compact support

In the last section of this paper, we consider the structure of the space of

solutions of the equation (/, M) satisfyinglimx_^sw(x) = +00 in the case when /

has a compact support. The following result are partially observed in [9, Section

41. Here, we state it precisely with an outline of the proof.
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Theorem 6.1. Let (M,g) be a compact Riemannian manifold (n =

dimM > 3) with h{Lg) > 0,£ a compact suhmanifold (d = dimS < n ―2),and

(M,g) := (M＼2,^|^vs;).Let f be a nonpositivesmooth function on M. If the

support of f is compact, then the space of solutionsof the equation (/, M)

satisfying＼＼mx^£u(x)= -foois parametrized naturallyby that of (0,M).

Proof. Denote the space of solutions of the equation (/, M) (resp. (0, M))

satisfying limx_+j;w(.x) = -foo by Jif (resp. Jin). For any (p e Jin, if there exists a

solution u e Jif satisfying limx->x(u(x)/'(p{x)) = 1, then write ^/{(p) = u. Now,

we show that the map #/■: Mq ―> Jif is well-defined and bijective.

Since f = 0 near S, it is clear that, for any a>e Jin,

%{x) :=＼_G{x,y)＼f{y)＼9{yydy

JM

Is a positive smooth function on M and satisfies LgQ>9 = ＼f＼(pq.Set

p := (2 supM( >^/^))~1 and define functions u± on M by

Uy+:=yip, Uy-:=y(q>-fi<!>9).

Then uy+ > uy_ > 0 and it can be easily checked that, for any 0 < y < ^l^q~l＼

uy+ (resp. uy-) is a supersolution (resp. subsolution) of the equation (/, M) (see

the proof of [10, Theorem 2']). Hence, by the method of supersolutions and

subsolutions, the equation (/, M) possesses a solution uy satisfying uy+ >

uy > uy-. In particular, since g>(x) ―> +00 as x ―≫･S and >^ is bounded, uy satisfies

limx^z(uy(x)/<p(x)) = y. Now, by the same way as in the proof of [9, Theorem V]

(see also the proof of Lemma 3.1 of this paper), we can show that y can take an

arbitrarily positive value. Set u := u＼.Then u is a solution of the equation (/, M)

satisfying limx_>2;(M(jc)/9?(x)) = 1. In particular, ueJtf.

For any (p e Ji§, set g := <pq~lg. Then u = ^/(<p) satisfies ―anAg(u/(p) =

f{u/(p)q on M. Therefore, the uniqueness of &f{<p) is established by the same

method as in Cheng-Ni [5, Theorem 3.1], and hence the map #/■is well-defined.

Moreover, if #/-(^) = &f((p) for some fie Jia, then we get Ag(<p/<p) = 0 on M

and ＼imx^z(<p(x)/(p(x)) = 1. Therefore the injectivity of ^y also follows from the

maximal principle, and we have only to show the surjectivity.

For any u e Jif, set

*≪(x):=＼_G{x,y)＼f(y)＼u(yydy

JM



168

Then >M is a positive smooth

Set <p:= u + OM. Then ^ is a

Shin Kato

function on M and satisfies Lg<bu = ＼f＼tfi.

solution of the equation (0, M) satisfying

＼imx-^(u(x)/(p(x))= 1, namely, <pe Ji^ and &f((p) = u

Even if d = n ―1 or X is not a submanifold,

However both Ji$ and Jif are empty in the case

other cases.
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