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PL APPROXIMATIONS OF FIBER PRESERVING
HOMEOMORPHISMS OF VECTOR BUNDLES

By

Tatsuhiko YAGASAKI

Abstract. We investigate the group of f.p. homeomorphisms of an
n-dimensional vector bundle £. In the case n > 5 and the base space
of ¢ is countable dimensional, we show that every f.p. stable
homeomorphism of ¢ can be approximated by f.p. PL homeo-
morphisms with respect to the majorant topology. As an appli-
cation we can show that if the base space is compact, then the
group of f.p. PL homeomorphisms of ¢ with the uniform topology
has the mapping absorption property for maps from countable
dimensional metric spaces into the group of f.p. homeomorphisms
of ¢ which are PL on the unit open ball

1. Introduction

In [3] and [9] it is shown that in the case #» > 5 any stable homeomorphism
f : R" — R"is approximated by PL homeomorphisms. In this paper we extend this
result to the case of f.p. stable homeomorphisms of vector bundles. To state the
main results precisely, first we introduce some notations in the vector bundle setting.

Let £ =(n: E — X) be an n-dimensional real vector bundle with a Rie-
mannian metric. Since each fiber E, = n7!(x)(x € X) is a real vector space, it
admits the natural piecewise linear structure. Let Cxo(X) (resp. C50(X)) denote
the set of all continuous functions from X to [0, 00) (resp. (0,0)). We define
B.(a)={uckE,:|ju|, <a(x)} for xeX and B(a) =), yBx(a). Similarly
O.(a) = {ueE,: |ul, <a(x)} and O(a) = |, yOx(a).

Let # (&) be the group of fiber preserving (f.p.) homeomorphisms f : E — E
(ie., nf = 7). By #7(¢) we denote the subgroup of #(¢) consisting of the f.p.
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homeomorphisms of E which satisfy a condition P. In this paper we will
consider the following conditions:

(i) PL:fe# (L) is PL is for each xe X, f, =f|p : Ex — E, is PL. More
generally, it is said that f is PL on an open set U c E if each f, is PL on
U, =UNE,.

() PLy:f e #(&) is PLy if f is PL on O(1).

(i) S:feH(&) is stable if f =f;...fy, where each f; is PL on an open
neighborhood U; of (the image s;(X) of ) some section s; : X — E. In the case X
is a one point and f is orientation preserving, then this definition coincides with
the usual one (cf. [9, p 195, Exercise 4.11.1]).

(iii) U:f e #(¢) is an f.p. uniform homeomorphism if both f and f~! are
f.p. uniformly continuous, where an f.p. map g: E — E is an f.p. uniformly
continuous if for each map g€ Co(x) there is a map 6 € Cso(X) such that if
u,ve E, and |ju— ||, < é(x) then ||g(u) — g(v)||, < &(x).

When s#(&) (or #7(&)) is given a topology 7, it is denoted by #;(¢) (or
#F(&)). We will be concerned with the following topologies:

(1) The f.p. majorant topology m: The neighborhood base of f € #,,(¢) is
given by N(f,e)={geH():|lf —gll<e} (e€ Cso(E)). Here, [f—gll<e
means that || f(u) — g(u)||, < e(u) for each u € E,.

(i) The f.p. uniform topology u: The neighborhood base of f € #,(&) is
given by N(f,e) = {ge #(&): |/ —gl <} (s€Cso(X)). Here, [f —gl| <
means that || f(u) — g(u)||, < &(x) for each u € E,. Note that, if X is not totally
bounded, then N(f,¢) (¢ > 0) does not satisfy the axiom of neighborhood base,
that is, for g € N(f,¢) there exists no § > 0 such that N(g,d) = N(f,¢). This is
the reason that we need to use functions &: X — (0, 00).

(iii) The compact-open topology c: The neighborhood base of f € # (&) is
given by N(f,a,e)={geH (&) :||f—g| <eonB(a)} (a,ee Cso(X)). Here,
[lf —gll <e on B(a) means that ||f(x) — g(u)|, < &(x) for each u e By(a).

We refer to [9, Ch 5. §6] for topologies on groups of non-f.p. homeo-
morphisms.

It should be remarked that #,(&), #C(¢) and #.(¢) are topological
groups, but 5#,(¢) is not a topological group even if X is one point. (See Fact 7,
8, 9, 10 in §2 and compare with [9, p 272, Exercise 5.6.2].)

The following is the main result of the paper.

THEOREM. Let ¢ = (n: E — X) be an n-dimensional vector bundle over X. If
X is a countable dimensional metrizable space and n > 5, then #X%(¢) is dense in
H3(E) (ie, if g:E—E is a fp. stable homeomorphism, then for any map
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e: E— (0,00), there is a fp. PL homeomorphism f:E— E such that
I/ —gll <e).

The proof of Theorem is the f.p. version of the R"-case [3] & [9]. The key
lemma is lemma 4 in §3, in which we will extend the basic engulfing lemma in
R" to a vector bundle with a base space of countable dimension.

This theorem derives a kind of absorption property of #7L(£) in #(&).
This is an important notion in infinite dimensional topology which has been
studied in many references with many variations (cf. [1], [2], [4], [5], [7], [10],
[11] etc.). In this paper we consider the following mapping absorption property.
A subspace B of a space Y (or simply a pair (Y, B) of spaces) is said to have
the mapping absorption property for a class € of spaces if for any Z € € and
any map f : Z — Y there is a homotopy f;: Z — Y (0 <t < 1) such that fo=f
and f;(z) < B for 0 < ¢t < 1. We will consider the class of countable dimensional
metrizable spaces. A metrizable space is countable dimensional if it is a
countable union of 0-dimensional subspaces (cf. [6]).

COROLLARY. Let (= (n:E — X) be an n-dimensional vector bundle over
X. If n>5 and X is a countable dimensional compact metrizable space, then the
following pairs have the mapping absorption property for maps from countable
dimensional metrizable spaces:

@) (#7(Q), #H),

(i) (#70(Q), #HI().

In [7] it is shown that for any compact PL manifold M" (n#4; if n=35
suppose OM = (), the closure #7L(M) of #FL(M) is a union of some
components of #,(M) and #7“(M) has the finite dimensional compact
absorption property in #7%(M) (see [7] for the definition). It should be noted
that the proof is based on the uniform local contractibility of #.(M) and
#PL(M). As for a non-compact manifold M, #,(M) is always not locally
path-connected and #,(M), #,(M) are not in general locally path-connected.
In the special case that M is the interior of a compact manifold M, for example
M=R"' #.M) and #,(M) are locally contractible, where the uniform
topology u is induced by the metric of M which is the restriction of a metric of
M (cf. [9, Ch 5. §6]). The author has no references for the local contractibility
of #Y(R") with respect to the usual metric.

In contrast to [7], we will reduce Corollary to Theorem by crossing the
countable dimensional space x(0,1] to £ More precisely, given any map
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Jo: Y — #(&), we have the corresponding f.p. homeomorphism F: Y x E —
YxE over Y xX defined by F(y,u)=(,/o(y)(w). Then the fp. PL
approximation of F gives a map f; : ¥ — #7L(¢) which approximates fy. The
additional (0, 1] factor is necessary to obtain a homotopy f;. In Corollary we
replace the majorant topology m by the uniform topology « and assume that X
is compact in order to ensure that f; is continuous. The stable condition S is
replaced by the rather restricted condition PL, to ensure that F is stable.

Finally we list some remaining problems:

(1) By the stable homeomorphism theorem ([8]), every (orientation pre-
serving) homeomorphism of R” is a stable homeomorphism. In the f.p. case, is
any f.p. homeomorphism of vector bundle a f.p. stable homeomorphism (i.e.,
H (&) = #5(8))?

(2) Can one omit any technical assumptions in Corollary (the compactness
of the base space X, the condition PL;, etc.)? If s#(¢) = #5(¢) for any n-
dimensional vector bundle with a countable dimensional base space, then we
can omit the PL, condition in Corollary.

(3) Are the groups 5#,(¢) and #7%(¢) ANR’s for any appropriate class of
spaces?

2. Preliminaries on vector bundles and f.p. homeomorphisms

First we list some notations which are used throughout the paper. All
spaces are assumed to be metrizable. The n-dimensional Euclidean space is
denoted by R". The standard inner product { ,) defines the norm |4 of a
vector ue R” and the angle 6(u,v) of vectors u,ve R"\{0}. Note that
O(u,v) + 0(v,w) > 6(u,w) for wu,v,weR"\{0}. For a>0, we set B(a)=
{ueR":||u|| <a} and O(a) = {ueR": |ju|| < a}.

Let ¢ = (n: E — X) be an n-dimensional real vector bundle. For a subset 4
of X, E4 = n!(4). A Riemannian metric on ¢ is a family {<, ), },.y such that

(i) <, >, is an inner product of E, for each x e X,

(ii) For any sections s,7: X — E of n the map <s,f): X — R defined by
s, t(x) = {8(x), t(x)D(x € X) is continuous.

The inner product {,), defines the norm | ||, and the angle 6, on the
vector space E,. If E is trivial over U, then, using the Gram-Schmidt
orthogonalization, there is a fiber preserving homeomorphism ¢ : Ey — U x R"
over U such that for each y e U, ¢, : (E),<,>,) — (R",{,) is an isometry (i.e.,
a linear isomorphism which preserves the inner products).

For a,be Cso(X), a<b (resp. a<b) means that a(x) <b(x) (resp.
a(x) < b(x)) for each xe X. For a section s of £ and subset 4 of X we set
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By(s,a) = {uc Ey : |ju—s(x)|, <a(x)}, Ba(s,a) =, Bx(s,a) and Ox(s,a) =
{ueEx: |u—s(x)|, < a(x)}, Ouls,a) =), ,0x(5,a). Note that for each u € E;
and an open neighborhood U of u in E, there exist a section s of £, a constant
¢>0 and an open neighborhood W of x in X such that s(x) =u and
Ow(s,e) c U.

Below we will list some basic facts and preliminary lemmas on vector
bundles and f.p. homeomorphisms, which will be used in the process of proofs
of Theorem and Corollary.

Fact 1. Ifa,be Cxo(X), a < b and By(b)\Ox(a) is contained in an open set
U in E, then there is an open neighborhood V of x in X such that
By(b)\Oy(a) = U (i.e., for each ye V, B,(b)\Oy(a) = U).

PROOF. By an isometric local trivialization, we may assume E = W x R”,
W is an open neighborhood of x in X. Use the compactness of Bx(b)\Ox(a).
O

Fact 2. If {U;},ca is a locally finite open cover of X and 6, >0 (A€ A),
then there is a map & € Cso(X) such that 3(x) < 6, for each x e U;.

Proor. Each x € X has an open neighborhood ¥V, which meets only finitely
many U,. Take an ¢, > 0 with & < min{d, : VxN U, # J}. We take a partition
of unity {«,} subordinated to {V.} and define 6 =73 e Let ye U, If
a(y) #0 then yeViNU,# & and & <. Hence d(y) =3 exax(y) <
Z 5/1“):()’) = 0;. O

Fact 3. For any map &€ Cso(E), the function F:X x[0,00) — [0, 0)
defined by F(x,s) = mind(B(s)) is continuous.

PrOOF. Observe that the relation X x [0, 00) 3 (x,s) > Bx(s) < E is con-
tinuous, that is, for each (x,s) e X x [0, o0),

(i) if U is an open subset of E such that By(s) c U, then there exists a
neighborhood V of (x,s) in X x [0, 00) such that B,(f) = U for each (y,£) e V,
and

(ii) if U is an open subset of E such that B(s)N U # (J, then there exists
a neighborhood ¥V of (x,s) in X x [0,00) such that B,(f)NU # J for each

y,t)eV.
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In fact, (i) follows from Fact 1 and (ii) is easy. The continuity of & follows
from this observation. O

Facr 4. Let f:E—E be a fp. map. Then for each ae Co(X), f is
Jf.p. uniformly continuous on B(a) (ie., for every ge Cso(X) there exists
a 6eCyo(X) such that if wu,veBy(a) and |lu—v|,<8(x), then

1/ () = ()lc < &(x))-

Proor. Let ¢e Cso(X). We will show that for each x e X there exist a
neighborhood ¥y of x in X and &, > 0 such that if ye V, u,ve By(a) and
llu—vll, < 6x then ||f(u) —f(v)ll, < e(y). Let xe X. For each u e By(a) take a
section 7, of ¢ such that #,(x) = f(u) and consider the open set O(t,,¢/2). There
exists a section s, of &, a neighborhood V, of x in X and 6, > 0 such that
su(x) =u and f(Oy,(s4,26,)) < O(ty,/2). Since B,(a) is compact, there exist
finite u; € By(a) such that B,(a) U Oy, (Suy504). By Fact 1, there is a
neighborhood V, of x such that By (a) = U OV (Su;,0u,). Let 0y = ming,,. If
Y€ Vx, u,v€ By(a) and ||u~v||, < x, then u e OVu,- (Su;, 64;) for some i and since
0x <9, we have ve Oy, (sy,20,). Hence f(u), f(v)e O(ty,¢/2), so that
1£@) - @), < e(7).

Finally we take a locally finite refinement {U,} of {V,} with U, c ¥V, and
apply Fact 2 to obtain the desired 6 € Cso(X). O

Fact 5. If f:E—E is a fp. map and f, e #(E,) for each xe X then
S e#().

Proor. We may assume E =X x R". Then the continuity of the inverse
map f~!: (x,u) > (x,f7!(u)) follows from the following facts:

(i) Let €(R") be the space of continuous maps from R” into itself with the
compact-open topology ¢. The homeomorphism group #,(R") with the com-
pact-open topology is a subspace of #(R") and it is a topological group.

(ii) A function g: X — %(R") is continuous iff X x RB" 3 (x,u) — g,(u) € R"
is continuous. |

Let % be an open cover of E. We say that f.p. maps f,g: E — E are %-
close and write as (f,g9) <% if for each ue E there is a U e % such that
Sf(u),g(w) e U. Set N(f, %) = {ge #(£): (f,g) <U)}. The next fact shows that
{N(f,%) : % is an open cover of E} forms a neighborhood base of f in #,,(&).
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Fact 6. Let f:E— E be a fp. map.
(i) For each open cover U of E there exists an e¢€ Cso(E) such that

IS —gll < ¢f implies (f,g) <%.
(i) For each &€ Co(E) there exists an open cover U of E such that

(f,9) < U implies || f —g| < ¢f.

In the case f € #(¢), (i) means that N(f,¢f) = N(f,%), and applying (ii) to
¢f~!, we have an open cover % of E such that N(f,%) < N(f,e).

Proor. (i) Let % be any open cover of E. It suffices to show that there
exists an ¢ € C5o(E) such that if v,we E, and |jv — w|, < &(v) then v,we U for
some Ue%. For each ueE,, choose a U, e % with ue U,. There exists a
section s, of £, an open neighborhood ¥V, of x in X and & >0 such that
sy(x) = u and Oy, (s4,2¢,) < U,. There exists a locally finite open cover {W,} of
E such that W, < Oy, (sy,&,) for each u. By Fact 2, there exists an ¢ € Cso(E)
such that ¢ <eg, on each W,. If v,weE, and |v— wll, < ée(v) then ve W, c
Ov, (84, &) for some u € E, and |jv — wl|, < &(v) < é& and ||lv — 5,(v)|, < & Hence
lw—s(»)|| < 2e and v,w € Oy, (s4,2¢,) < U,.

(ii) Let e € C5o(E) be any map. It suffices to show that there exists an open
cover {U,} of E such that if v,we E, and v,w € U, then |jv — wll, < &(v). For
each u € E,, choose ¢, > 0 such that 2¢, < ¢(u) and take an open neighborhood
W, of u in E such that inf &(W,) > 2¢,. Then there exists a section s, of ¢, an
open neighborhood V, of x in X and J, >0 such that s,(x)=u, J, <s,
and U, = Oy, (s4,0,) < W,. If v,weE, and v,we U,, we have |jv— wll, <
26, < 2¢, < &(v). ad

Fact 7. #,u(&) is a topological group.

Proor. We must show that the composition and the inverse map are
continuous. By Fact 6 we can use the neighborhood bases measured by open
covers of E.

(i) Let f,g € s#,(£) and % is an open cover of E. Since E is assumed to be
metrizable, there is an open cover ¥~ which is a star refinement of % (cf. [6]). If
[ eN(f,g7'(¥)) and ¢’ € N(g,7") then (gf,gf") < ¥ and (g¢f",4f') < ¥, hence
(9f,g'f") <%, which means ¢'f" € N(gf,%).

(i) Let f € #,(¢) and % be an open cover of E. If ge N(f,f(%)), then
(fT'9,97'9) = (f9.f7If) <%, hence (f!,g7') <%, which means that
gleN({ 2. O
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Fact 8. #U(¢) is a topological group.

Proor. We must show that the multiplication and the inverse map are
continuous.

(i) Let f,ge #Y (&) and e Cso(X). Since g is f.p. uniformly continuous,
there is a map 0 € Cso(X) such that if w,ve E, and [u—v|, <d(x) then
llg(x) — g(v)|l, < &(x)/2. Suppose f'eN(f,0) and g'eN(g,¢/2). Then
lgf — af’ll <e&/2 and |lgf’ — g'f'|| < /2, hence |lgf —gf'|| <e.

(ii) Let f e #Y (&) and ee Cso(X). Since f -1 is f.p. uniformly continuous,
there is a map &€ Cso(X) such that if w,ve E; and |ju—o|, <d(x) then
I/~ () —f'(v)llx < &(x). For any geN(f,6) we have |f'g—g7'gl=
If~'g — f~Yf|l < &, which implies || £~ — 47| <. O

Fact 9. #,(R") is not a topological group. Indeed, neither the composition
nor the inverse is continuous.

Proor. (i) The case n = 1. Define f € #(R) by

X x<2

k(x—k)+k k<x<kt—

f(x) = -0 +k-+-1 (k : an integer, k > 2)

1 1
z(x—(k+1))+k+1 k+m <x<k+1

For each k > 1, define g € 5#(R) by

1
gk(x) —X+k—_|:—1‘ (XGR).

Then gx € N(id,1/k). However, since fge(k) =f(k+ (1/k+1)) =k +k/(k+1)
and f(k) =k, so [|[fge(k) — () = k/(k+1) 2 1/2, we have fgi ¢ N(f,1/2).
This means that the composition g+ fg is not continuous with respect to the
topology u.

Observe that

X x<2,
1

_ —(x—k)+k < L
k(x—(k+1)) +k+1 k+— <x<k+l.

k+1
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For each k > 1, define f; € #(R) by

1

Je(x) = f(x) tern

Then ||fi —f|| =1/(k+1), so fi converges to f. On the other hand, since
S (x) =Y x—=1/(k+1)), we have

1 k
f_l(k-{-l)—f}c_l(k-i-l):k-i-l—— <k+k_+1> Zm,

whence ||f7! —f7Y = k/(k+1) = 1/2. Therefore the inverse g+— g~! is not
continuous.

(i) The general case: We have the same conclusion for f X idgs1, gi X idgn
and fi X idgi1. O

Fact 10. 5#.(¢) is a topological group.

Proor. We must show that the composition and the inverse map are
continuous.

(i) Let f,g e #(&) and a,e € C5o(X). There exists a b e Cso(X) such that
f(B(a)) = B(b). By Fact 4, there exists a § € Cso(X) such that § <1 and if
u,veBy(b+1) and |u—v|, <d(x) then |g(u)—g(v)l], <e(x)/2. Suppose
f'€N(f,a,0) and g’ € N(g,b+ 1,¢/2). Then for each u e B,(a) it follows that
S), £/ eBu(b+1) and [£() /@) < 5(x), hence [lgf(w) — g'f ()], <
llaf () — af" (@)l + llaf"(#) — g'f" (W)l < &(x), which implies g'f" € N(gf ,a,¢).

(ii) Let f e (&) and a,6 € C5o(X). We will find 8,5 € Co(X) such that
if geN(f,b,6) then g leN(fla¢e. Take b,ce Cso(X) such that
S~Y(B(a+2)) < B(b) and f(B(b)) < B(c). Applying Fact 4 to /~! and ¢+ 1, we
have & € C5o(X) such that 6 < 1,a and if u,ve By(c+1) and |ju—v|, < 3(x)
then ||f~'(u) —f~'(v)||, < &(x). Suppose geN(f,b,d). Since dg(By(b))N
Bi(a) = & and g(f'(0)) € g(Bx(b)) N By(a) # &, we have By(a) < g(B.(b)),
that is, for each v e By(a) there exists a ue B,(b) such that v=g(u). Since
g(u) € Bx(c+1) and ||f (w) — g(u)|l, < &(x), it follows that | f~'(v) — g~ (0)], =
If 7 g(u) —ull, = || f'g(u) — f'f ()|, < e(x), which means that gle
N(f Y a,¢). O

Fact 11. For each ue E and ¢ > 0 there exist a neighborhood U of u in E
and 6 >0 such that if ve Uy, weE,, |[lv|, —[wl,| <0 and 6,(v,w) <& then
lv—wl, <e.
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PrOOF. As easily observed, for each u e R” and ¢ > 0, there exists 6 > 0
such that if ve R, ||ju| — |v|l| <J and 6(u,v) < J, then |ju—v|| <e. Then it
follows that for each u € R" and ¢ > 0, there exist a neighborhood U of u in R”
and 8 >0 such that if veU, weR", |||v]| —|wl| <d and 6(v,w) < J then
lo—w| <e.

Let ue E, and take an isometric local trivialization of E over an open
neighborhood W of x in X, so that we may assume E= W x R* and
u = (x,up). By the above observation we obtain an open neighborhood Up of ug
in R" and 6 > 0. Define U =W x Uj. O

LemMA 1. Let 1:[0,00) — (0,1] be a function such that A(s) — 0(s — o0).

Suppose f € #Y(&) and ge H(8). If |f(u) — g()ll, < A(ljull,) for any ue E,
then ge #Y(¢).

Proor. (1) The f.p. uniform continuity of g: Let ¢ Cso(X). By Fact 2
there exists a map a € Cso(X) such that (i) if s > a(x), then A(s) < &(x)/3. By
Fact 4 and by the fp. uniform continuity of f, there is a d € Cso(X) with
6<1 and such that (ii) if w,peBi(e+1) and |u—v|, <d(x) then
lg(u) —g(v)|l, < &e(x) and (i) if w,veE, and [u—vl, <d(x) then
17 () =W, < e(x)/3.

Suppose u,v € E, and |ju —v|, < 8(x). If u,v ¢ By(a) then | f(u) —g(w)|, <
Allull,) <e(x)/3 by (i) and similarly | f(v) —g(v)ll, <e(x)/3. Hence
l9() — 9(0) . < llg(u) — @)l + 1 ) = F @)l + /() — g0l < o(x) by (i)
Otherwise, u,v € By(a+ 1) and the same conclusion follows from (ii).

(2) The f.p. uniform continuity of g~': Let &€ Cso(X). Since f~! is f.p.
uniformly continuous, there exists a map 8, € C>o(X) with 6; <1 and such that
(i) if |lu—vl|, < d1(x) then ||f~1(u)—f"1(v)|l, <&(x)/3. Similarly to (1), we
have a map a € Cso(X) such that (ii) if s> a(x) then A(s) < d1(x). Choose a
map b e Cso(X) so that g(B(a)) = B(b). By Fact 4 there exists a 6 € Cso(X)
such that 6 <d; and (iii) if w,veBi(b+1) and |ju—v|,<d(x) then
g™ () — g7 ' )l < &(x)/3.

Suppose u,ve E, and |ju—ol|, < &(x). Since 6 <1, we have either (a)
u,v ¢ g(Bx(a)) or (b) u,veB(b+1). In the case (a), g~'(») ¢ B(a) by (i)
and | /g~ (u) — ull, < 31(x) by (ii). Hence by (i) [lg~ () —/ " W)ll, < e(x)/3.
Similarly g~ () = (9)ll, < &(¥)/3. By @) lf () — /=" () < e(x)/3. Hence
lg~ () — g7 (v)|l, < &(x). In the case (b) the same conclusion follows from
(iii). O
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LemMMA 2. For any map ¢ € Cso(E) there exists a map 6 € Cso(E) such that
if u,ve EX\{0}, |||ull, — lIvll,] < 6(w) and 6(u,v) < 6(u) then ||u— v, < e(u).

Proor. For each u € E there exists an open neighborhood W, of u such
that &(v) > ¢, = ¢(u)/2(v € W,). By Fact 11, there exist an open neighborhood
U, of u in W, and J, > 0 such that if ve (U,),, w € E), |||v[l, — |Iwll,| < o and
8y(v,w) < dy, then |lv —w||, < &, Take a locally finite refinement {U;} of {U.}
and define 6, = d,(;), where U; = U,;). By Fact 2 there exists a map 6 € C5o(E)
such that 6 <é; on U;. Now, suppose v,weE,, [|v]|, —[w]|,| <d(v) and
6,(v,w) < 8(v). Then, ve Uy c Uy = Wy for some 4. Since 6(v) < 6; = S,
and g,y < &(v), |lv—wll, < ey < e(v). O

LEMMA 3. For any map e C5o(E), there exists an increasing sequence
O=ro<n<---<r<--- in Cso(X) such that for each xeX, ri(x)—
00(i — 00) and riyy(x) — ri(x) < miné(By(riz2))(i = 0).

ProoF. We first show that for each a e Co(X) there exists a b e Cyo(X)
such that a < b and b(x) — a(x) = min (B« (b)) for each x € X. By Fact 3 the
map F: X x[0,00) — (0,00) defined by F(x,s) = mind(Bx(s)) is continuous.
Since F(x,s) > F(x,t) for 0 <s <1t we have a unique s=s(x) >0 for each
x € X such that F(x,a(x)+s)=s. The map s: X — (0,00) is continuous. In
fact, for every sufficiently small &¢>0, F(x,a(x)+s(x)—¢)>s(x)—¢ and
F(x,a(x) + s(x) +¢) < s{x) + ¢&. Hence, x has a neighborhood U in X such that
F(y,a(y) +s(x) —¢) > s(x) —¢ and F(y,a(y) +s(x) +¢) <s(x)+¢ for each
y € U, which means that s(x) — & < s(y) < s(x) +&. The desired map b can be
defined by b(x) = a(x) + s(x)(x € X).

By the repeated application of the above observation, we obtain an
increasing sequence 0 =g <a; <--- <@ < a1 <--- in Cyp(X) such that
a;41(x) — a;(x) = min §(By(a;41)). Next we will show that a;(x) — oo(i — o0) for
each x € X. On the contrary, assume that ¢ = sup a;{x) < co. Choose an integer
n>1 so that n7! < ¢ 'mind(By(c)). Since a;(x)— a;_1(x) = mind(By(a;)) >
min 8(By(c)) > ¢/n for each i, we have a,(x) = > ¢ (ai(x) — ai_1(x)) > ¢, which
is a contradiction.

Finally, let r3 = a; and take maps 341, rses2 € Coo(X ) (K = 0) such that

(1) 73 < r3ks1 < r3gg2 < ragss,

(i) raer1 — 3k < 5(raess —r3) and ryes — rage < 3 (Pskee — raqs).

Then we have



192 Tatsuhiko YAGASAKI

(@) r3k42(x) = 13ic(X) < r3e43(x) — rae(x) = min d(Bx(rsus3)) <
min 5(Bx(r3k+2)),
(B) r3rs3(x) = 7341(x) < r3pp3(x) — rae(x) = min 6(Bx(re43)),
(€©) r3ksa(x) = raa(x) = (rara(x) — raees(x)) + (rarg3(x) — rag2)(x)) <
I3k16 — r3ks3 = min 6(Bx(raxse)) < min 6(By(rsxy4))-
This completes the proof. O

3. The basic f.p. engulfing lemma

The purpose of this section is to extend the radial engulfing lemma
[3, Theorem 2], [9, Lemma 4.11.2] to the vector bundle case.

LemMa 4. Suppose X is a countable dimensional metrizable space and n > 5.
Let ge () and a,d' b, b e € Co(X) with e <d <a<b<¥. Then there is a
fp. PL isotopy Si:E—>E0<t<1) such that

1) fo=

(i) fi= ld ong(B(a'))U(E\g(B(¥)))(0<:<1),

(iti) f1(9(B(a))) = g(B(b)) and

(iv) Ox(g5" (fi)(4), 5" (W) < &(x) for ue Ex\{gx(0)}.

Proor. We first take maps a;, b;e Coo(X) (i=0,1,...) such that
a’<---<ai+1 <ag;<---<ay=a and b<"'<bi+1 <b <. <bh <b0:b,.
Since X is countable dimensional, we can write X = Ulf'ilXi, where each X; is
0-dimensional.

Now fix i > 1 and let x € X;. There is an open neighborhood W, of x in X
and a f.p. homeomorphism ¢ : Ey, — W, x R" over W, such that ¢,: E, — R"
is an isometry for each y € W,. Let §j = ¢gp~ ' : Wy x R — Wy x R". We take
¢, and d,d’ > 0 with a;.1(x) < ¢ < ¢ < ai(x) and b;(x) < d < d' < b;_y(x), and
apply [9, Lemma 4.11.2] to §, = ¢,g:¢;' : R* > R" and 0 < e(x)/2 < <
c¢<d<d' to obtain a PL isotopy A : R" — R"(0 <t < 1) such that

(i) ho=1id,

(i) A =1id on g.(B(c))U(R"\g(0(d")))(0 <t <1),

(i) 71(9,(0(c))) = gx( (@),

(iv) 0(gx~" (he(w), ;' (u)) < e(x)/2' for ue R"\{G,(0)}.

Applying Fact 1 in the product bundle W, x R", we can find an open
neighborhood V; of x in W, such that (ii) §(By, (ai+1)) < (id % g,)(By (¢)) and
9(Ov,(bi-1)) = (id x §,)(Br,(d))

(ili) §(Bv(@)) = (id x §,)(Bv,(c) and §(By, (b)) < (id x §,)(By,(d)).
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Thus, the f.p. PL isotopy }_z,x = ¢~ '(id x h;)¢ : Ey, — Ey,_ satisfies the fol-
lowing conditions:

() hy=id,

(ii) = id on g(By,(ai1))U(EVi\g(Or,(5:-1))(0 <2< 1),

(iii) 7 (9(Ov, (@) = g(Br, (b)),

(iv) Ox(gx () (), g7' () < &(x)/2" for u € g(Bx(bi-1)\Ox(ai+1))-

Let EX=E,\{0} and AE*=|)  E;xEfcExE. The angle map
6 : AE* — [0,n] defined by 0(u,v) = Ox(u,v)(u,v € EY) is continuous. By Fact 1,
if we replace V, by a smaller one then

(iv)" By(g;" (), (w), 95 () < &(»)/2" for ue g(By,(bi-1)\Ov,(air1)) N E,y.
Hence it follows from (ii) that

(iv) Hy(g;l(ﬁ:)y(u),g;l(u)) < ¢(y)/2 for yeV, and ue E\{g,(0)}.

Since {¥x}, . x, is an open cover of X; in X and X; is O-dimensional, there is
a disjoint open cover {U;} of X; in X such that each U, is contained in some
Vi (cf. [4]). We define U; = ),U, and a f.p. PL isotopy g, : Ey, — Ey, by
gl = I_zf(l) on each Ey,. Then, for each ye U;

@ (90), = id,

(i1) (gi)y =id on gy(By(air1)) U (E)\gy(By(bi-1))),

(i) (9)),(9y(By(@))) > g,(B, (b)),
@) 8,((9y)"(g),(u), (g,) () < e(»)/2' for any u e E,\{g,(0)}.

We have obtained an open cover {U;} of X. We can take locally finite open
covers {W;} and {V;} of X such that the closure V< W;and W; c U, for each
i. Take maps «; : X — [0,1](i > 1) such that o;(¥;) = 1 and o;(X — W;) = 0. For
each i, we define a f.p. PL isotopy f/ : E — E by (f}), = (g;'ui(x))x if x e U; and
(f1), =id if x ¢ U; (cf. Fact 5). Finally we define the f.p. PL isotopy f;: E — E
by fi(u) = im0 /7 ... 1 (u)(u € E).

We must verify that f; is well-defined and satisfies the required conditions.
Let xe X. Then x has an open neighborhood U which meets at most a finite
number of W;. Choose an ¢ so that UNW;,=¢ for i>¢, whence
(f), = (f)),---(f"), for each y e U because (f)), =id for i > ¢. Therefore f,
is well defined and continuous. Since each (f/), is a PL isotopy,
(), =(f)---(f1), is also a PL isotopy.

(i) Obviously (fo), = (/). (fo)x =id.

(ii) For each i=1,...,¢4,(f)),=id on gx(Bx(ai+1)) U (Ex\gx(Ox(bi-1))),
9x(Bx(d')) < gx(Bx(air1)) and gx(Bx(b')) = gx(Bx(bi—1)). Then it follows that
(1), = id on gx(Bx(a')) U (Ex\gx(Bx(¥))).

(iii) Note that x € ¥} for some 1 <k <. Since (f}), = id on gx(Bx(ai+1))
and  gx(Bx(air1)) D gx(Bx(ax)) for i=1,...,k—1, we have (fF1), ...
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(D)(0x(Be(@0))) = 0:(Bo(@r))). Then (4),(gx(Bula)) = (), (0x(Belar))) =
gx(Bx(bk)). For i=k+1,....,¢, (f),=id on E,\gx(Bx(bi_1)) and
gx(Bx(Bx)) > gx(Bx(bi—1)), whence (f}),=id on E,\g.(Bx(br)), which im-
plies that  (f),(gx(Bx(bx))) = gx(Bx(bx)). Therefore  (fi),(gx(Bx(a))) >
e0x(Be@)) = (), () 0x(Belar))) > (), (A7) (0e(Balbi)) =
gx(Bx(br)) 2 gx(Bx(b)).
(iv) For ue E\{g«(0)}, let up=u and w; = (f}),...(f}),(w) # gx(0) for
i > 1. Then 0x(g; ' (u:), 97 (ui—1)) < &(x)/2" since u; = (f}) (wi1) = (Gl )= (1)
for xeU. It follows that 6.(g7'(f2), (), g5 () = 0x(g; (), g7 (o)) <
¢ 0x(g7" (i), 97" (im1)) < e(x). This completes the proof. O

4. PL approximations of f.p. stable homeomorphisms

This section contains the proofs of the Main Theorem and Corollary. The
theorem follows from the next lemma.

LemMA 5 (cf. [9, Lemma 4.11.1]). Let g € #(&) and a € Cso(X) such that g
is PL on O(a). Let h: O(a) — E be a f.p. homeomorphism such that h(0) = 0,
Ox(h(u),u) = 0 for ue Ox(a)\{0} and, for any R e Cso(X), there is an r € Cso(X)
such that r < a, r < R and h(B(r)) = B(R). Then, for any ¢ € C+o(0(a)) there is a
f-p. PL homeomorphism f : g(O(a)) — E such that | fg — gh| < e.

ProoF. By Facts 6 and 7, we have an ¢ € Cso(E) such that for f € #(&),
||f —id| < ¢ implies ||gf — g|| < ¢~~'. By Lemma 2, there is a 6 € Cso(E) such
that if w,ve EX\{O}, [|l#l,— vl <d(u) and &.(u,v) < () then
lu—v|l, < €(u). We will construct a f.p. PL homeomorphism f : g(O(a)) — E
such that f(g(0)) = g(0) and if u € Ox(a) then (i) [llg~"fo()l, — A@)I.| < oh(u)
and (ii) 0x(g~'fg(u), h(u)) < Sh(u) for u # 0, whence ||g~'fg(u) — h(u)|, < &h(u).
Then |lg~'fgh~' —id| < ¢, which implies that | fgh~! —g|| < eh~!, hence
/g — ghll <e.

By Lemma 3, there exists an increasing sequence of maps
0=R, <Ry <---<Ri<--- in C5¢(X) such that for each xe X, Ri(x) —
(i —00) and  Ria(x) — Ri(x) < di(x) = min 8(Bx(Ris2))(i = 0).  Define
1 € Coo(X) by A(B(r;)) = B(R;). Then,0=rg<rn <---<r<---<a,r;< Rand
for each x € X, ri(x) — a(x)(i —» o) and &;11(x) < §;(x)(i = 0).

By the repeated application of Lemma 4, we obtain a sequence of f.p. PL
homeomorphisms f; : E — E(k > 1) which satisfies the following conditions:
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(1) fi = id on ge_1(B(rk-1)) U (E\gk-1(B(Rk+1)))s

(2) gk(B(rk)) = gr—1(B(Rx)),

(3) Ox(g) fuw), g1, () < 8(X)/2 for ue E\Mg1(0)},
where go = g and gx = f ...fig for k > 1. Then, by the induction on .k, we have

(4) ﬁc . ﬁ =id on E\g(B(Rk+1)) and gk—](B(Rk)) = g(B(Rk)).

In fact, the case k = 1 comes from (1) and if fi—1...fi = id on E\g(B(Rx)),
then  ge1(B(RY) = g(B(R)) and  ge-1(B(Rent)) = g(B(Res1)), whence
Ji---fi=id on E\g(B(Re+1)) by (1).

By the induction on #, we have also

(5) fr=id on gp(B(ry)) and g,(B(rs)) = gx(B(ry)) for £ > k.

In fact, the case £ =k + 1 comes from (1) and, if f; = id on gi(B(rx)) for
k<j<t, then g(B(r2)) > ge(B(re)) = ge(B(r)), where fr1 = id on ge(B(r))
by (1).

Define f:¢(0(a)) > E by f=limpwfi.--fi- By (5), f=fk...fi on
g(B(r)), so that f is well-defined. It follows from (2) and (4) that

(6) f9(B(re)) = gk(B(rx)) = 9r-1(B(Rx)) = g(B(Rx)),
so f is an onto f.p. homeomorphism. For each x€ X and k > 1, on the open
set  gx(Ox(re)) of gx(0x(a)), fi=(fk),..-(f1), is a PL map, hence
Jx 1 9x(0Ox(a)) — E, is a PL homeomorphism. Since f;(g(0))} = g(0)(k = 1) by (5),
we have f(g(0)) = ¢(0).

Below we will verify (i) and (ii). Let « € O(a). Then u € By(rr.1)\Bx(rx) for
some k > 0. Since h(u) € By(Rr41), it follows that 6h(u) > Sk (x).

(1) Since fg(B(ry)) = gk (B(rr)) < gr(B(Ri+1)) = g(B(Rk41)), it follows from
(6) that fg(u) € (E\g(B(Ri))) Ng(B(Ri+2)), hence g~'fg(u) e (E\B(R«))N
B(Ry42). Thus Ry(x) < |lg7'fg(w)|l, < Re+2(x). On the other hand, since
h(u) € B(Re+1)\B(Rk), we have Ry(x) < ||a(u)|, < Res1(x).  Therefore,
g~ fg@)ll, = 1Rl < Rir2(x) — Ric(x) < k() < Sh(u).

Before verifying (ii), we note that

(7) if v e Ex\Bx(rr) then 0,(g~ gk(v),v) < d(x)/2.

In fact, the case k =0 is trivial. For k > 1, gk(v) ¢ gx(B(rx)) = g(B(Rx)) by
(6), so g lgk(v) = gi'igk(v) = 9i; figk-1(v) by (4). From (3) it follows that
0x(97 9k (v),v) = Ox(gic} fig-1(v), Gt 19k-1(v)) < Ok (x)/2.

(ii) Since u € By(ri+1), we have fg(u) = gr+1(#) = frr19x(u) by (5). Since
9 fiengk(B(r)) = B(re) by (5), we can apply (7) to v = g; fir1e(s) & B(re).
Then 0x(g7'fg(u),v) = 0x(g™ fes19x(1), v) = Ox(97 ' gk (v),v) < Sk(x)/2. On the
other hand, 0.(v,u) = 0x(g; fir19x (), 95 gk (4)) < drs1(x)/2 by (3) and
0, (h(u),u) = 0. Therefore, 0x(9~'fg(u), h(u)) < &x(x) < 6(h(u)). This completes
the proof. O
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Proor OF THEOREM. By Fact 7 we may assume that g is PL on O(s,a)
for some section s of ¢ and ae C,o(X). Since the translation Esum—
u+ s(n(u)) € E is a f.p. PL homeomorphism, it suffices to consider the case that
s is the zero section.

Take a f.p. homeomorphism 4 : O(a) — E as in Lemma 5. For example,
define 4 by

1
h(u) = (m+ l)u (u e Ox(a)).

By Lemma 5, there is a f.p. PL homeomorphism f; : g(O(a)) — E such that
fzg|0(a) approximates gh. Applying Lemma 5 to g =id, we have a f.p. PL
homeomorphism f; : O(a) — E which approximates . By Fact 7, if f; is suf-
ficiently close to A, then Af;™! is close to id. Then, f = frgf;”! : E — E is the
required f.p. PL homeomorphism. O

ProOOF OF COROLLARY. (i) Suppose Y is a countable dimensional met-
rizable space and g:Y — #7511 (¢) is a map. Consider the vector bundle
idxmn:Y x(0,1]xE— Y x(0,1] x X with the natural Riemannian metric
induced from ¢. The base space Y x (0,1] x X is countable dimensional
metrizable space and g induces the f.p. PL; homeomorphism G: Y x (0,1] x
E — Y x(0,1] x E defined by G(y,t,u) = (y,t,9(y)(u)) (cf. Fact 5).

Let A(s)=1/(1+s) for se€[0,00). Then A(s) — O(s— o0). We define
0:Y x (0,1 x E— (0,00) by (y,t,u) = min{A(||u||),}. By Theorem there is
a f.p. PL homeomorphism F:Y x (0,1]xE— ¥ x (0,1] x E such that
|IF - G| < é.

Define fy =g and f;: Y — #75(&) by fi(y)(w) = ngF(y,t,u) for 0 <t <1,
where 7n5:Y x (0,1] x E— E is the projection. We will verify that the
homotopy f is continuous. Let ye Y, te[0,1] and ¢ > 0. Note that the base
space X is compact. We must find an open neighborhood U of y in Y and o > 0
such that if ze U and |t — 5| < a then || f;(y)(u) — fs(z)(v)], < ¢ for each u € E,.

(1) The case that 0 <z < 1: Since A(s) — 0(s — 00), there is a > 0 such that
Ala) < ¢/3. Since F is continuous and B(a) is compact, there exist a neigh-
borhood ¥V of y in ¥ and « > 0 such that if ze V, |t —s| <o and u e By(a),
then | f:(y)(u) — fs(z)(w)||, < &/3. This fact can be shown by noting that
f:Y x(0,1] — #(&) (with the compact-open topology) is continuous. Here, for
completeness we give a more elementary verification:

For each u € B(a), take a neighborhood O, of f;(y)(4) in E of the form:
0, = O(sy,¢/6), where s, is a section of ¢ with s,(x) =f(y)(u) = neF(t,y,u),
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here x = n(u). Then there exists a neighborhood ¥V, of y in ¥, W, of ¢ in (0, 1]
and U, of u in E such that ngF(V, x W, x U,) c O,. Since B(a) is compact,
there are finite ; € B(a) such that B(a) < | J,U,,. Set ¥ = (),V,, and take « > 0
such that (t—o,t4+a) = (|,Wy. If zeV and |t—s| <a and ve By(a), then
ve U, for some wu;. Then f(z)(v), fi(y)(v) € ngF(Vy x Wy, x Uy) < Oy =
O(s,¢/6) and hence [|fi(2)(v) — i) (O], < /3.

Since g: Y — 5#,(&) is continuous, there is a neighborhood W of y in Y
such that for z e W, ||g(y)(u) — g(z)(v)||, < ¢/3(u € Ex). Now let ze U=V NW,
|t —s| <o and u € E,. In case u € B(a), || fi(y)(u) — f5(z)(u)|, < &/3 < &. In case
u ¢ B(a), it follows that &(z,s,u) < A(|lul,) < A(a) < &/3. Since |F—G| <9,
lg(2)(w) = fs(2) W)l < 8(z,5,u) < /3. Similarly  |lg(y)() - () (W)l < &/3.
Since [|g(»)(4) — g(z)(w)l, < &/3, we have [ £,(»)() ~ AW, <=

(2) The case t=0: Since fy=g: Y — #5(¢) is continuous, there is a
neighborhood U of y in Y such that for ze U, |g(y)(u) — g(z)(w)l|, < &/2.
Let 0 <s<a=z¢/2. Since ||F — G| <4, it follows that ||g(z)(u) — fs(2)(w)|, <
8(z,s,u) < s < /2. Therefore,ifz € Uand0 < s < athen || fo(y)(u) — fi(2)(W)]|, < e
This completes the proof of (i).

(i) It suffices to show that in the proof of (i), if g(y) € #71V(£) then
fi(y) e #PE0U (&), This follows from Lemma 1 since |lg(y)(u) —fi(»)(#)l, <
o(y, t,u) < A(||u||,) for any u e E,. O
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