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PL APPROXIMATIONS OF FIBEM PRESERVING

HOMEOMOMPHISMS OF VECTOR BUNDLES

By

Tatsuhiko Yagasaki

Abstract. We investigate the group of f.p.homeomorphisms of an

^-dimensional vector bundle £.In the case n > 5 and the base space

of £ is countable dimensional, we show that every f.p. stable

homeomorphism of £ can be approximated by f.p. PL homeo-

morphisms with respect to the majorant topology. As an appli-

cation we can show that if the base space is compact, then the

group of f.p.PL homeomorphisms of £with the uniform topology

has the mapping absorption property for maps from countable

dimensional metric spaces into the group of f.p. homeomorphisms

of £ which are PL on the unit open ball.

1. Introduction

In [3] and [9] it is shown that in the case n > 5 any stable homeomorphism

/ : Rn ― Rn is approximated by PL homeomorphisms. In this paper we extend this

result to the case of f.p. stable homeomorphisms of vector bundles. To state the

main results precisely, firstwe introduce some notations in the vector bundle setting.

Let £ = (n : E ―> X) be an w-dimensional real vector bundle with a Rie-

mannian metric. Since each fiber Ex = n~1(x)(x e X) is a real vector space, it

admits the natural piecewise linear structure. Let C>q(X) (resp. C>q(X)) denote

the set of all continuous functions from X to [0, oo) (resp. (0, oo)). We define

Bx(a) = {ueEx: ＼＼u＼＼x< a(x)} for xe X and B{a) = [JxeXBx(a). Similarly

Ox(a) = {ueEx: ＼＼u＼＼x< a(x)} and O(a) = (jxeX0x{a).

Let J^(^) be the group of fiber preserving (f.p.) homeomorphisms/ : E ― E

(i.e.,nf = n). By 2tfF{E) we denote the subgroup of &{£) consisting of the f.p.
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homeomorphisms of E which satisfy a condition P. In this paper we will

consider the following conditions:

(i) PL :/ e MTtf) is PL is for each xeX,fx =f＼Ex :EX->EX is PL. More

generally, it is said that / is PL on an open set U c E if each fx is PL on

ux = uhex.

(i)' PL＼ :/£Jf(£) is PLX iff is PL on 0(1).

(ii) S :f e
<#?(£)
is stable if f =fi ...fk, where each/- is PL on an open

neighborhood Ut of (the image S((X) of) some section j,-:X -* E. In the case X

is a one point and / is orientation preserving, then this definition coincides with

the usual one (cf. [9, p 195, Exercise 4.11.1]).

(iii) U :f e Jf (£) *s an f-P- uniform homeomorphism if both/ and/"1 are

f.p. uniformly continuous, where an f.p. map g : E ―> E is an f.p. uniformly

continuous if for each map e e C>o(x) there is a map 8 e C>o(lr) such that if

u,veEx and ||w - v＼＼x< 5(x) then ＼＼g(u)- g(v)＼＼x< e(x).

When Jf (f) (or Jf^)) is given a topology r, it is denoted by J^T(0 (or

JfTp(£)). We will be concerned with the following topologies:

(i) The f.p. majorant topology m: The neighborhood base of/e 3tfm{£) is

given by tf(/,c) = {g e *(£) : ＼＼f- g＼＼< s} (8eC>o(£)). Here, ||/-flf||<fi

means that ＼＼f(u)― g(u)＼＼x< &{u) for each ueEx.

(ii) The f.p. uniform topology u: The neighborhood base of f e Jtu(£) is

given by N(f,e) = {g e *{£) : ＼＼f-g＼＼< e} (£eC>0(X)). Here, ||/-flf||<e

means that ＼＼f(u)― g{u)＼＼x< e(x) for each u e Ex. Note that, if X is not totally

bounded, then JV(/, e) (e > 0) does not satisfy the axiom of neighborhood base,

that is, for g e N(f, e) there exists no 3 > 0 such that N(g, 5) c N(f, e). This is

the reason that we need to use functions e : X ―>(0, oo).

(iii) The compact-open topology c: The neighborhood base of/eJfc(£) is

given by Ntf,a,e) = {g e *(£) : ＼＼f- g＼＼< e on B(a)} {a,8 e C>0(X)). Here,

||/ ― gf||< e on 2?(a) means that ||/(m) - ^(≪)||x < eW for each u e ^(a).

We refer to [9, Ch 5. §6] for topologies on groups of non-f.p. homeo-

morphisms.

It should be remarked that JPm( ), &?( ) and Jfc(t) are topological

groups, but JfM(£) is not a topological group even if X is one point. (See Fact 7,

8, 9, 10 in §2 and compare with [9, p 272, Exercise 5.6.2].)

The following is the main result of the paper.

Theorem. Let £,= (n : E ―>X) be an n-dimensional vector bundle over X. If

X is a countable dimensional metrizable space and n > 5, then Jf^L(£) is dense in

^1{^) {i.e.,if g : E ―≫E is a f.p. stable homeomorphism, then for any map
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e :Is ―>･(0, oo), there is a f.p. PL homeomorphism f : E ― E such that

＼＼f-g＼＼<*).

The proof of Theorem is the f.p. version of the JT-case [3] & [9].The key

lemma is lemma 4 in §3, in which we will extend the basic engulfing lemma in

Rn to a vector bundle with a base space of countable dimension.

This theorem derives a kind of absorption property of JfPL(^) in Jf(£).

This is an important notion in infinite dimensional topology which has been

studied in many references with many variations (cf. [1],[2],[4],[5],[7], [10],

[11] etc.).In this paper we consider the following mapping absorption property.

A subspace I? of a space Y (or simply a pair (Y, B) of spaces) is said to have

the mapping absorption property for a class # of spaces if for any Z e # and

any map/ : Z ― Y there is a homotopy/, : Z ―>･Y (0 < t < 1) such that/o =/

and/,(z) a B for 0 < t <1. We will consider the class of countable dimensional

metrizable spaces. A metrizable space is countable dimensional if it is a

countable union of 0-dimensional subspaces (cf. [6]).

Corollary. Let £= (n :E ―>X) he an n-dimensional vector bundle over

X. If n > 5 a≫<iX is a countable dimensional compact metrizable space, then the

following pairs have the mapping absorption property for maps from countable

dimensional metrizable spaces:

(i) ≪Li(<a <L(£≫,

(ii)(jr^'^co, *ZL'U(Z)).

In [7]it is shown that for any compact PL manifold Mn (≪#4; if n = 5

suppose dM = 0), the closure Jf^L(M) of Jf^L(M) is a union of some

components of Jfc(M) and Jt^L(M) has the finitedimensional compact

absorption property in Jf^L(M) (see [7] for the definition).It should be noted

that the proof is based on the uniform local contractibility of Jfc(M) and

Jf^L(M). As for a non-compact manifold M, Jtm(M) is always not locally

path-connected and 3fc(M), Jfu(M) are not in general locally path-connected.

In the special case that M is the interior of a compact manifold M, for example

M = Rn, Jfc(M) and Jtu(M) are locally contractible, where the uniform

topology u is induced by the metric of M which is the restrictionof a metric of

M (cf.[9, Ch 5.§6]).The author has no references for the local contractibility

of 3fu(Rn) with respect to the usual metric.

In contrast to [7], we will reduce Corollary to Theorem by crossing the

countable dimensional space x(0,1] to £. More precisely, given any map
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/o : Y ―≫Jf (£), we have the corresponding f.p. homeomorphism F : F x is ―>

7x£ over 7 x X defined by F{y,u) = (yjo(y){u)). Then the f.p. PL

approximation of F gives a map /i : Y ―> J^PL{^) which approximates /o. The

additional (0,1] factor is necessary to obtain a homotopy /?. In Corollary we

replace the majorant topology m by the uniform topology u and assume that X

is compact in order to ensure that ft is continuous. The stable condition S is

replaced by the rather restricted condition PL＼ to ensure that F is stable.

Finally we list some remaining problems:

(1) By the stable homeomorphism theorem ([8]), every (orientation pre-

serving) homeomorphism of Rn is a stable homeomorphism. In the f.p. case, is

any f.p. homeomorphism of vector bundle a f.p. stable homeomorphism (i.e.,

(2) Can one omit any technical assumptions in Corollary (the compactness

of the base space X, the condition PLU etc.)? If Jf(£) = Jts(£) for any n-

dimensional vector bundle with a countable dimensional base space, then we

can omit the PL＼ condition in Corollary.

(3) Are the groups Jftt(£)and J^PL(^) ANR's for any appropriate class of

spaces?

2. Preliminaries on vector bundles and f.p. homeomorphisms

First we list some notations which are used throughout the paper. All

spaces are assumed to be metrizable. The ^-dimensional Euclidean space is

denoted by R". The standard inner product < ,> defines the norm ||w|| of a

vector hgJ?" and the angle 0(u,v) of vectors m, v eR"＼{0}. Note that

0(u, v) + 6(v, w) > 0(u, w) for. u,v,we JT＼{0}. For a > 0, we set B{a) =

{ueRn : ＼＼u＼＼< a} and O(a) = {ueRn : ＼＼u＼＼< a}.

Let £ = (n : E ―≫･X) be an ^-dimensional real vector bundle. For a subset A

of X, Ea = n~l(A). A Riemannian metric on ^ is a family {< , }x}xex sucn tna^

(i) < , }x is an inner product of Ex for each x e X,

(ii) For any sections s,t: X ―≫E of n the map <5, r> : X -> R defined by

<5, t}(x) = ($(x), t(x)yx(x e X) is continuous.

The inner product < ,>x defines the norm ||＼＼xand the angle 9X on the

vector space Ex. ME is trivial over U, then, using the Gram-Schmidt

orthogonalization, there is a fiber preserving homeomorphism <f>:Ev ―> U x Rn

over 17 such that for each y e U, <j)y: (Ey, < ,}y) -> (Rn, < ,≫ is an isometry (i.e.,

a linear isomorphism which preserves the inner products).

For a,b e C>o(X), a<b (resp. a < b) means that a(x) < b(x) (resp.

a(x) < b(x)) for each xe X. For a section s of £ and subset A of X we set
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Bx(s,a) = {ueEx: ＼＼u-s{x)＼＼x< a(x)}, BA(s,a) = UxeABx(s,a) and Ox{s,a) =

{ue Ex : ＼＼u- s(x)＼＼x< a(x)}, OA(s,a) = {JxeAOx{s,a). Note that for each u e Ex

and an open neighborhood U of u in E, there exist a section s of £,a constant

e > 0 and an open neighborhood W of x in X such that s(x) = u and

0^(5, e) c £/.

Below we will list some basic facts and preliminary lemmas on vector

bundles and f.p.homeomorphisms, which will be used in the process of proofs

of Theorem and Corollary.

Fact 1. Ifa.be C^o(X), a < b and Bx(b)＼Ox(a) is contained in an open set

U in E, then there is an open neighborhood V of x in X such that

Bv(b)＼Ov(a) c U {i.e.,for each yeV, Bv(b)＼Ov(a) c U).

Proof. By an isometriclocal trivialization,we may assume E = W x Rn,

W is an open neighborhood of x in X. Use the compactness of Bx(b)＼Ox(a).

□

Fact 2. If {Ux}^eA is a locally finite open cover of X and S% > 0 (A e A),

then there is a map 8 e C>q(X) such that 5(x) < di for each xeUi.

Proof. Each xe X has an open neighborhood Vx which meets only finitely

many Ux- Take an ex > 0 with ex < min{<5;i,: Vx f)Ux # 0}. We take a partition

of unity {ax} subordinated to {Vx} and define 5 = J2 sxax. Let y e Ux. If

ax(y) # 0 then y e Vx n Ux ＼=0 and sx < 5X. Hence 8{y) = X) fix^Cj) <

E ^AOtx(j)= <5A. □

Fact 3. For any map d e C>q(E), the function F : X x [0, oo) ―>[0, oo)

defined by F(x,s) ―minS(Bx(s)) is continuous.

Proof. Observe that the relation X x [0, oo) 3 (x,s) i―>Bx(s) <= E is con-

tinuous, that is, for each (x,s) e X x [0,oo),

(i) if C/ is an open subset of E such that Bx(s) cz U, then there exists a

neighborhood V of (x,s) in X x [0, oo) such that By{t) a U for each (y,t) e V,

and

(ii)if U is an open subset of E such that Bx(s) D U ＼=0, then there exists

a neighborhood V of (x,s) in X x [0,oo) such that By(t)V＼U # 0 for each

(M)eF.
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In fact,(i) follows from Fact 1 and (ii)is easy. The continuity of 3 follows

from this observation. □

Fact 4. Let f : E -> E be

f.p. uniformly continuous on

a 8 e C>o(X) such that

＼＼f(u)-f(v)＼＼x<e(x)).

a

B{a)

if

f.p. map. Then for each a e C>o(X), f is

(i.e., for every £eC>o(I) there exists

u,ve Bx(a) and ＼＼u- v＼＼x< 8(x), then

Proof. Let £eC>o(X). We will show that for each xeX there exist a

neighborhood Vx of x in X and dx > 0 such that if y e Vx, u,v e By(a) and

||m - v＼＼y< 8X then ＼＼f{u)―f{v)＼＼y< s(y). Let jcgI. For each u e Bx(a) take a

section rM of £ such that /m(jc)=/(≪) and consider the open set 0{tu,e/2). There

exists a section ^K of ^, a neighborhood Vu of x in I and 8U > 0 such that

,stt(jc)= u &nd f(Ovu(su,28u)) czO(tu,e/2). Since 5x(a) is compact, there exist

finite ut e Bx{a) such that Bx{a) a＼j.OVu.(sUx,dUl). By Fact 1, there is a

neighborhood Vx of x such that Byx(a) <= 1J,-O^ (jMi.,^mJ. Let Sx ― mmdUr If

^ e Vx, u, v e 5y(a) and ＼＼u― v＼＼y< dx, then u e Oj/U.(>?≪,,Su.) for some ? and since

8X < 8Ui we have y e Ovu.(sUi,25Ui). Hence f(u), f(v)eO(tUos/2), so that

＼＼f(u)-f(v)＼＼y<B{y).

Finally we take a locally finite refinement {Ux} of {Vx} with C/x c Fx and

apply Fact 2 to obtain the desired 5 e C>o(X). D

Fact 5. If f : E ―>E is a f.p. map and fx e Jf(Ex) for each x e X then

feJf(£).

Proof. We may assume E = X x Rn. Then the continuity of the inverse

map f~l :(x,u) i->(x,f~l{u)) follows from the following facts:

(i) Let ^(Rn) be the space of continuous maps from R" into itselfwith the

compact-open topology c. The homeomorphism group Jt?c(Rn) with the com-

pact-open topology is a subspace of ^(Rn) and it is a topological group.

(ii)A function g : X ―>^(Rn) is continuous iff X x Rn 3 (x, u) i―≫gx(u) e Rn

is continuous. □

Let % be an open cover of E. We say that f.p.maps f,g:E―+E are %-

close and write as (/, g) <°flif for each ue E there is a U e % such that

f{u),g{u)e U. Set N{f,%) = {g e jT(^) :(/,#) < *}. The next fact shows that

{N(f,<%) :°Uis an open cover of E} forms a neighborhood base of/ in Jfm(%).
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Fact 6. Let f : E ―>E he a f.p. map.

(i) For each open cover % of E there exists an se C>o(E) such that

||/-0||<£/ implies {f,g)<%.

(ii)For each e e C>q(E) there exists an open cover % of E such that

(f,g)<<% implies IIf- all<ef.

In the case/ e Jf (£),(i) means that N(f,ef) c JV(/,45r),and applying (ii)to

ef~＼we have an open cover <% of E such that iV(/,<Uf) c JV(/,e).

Proof, (i) Let % be any open cover of E. It suffices to show that there

exists an e e C>o(Is) such that if v, w e Ey and ||y ― w＼＼y< s(v) then v, w e U for

some U e %. For each u e Ex, choose a Uu e % with u e Uu. There exists a

section su of £, an open neighborhood Vu of i in I and eu > 0 such that

jM(x) = u and Oku(^m,2£m) c C/u. There exists a locally finite open cover {Wu} of

Is such that Wu c Oj/u(5tt,eM) for each u. By Fact 2, there exists an e e C>o(Is)

such that £< eM on each Wu. If u, w e Ey and ||u - w^ < e(v) then oe^c

^fu(^,£≪) for some ue Ex and ||u - w＼＼y< e(v) < su and ||y - ^(y)!^ < e≪.Hence

||w ―j(y)|| < 2eu and u, w e O^^, 2eM) c= C/M.

(ii) Let e e C>o(Is) be any map. It suffices to show that there exists an open

cover {Uu} of E such that if v, w e Ey and v, w e Uu then ||u - w＼＼y< e(v). For

each u e Ex, choose eu > 0 such that 2eM < e(u) and take an open neighborhood

Wu of u in E such that inf s(Wu) > 2su. Then there exists a section su of £, an

open neighborhood Vu of x in J and Su > 0 such that sM(x) = u, Su < £u

and Uu = Oyu(su,Su) a Wu. If v,weEy and y, w e f/tt, we have ||y ―w||;,<

2SU < 2&u < e(v). D

Fact 7. Jtm(£) is a topoloqical group.

Proof. We must show that the composition and the inverse map are

continuous. By Fact 6 we can use the neighborhood bases measured by open

covers of E.

(i) Let /",≪£Jfm((f) and % is an open cover of E. Since E is assumed to be

metrizable, there Is an open cover V which is a star refinement of % (cf.[6]).If

/' e N(f, r1 OH) and g' e N(g, r) then (gf, gf) < tr and (gf, g'f) < r, hence

(gf,g'f')<R, which means JfeN(gf,%).

(ii)Let/e jrOT(^) and ^ be an open cover of E. If g e N(f ,/(<&)), then

{f'lg,g~lg) = {f~lgj'lf)<^, hence (/-1,^-1)<^, which means that

Q-xeN(f-＼V). □
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Fact 8. 3tf^{£)is a topological group.

Proof. We must show that the multiplication and the inverse map are

continuous.

(i) Let f,g e Jt^(^) and eeC>o(X). Since g is f.p. uniformly continuous,

there is a map 5 e C>o(I) such that if u,veEx and ＼＼u―v＼＼x< S(x) then

＼＼g(u)-g(v)＼＼x<e(x)/2. Suppose feN(f,S) and g>eN(g,s/2). Then

＼＼gf- 9f'＼＼< e/2 and ＼＼gf- g'f'W < fi/2,hence ＼＼gf- g'f'W < e.

(ii) Let / e ^Mt/(^) and e e C>q(X). Since f~l is f.p. uniformly continuous,

there is a map 5 e C>o(I) such that if u,vgEx and ＼＼u― v＼＼x< 5(x) then

＼＼f-＼u)-f-l(v)＼＼x<s(x). For any geN(f,d) we have ＼＼f~'g- g-lg＼＼=

＼＼f-x9-rlf＼＼ < ≪,which implies II/-1 - g~H < e. D

Fact 9. M'u{Rn) is not a topological group. Indeed, neither the composition

nor the inverse is continuous.

Proof, (i) The case n =

fix) = <
k

1

For each

(x-k) + k

1. Define f e MT(R) by

x<2

k < x <k +

{x-(k+l))+k+l k +
j^―
fC ~r~1

k> 1, define gkeJ^{R) by

gk(x) =x +

topology u.

Observe that

r＼x) = <

X

1

k

1

(k : an integer, k > 2)

k

1

<x<k+l

(xeR)

x < 2,

k < x <k +

k +

Jfc+ 1

Then gk e Mid, l/k). However, sincefgk{k) =f(k + (I/A:+ 1)) = k + k/(k + 1)

and f(k) = k, so ＼＼fgk{k)-f{k)＼＼= k/(k + 1) > 1/2, we have fgk $ N(f, 1/2).

This means that the composition q＼-+fa is not continuous with respect to the

k(x-(k + ＼))+k+＼

k+V

<x<k+l.
Jfc + 1
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For each k > 1, definefk e jf(R) by

fk(x) =f(x) +

1

1 ) k

189

jt+ r

Then ||^.―/||= 1/(k+l), so fk converges to /. On the other hand, since

ffl(x)=f-Hx-l/(k+l)), we have

f-＼k+l)-fk-＼k+l) = k+l- '
k + l k+V

whence ＼＼fkl ―/ l＼＼> k/(k+1) > 1/2. Therefore the inverse g i―>g l is not

continuous.

(ii) The general case: We have the same conclusion for/ x idRn-＼,gk x idRn-＼

and fk x iJ^-i. □

Fact 10. J^C{C＼ is a topological group.

Proof. We must show that the composition and the inverse map are

continuous.

(i)Let f,g e 3f?c{£)and a, e e C>o(X). There exists a h e C>q(X) such that

f(B(a)) c B(b). By Fact 4, there exists a 3 £ C>0(X) such that S < 1 and if

≪,ye 2^(6 + 1) and ＼＼u- v＼＼x< S(x) then ＼＼g(u)- g(v)＼＼x< e(x)/2. Suppose

f eN(f,a,5) and g' e N(g,b+ l,e/2). Then for each ueBx(a) it follows that

f(u), f'(u)eBx(b+l) and ||/(n) -/≫|| < 8(x), hence ||a/(M) - g'f'(u)＼＼x<

＼＼gf(u)- gf'{u)＼＼x+ ＼＼gf{u)- g'f(u)＼＼x< e{x), which implies g'f e N{qf,a,e).

(ii) Let/eJfc(^) and a,e£C>0(X). We will find 5,heC>0(X) such that

if geN(f,b,d) then g~l eN{f-＼a,e). Take 6,ceC>0(X) such that

/-^(a + l)) c 5(6) and/(5(6)) c 5(c). Applying Fact 4 to/"1 and c+ 1, we

have 5 £ C>o(X) such that ^ < ＼,a and if m, v £5x(c + 1) and ＼＼u- v＼＼x< S(x)

then ||/-1(≪)-/-1(i;)||je<fi(x). Suppose geN(f,b,5). Since dg{Bx{b))n

Bx(a) = 0 and ^(/^(O)) e^(5x(6))n5x(a) ^ 0, we have Bx{a) <= g{Bx{b)),

that is, for each v e Bx{a) there exists a ueBx(b) such that v = g(u). Since

0(ii)e*x(c+l) and ||/(w) - g{u)＼＼x< S(x), it follows that ＼＼f-l(v)-g-l(v)＼＼x=

＼＼f-lg(u)- u＼＼x= ＼＼f-lg(u)-f-lf{u)＼＼x < s(x), which means that g'1 e

N(f-＼a,e). □

Fact 11. For each u e E and e > 0 there exist a neighborhood U of u in E

and 8 > 0 such that if v e Uy, we Ey, ＼＼＼v＼＼― ||w|| | < 8 and 9y(v, w) < S then

＼＼v― w＼＼< e.
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Proof. As easily observed, for each ue Rn and e > 0, there exists 8 > 0

such that if v e Rn, ＼＼＼u＼＼- ＼＼v＼＼＼< 8 and 0(u,v) < 8, then ＼＼u-v＼＼< e. Then it

follows that for each ue Rn and s > 0, there exist a neighborhood U of u in Rn

and
<5 > 0 such that

if veU, weR", ＼＼＼v＼＼- ||w||| < 8 and 9(v,w)<8 then

||y ― w|| < e.

Let we Ex and take an isometric local trivialization of E over an open

neighborhood W of x in X, so that we may assume E = W x Rn and

m = (x, Mo). By the above observation we obtain an open neighborhood Uq of ≪o

in Rn and 5 > 0. Define U = W x t/0. fi

Lemma 1. Let X : [0, oo) ―>(0,1] be a function such that X(s) -^ 0(s -> o>).

suppose f g jru(o fl≪^ g e jt(O- // ll/(≪) - 0(≪)L ^ ^(IIMIL) >r y u e ^

r/iew gejru(£).

Proof. (1) The f.p. uniform continuity of g: Let ee C>o(X). By Fact 2

there exists a map a e C>o(X) such that (i) if s > a(x), then 2(5) < e(x)/3. By

Fact 4 and by the f.p. uniform continuity of /, there is a d e C>o(X) with

d<＼ and such that (ii) if u, v e Bx(a + 1) and ＼＼u― v＼＼x< 5(x) then

＼＼g(u)- g(v)＼＼x < e(x) and (iii) if u,veEx and ＼＼u― v＼＼x< 5(x) then

＼＼f(u)-f(v)＼＼x<s(x)/3.

Suppose u,v e Ex and ＼＼u― v＼＼x< S(x). If u, v £ Bx(a) then ＼＼f(u) ― g(u)＼＼x <

X{＼＼u＼＼x)<e(x)/3 by (i) and similarly ＼＼f{v)- g{v)＼＼x< e(x)/3. Hence

＼＼g(u)- g(v)＼＼x < ＼＼g(u)-f(u)＼＼x + ＼＼f(u)-f(v)＼＼x + ＼＼f(v)- g(v)＼＼x < e(x) by (iii).

Otherwise, u, VEBx(a+l) and the same conclusion follows from (ii).

(2) The f.p. uniform continuity of 0~!: Let geC>o(I). Since/"1 is f.p.

uniformly continuous, there exists a map d＼ e C>o(X) with 8＼ < 1 and such that

(i) if ||M-t7||JC<^i(jc) then ＼＼f~l{u)-f~l(v)＼＼x < e(x)/3. Similarly to (1), we

have a map a e C>o(X) such that (ii) if s > a(x) then X(s) < S＼(x). Choose a

map h g C>0(X) so that g(B(a)) <z B(b). By Fact 4 there exists a 5 e C>Q{X)

such that 5 < d＼ and (iii) if u,v e Bx(b+l) and ＼＼u― v＼＼x< S(x) then

＼＼g-l(u)-g-＼v)＼＼x<e(x)/3.

Suppose u,veEx and ＼＼u- v＼＼x< S(x). Since d < 1, we have either (a)

u,v$g(Bx(a)) or (b) u,v e Bx(b+1). In the case (a), g~l{u)$B{a) by (i)

and ＼＼fg-＼u)-u＼＼x<5x{x) by (ii). Hence by (i) ＼＼g~＼u)-f-l(u)＼＼x < s(x)/3.

Similarly H^1^) -/"≫L < <x)/3. By (i) H/"1^) -/^(^IL < e(x)/3. Hence

H^^m) ― gf"^!;)!^ < s(x). In the case (b) the same conclusion follows from

(iii). □
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Lemma 2. For any map e e C>q(E) there exists a map 5 e C>q{E) such that

if u,vgEx＼{0}, ＼＼＼u＼＼- ＼＼v＼＼x＼< S(u) and Ox(u,v) < S(u) then ＼＼u- v＼＼ < e(u).

Proof. For each ue E there exists an open neighborhood Wu of u such

that e(v) > su = e(u)/2(v e Wu). By Fact 11, there exist an open neighborhood

Uu of u in Wu and du > 0 such that if v e (Uu)y, w e Ey, ＼＼＼v＼＼y― ＼＼w＼＼y＼< Su and

dy(v, w) < 5U, then ||y - w＼＼y< eu. Take a locally finite refinement {Ux} of {Uu}

and define dx = $U(X), where Ui c Uu^)- By Fact 2 there exists a map 8 e C>o(ii)

such that 3 < dx on £/;..Now, suppose v,weEy, ＼＼＼v＼＼y- ＼＼w＼＼y＼< d(v) and

9y(v, w) < d(v). Then, ye^c Uu(x) c= H^^) for some X. Since <5(y) < 5a = du^x)

and 8mW < e(v), ＼＼v- w＼＼< su{x) < e(v). D

Lemma 3. For any map 5 e C>o(E), there exists an increasing sequence

0 = ro < f＼< ■■■< rt < ■■■ in C>${X) such that for each x e X, r,-(x)―>

oo(i -> cxd) and ri+2(x) - r,-(jc)< mind(Bx(ri+2))(i > 0).

Proof. We first show that for each a e C>o(X) there exists a b e C>q(X)

such that a < b and b(x) ― a(x) = mind(Bx(h)) for each xe X. By Fact 3 the

map F : X x [0, oo) ―> (0, oo) defined by F(x,s) = minS(Bx(s)) is continuous.

Since F(x, s) > F(x, t) for 0 < s < t, we have a unique s ― s(x) > 0 for each

x e X such that F(x,a(x) + s) = s. The map s : X ―>(0, co) is continuous. In

fact, for every sufficiently small s > 0, F(x, a(x) + s(x) ― e) > j(x) ― e and

JF(x, a(x) + s(x) + e) < j(x) + e. Hence, x has a neighborhood £/in X such that

F{y, a(y) + s(x) - e) > s(x) - e and F{y, a{y) + s(x) + e) < s(x) + e for each

y e U, which means that s(x) ― e < s(y) < s(x) + s. The desired map b can be

defined by b(x) = a(x) + s(x)(x e X).

By the repeated application of the above observation, we obtain an

increasing sequence 0 = ao < a＼< ･･ ･ < a,-< a,-+i < ･ ･･ in C>o(iQ such that

ai+i(x) ― cii(x) = min<5(2?jC(a,-+i)). Next we will show that a,-(jc)―> 00(2 ― oo) for

each x e X. On the contrary, assume that c ― sup a,-(x) < oo. Choose an integer

n>＼ so that n~l < c~lmin<5(jBx(c)). Since a,(x) - at-i(x) = mind(Bx(ai)) >

mind(Bx(c)) > c/n for each i, we have an(x) = X^Z=i(a'(x)
~
at-i(x)) > c> which

is a contradiction.

Finally, let r^ = ^ and take maps r3^+i, ^+2 e C>o(X)(^ > 0) such that

(i) r3k < r3k+i < rik+2 < nk+3,

(ii) r3k+i -r-ik<＼ (r3k+3 - r3k) and r3k+3 - r3k+2 < ＼(r3k+6 - r3k+3).

Then we have
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(a) r3k+2(x) - r3k(x) < r3k+3(x) - r3k(x) = mind(Bx(r3k+3)) <

minS{Bx(r3k+2)),

(b) r3k+3(x) - r3k+i(x) < r3k+3(x) - r3k(x) = mind{Bx{r3k+3)),

(c) r3k+4(x) - r3k+2(x) = (r3k+4(x) - r3k+3(x)) + (r3k+3(x) - r3k+2)(x)) <

rik+6 - r3k+3 = min 8(Bx(r3k+6)) < mind(Bx(r3k+4)).

This completes the proof. □

3. The basic f.p. engulfing lemma

The purpose of this section is to extend the radial engulfing lemma

[3, Theorem 2], [9, Lemma 4.11.2] to the vector bundle case.

Lemma 4. Suppose X is a countabledimensionalmetrizahlespace and n > 5.

Let g e &{$) and a,a＼b,b',e e C>0(X) with e<a'<a<b<b'. Then thereis a

f.p.PL isotopy ft:E-> E(0 < t < 1) such that

(i) fo = id,

(ii)/,= id on g(B(a'))U (E＼g(B(b')))(O<t<＼),

{iii}fi(9(S(a)))^ g(B(b)) and

(iv) Ox(g-＼ft)x(u)ig-＼u))< s(x)for ueEx＼{gx(O)}.

Proof. We first take maps a,-, i,-eC>o(I) (i = 0,1,...) such that

a' < ･･ < cii+i < at < ■■■< a＼― a and b < ･ ･■< hi+＼<ht < ■■■<b＼ < ho = b'.

Since X is countable dimensional, we can write X = {J^Xj, where each Xt is

O-dimensional.

Now fix i > 1 and let x e Xt. There is an open neighborhood Wx of x in X

and a f.p. homeomorphism ^ : EWx ―≫･Wx x Rn over W^ such that <f>y: Ey -^ Rn

is an isometry for each y e Wx. Let g ― fig^1 : Wx x Rn -^ Wx x Rn. We take

c, d and d,d' > 0 with ai+iC*) < c' < c < ^-(x) and 6,-(jc)< d < d' < £,-_i(x),and

apply [9, Lemma 4.11.2] to gx = <f>xgx&xl : R" -≫･JT and 0 < e(jc)/2'"< c' <

c<d <d' to obtain a .PL isotopy /zr: .R" -> ^"(0 < ? < 1) such that

(i) hQ = id,

(ii) ht = tf on flf,^^)) U (i?"＼^(OK)))(0 < t < 1),

(iii) MfoWc))) =&(*(</)),

(iv) c(flfx-H^C")), flfJ1(≪))<cW/2i for ueRn＼{gx(0)}.

Applying Fact 1 in the product bundle Wxx R", we can find an open

neighborhood Vx of x in Wx such that (ii)' g(BVx(ai+i)) c= (≪/ x ^)(5J/x(c/)) and

fll(OF,(A/_1))=≫(tt/xflfx)(^(^))

(iii)'g(Bv(at)) = (^ x &)(*,,≫) and ^(5Fx(6()) <= (irf x gx)(BVx(d))-
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Thus, the f.p. PL isotopy ht = (/>l(id x ht)(j>:Eyx ―> Eyx satisfies the fol-

lowing conditions:

(i) /sj= id,

(ii) h* = id on flf(tfK>/+i)) U (£Fx＼fif(OFx(^_i)))(0 < / < 1),

(iii) hxdg(OVx(ai))) => g(BVx(bi)),

(iv)' ^fe1^),^), ^-1(≪))<fiW/2≪ for ueflW^-OVMam)).

Let £* = £^{0} and A£x = ＼JxeXE^ x E* a E x E. The angle map

6 : AEX ―> [0,n] defined by 9(u,v) ― Qx{u,v){u,v e Ex) is continuous. By Fact 1,

if we replace Vx by a smaller one then

(iv)" 0y(g? (hxt)y(u),g-1 (≪)) Ktiy)/!1 for iieflf(^(6I-_1)＼OK][(fl/+i))n^.

Hence it follows from (ii) that

(iv) 8y{g-＼hxt)y{u),g-＼u)) < e(y)/2' for yeFxand≪£ £y＼{^(0)}-

Since {Kr}I£/r. is an open cover of Xt in X and JG is 0-dimensional, there is

a disjoint open cover {Ux} of Xt in X such that each Ux is contained in some

Vx(k) (cf- W)- We define £/,■= IJaC/a and a f.p. PL isotopy g＼:£"[/,.-^ £"[/,.by

g＼= hx on each EUx. Then, for each j e C/i

(i) W)y = ^,

(ii) (^[)y = u2 on gy(By(ai+l)) U (£y＼^(^(Vi))),

P) WyigyiByiat))) => gy{By(bi)),

(iv) 0y((^)-1(gfj)/M), (^)"1(M)) < e(y)/2' for any u e EAfo(O)}-

We have obtained an open cover {C/,-} of X. We can take locally finite open

covers {Wi＼ and {F,-} of X such that the closure F,- c PF,-and PF,- c f/,-for each

i. Take maps a,-: X -> [0,1](j > 1) such that a<(F/) = 1 and a,-(AT- FF,-)= 0. For

each i, we define a f.p. PL isotopy ft':E^Eby (ftl)x = (glta.^)x if x e Ut and

(fl)x = id if x ^ Ut (cf. Fact 5). Finally we define the f.p. PL isotopy/ : E -> E

by /,(≪)= lim^oo//...//(≪)(≪ g £).

We must verify that ft is well-defined and satisfies the required conditions.

Let x g X. Then x has an open neighborhood U which meets at most a finite

number of W＼. Choose an / so that UDWi ― 0 for i>£, whence

{ft)y = (ff)y
■■･
{ft)y for each y e U because (//)^ = id for i > /. Therefore ft

is well defined and continuous. Since each {f})x is a PL isotopy,

(ft)x = (//)x ･･ ･(//)* is also a PL isotopy.

(i) Obviously (/0)x = {fi)x... (fQl)x = ≪/.

(ii) For each i = 1,... /,(//), = irf on gx(Bx(ai+l))U(Ex＼gx{Ox(hi^))),

gx{Bx{a')) ^ gx{Bx{ai+l)) and gx{Bx{h')) z=>gx{Bx{hi-i)). Then it follows that

(ft)x = id on at(*je(a')) U (Ex＼gx(Bx(b'))).

(iii) Note that x e Vk for some ＼<k <L Since (//)x = ?(i on gx(Bx(ai+＼))

and gfx(5x(a,-+i)) => gx(Bx(ak)) for ? = 1,...,k - 1, we have {flk"l)x...
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U?)x(0x(Bx(ak))) = 9x(Bx(ak))). Then {ft)x(gx(Bx{ak))) = {g＼)x{gx{Bx{ak))) =

9x{Bx{bk)). For i = &+!,...,/, {flt)x= id on Ex＼gx{Bx{bi^)) and

gx{Bx{Bk)) zd gx(Bx(bi-i)), whence (//^ = a/ on Ex＼gx(Bx(bk)), which im-

plies that C/?)≫(flf,(^(^)))=fo(5JC(Aifc)). Therefore (/i)x(ac(*,(fl))) =>

(/i),fe(^(%))) = (//), ･
■･
Uf)x(9x(Bx(ak))) 3 (//)x... (ff+1)x(gx(Bx(bk))) =

flf*(**(**))=> fo(^*(*)).

(iv) For ueEx＼{gx(0)}, let no = f# and ut = {f})x...{f})x(u)±gx{G) for

i > 1. Then 0JC(0;1(≪≪O>0j1(".--i))< fiW/2' since m,-= {f})x{ui-＼)

for xeC/;. It follows that Oxfal(ft)x{u),g?(u)) = 0x(g?

Yft=＼Rx(gxl(ui)i9xl(ui-i)) < e(x)- This completes the proof.
M) <
n

4. PL approximations of f.p.stable homeomorphisms

This sectioncontains the proofs of the Main Theorem and Corollary.The

theorem follows from the next lemma.

Lemma 5 (cf.[9, Lemma 4.11.1]). Let g e Jf (£)am/ a e C>o(JQ such that g

is PL on 0(a). Let h : 0(a) ―≫E be a f.p. homeomorphism such that h(0) ― 0,

dx{h(u),u) =0forue Ox(a)＼{0} and, for any R e C>0(X), there is an r e C>O(X)

such that r < a, r < R and h(B(r)) = B(R). Then, for any s e C>0(O(≪)) there is a

f.p. PL homeomorphism f : g(O(a)) ―>E such that ＼＼fg―gh＼＼< e.

Proof. By Facts 6 and 7, we have an s' e C>q{E) such that for / e Jf (£),

||/ - k/|| < e' implies ||g/"- g＼＼< eh~l. By Lemma 2, there is a 8 e C>o(E) such

that if u,v Ex＼{0}, ＼＼＼u＼＼x- ＼＼v＼＼x＼< d(u) and <Sx(m,v) < 5(u) then

II"
~
v＼＼x< £'(M)-^e w^ construct a f.p. PL homeomorphism / : g(O(a)) ―>Is

such that/(^(O)) = flf(O)and if u e Ox(a) then (i) ＼＼＼g-lfg{u)＼＼x- ＼＼h(u)＼＼x＼< 5h(u)

and (ii) dx(g-lfg(u),h{u)) < 8h{u) for u # 0, whence Hr1/^) - A(≪)ll, < £>h(^)-

Then Hgf"1/^"1 ―id＼＼< e', which implies that ＼＼fgh~l― g＼＼< eh~l, hence

＼＼fg-gh＼＼<e.

By Lemma 3, there exists an increasing sequence of maps

0 = Ro < Rx < ･ ･･ < Rt < ･･ ･ in C>o(X) such that for each xeX, Rt(x) ―>

oo(i -≫･oo) and Ri+2{x) - Ri(x) < 6i(x) = min<5(^(JR,-+2))(i > 0). Define

n e C>0(X) by h(B(n)) = B(Rt). Then, 0 = r0 < n < ･ ･･ < rt < ･ ･･ < a, rt < Rt and

for each x e X, r,-(x)―> a(x)(i ―> oo) and 8i+i(x) < 8i(x)(i > 0).

By the repeated application of Lemma 4, we obtain a sequence of f.p. PL

homeomorphisms h＼E―> E(k > 1) which satisfies the following conditions:
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(1) fk = id on ^_,(i?(rife_,))U (%.,(%,))),

(2) ^(5(rik)) =>≫*-!(^(i?*)),

(3) ^(^1/i(≪),^1(≪))<4(I)/2 for iie^＼{^-i(0)},

where g^ ―g and gk=fk---f＼g for & ^ 1- Then, by the induction on k, we have

(4) fk...f＼=id on E＼g(B(Rk+l)) and ^^(Ife)) = 0(5(lfc)).

In fact, the case k = 1 comes from (1) and iffk-i ･. ./i = w/ on E＼g(B(Rk)),

then gk^BiRk)) = g(B(Rk)) and 0t_i(5(lk+i)) =0(5(1^+1)), whence

fk...f＼=id on E＼g(B(Rk+l)) by (1).

By the induction on /, we have also

(5) fe = id on gk{B{rk)) and 0,(5(7*)) => gk{B{rk)) for t>k.

In fact, the case f = k + ＼comes from (1) and, if fj = id on gk{B{rk)) for

k<j <{, then ge{B{r{)) zd g^{B{rk)) = gk{B(rk)), where /m = m/ on gk(B{rk))

by (1).

Define f : g(O(a)) ^ E by / = lim*-,,*/* .../i- By (5), /=/*.../i on

g{B{rk)), so that / is well-defined. It follows from (2) and (4) that

(6) fg{B{rk)) = ^(5^)) = ^-i(5(^)) = ^(5(1^)),

so / is an onto f.p. homeomorphism. For each xe X and k>＼, on the open

set gx{Ox{rk)) of gx(Ox{a)), fx = (fk)x... (f＼)x is a PL map, hence

fx '･gx{@x{R)) ―*Ex is a PL homeomorphism. Since fk(g(0)) = g(O)(k > 1) by (5),

we have f{g(0)) = g(0).

Below we will verify (i) and (ii).Let u e O(a). Then u e Bx(rk+i)＼Bx(rk) for

some k > 0. Since h(u) e Bx(Rk+i), it follows that 5h(u) > Sk(x).

(i) Since fg{B(rk)) = gk{B{rk)) c gk(B(Rk+l)) = g{B{Rk+l)), it follows from

(6) that fg(u)e(E＼g(B(Rk)))ng(B(Rk+2)), hence g-lfg{u) e (E＼B(Rk)) f)

B(Rk+2). Thus Rk(x) < Wg^fdi^Wx ^ ^k+ii*)- On the other hand, since

h{u) e B(Rk+l)＼B{Rk), we have Rk(x) < ＼＼h(u)＼＼x< Rk+l(x). Therefore,

＼＼＼0-lf0(u)＼＼x- ＼＼h(u)＼＼x＼< Rk+2(x) - Rk(x) < dk(x) < 8h(u).

Before verifying (ii),we note that

(7) if v e Ex＼Bx(rk) then dx{g-lgk(v),v) < Sk(x)/2.

In fact, the case k ― 0 is trivial.For k>＼, gk(v) $ gk{B(rk)) ^ g(B(Rk)) by

(6), so g~lgk(v)= gk[igk{v) ^ g^fkgic-iiv) by (4). From (3) it follows that

0x(g-lgk(v),v) = fljcteitVfcflfc-ifa).9k-i9k-i(v)) < 0k(x)/2.

(ii) Since ueBx(rk+i), we have fg(u) = gk+＼{u)=fk+igk(u) by (5). Since

gllfk+igk{B{rk)) = B(rk) by (5), we can apply (7) to v = g^lfk+igk(u) iB{rk).

Then dx{g-lfg{u),v) = 6x{g-lfk+lgk{u), v) = ex{g-lgk{v), v) < 8k(x)/2. On the

other hand, 9x{v,u) = 9x{gllfk+igk{u),gllgk{u)) < bk+＼{x)/2 by (3) and

9x(h(u),u) = 0. Therefore, 0x(g-lfg(u),h(u)) < 8k{x) < S(h(u)). This completes

the proof. □
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Proof of Theorem. By Fact 7 we may assume that g is PL on O(s,a)

for some section s of £ and aeC>o(X). Since the translation Ebu＼―>

u + s{n{u)) E is a f.p.PL homeomorphism, it sufficesto consider the case that

s is the zero section.

Take a f.p. homeomorphism h : O(a) ―>is as in Lemma 5. For example,

define h by

1

a{x) - ＼＼u＼＼x
u (we Ox(a))

By Lemma 5, there is a f.p. PL homeomorphism fa : g(O(a)) ―≫E such that

fag＼o(a) approximates gh. Applying Lemma 5 to g ― id, we have a f.p. PL

homeomorphism f＼: O(a) ―> E which approximates h. By Fact 7, if f＼ is suf-

ficiently close to h, then hff1 is close to id. Then, / =fagf{~1 ･ E ―>E is the

required f.p. PL homeomorphism. □

Proof of Corollary, (i) Suppose Y is a countable dimensional met-

rizable space and g : Y ―> J^^Li (£) is a map. Consider the vector bundle

id x n : Y x (0,1] x E ―*■Y x (0,1] x X with the natural Riemannian metric

induced from £. The base space Y x (0,1] x X is countable dimensional

metrizable space and g induces the f.p. PL＼ homeomorphism G : Y x (0,1] x

E^Yx{Q,l]xE defined by G{y,t,u) = (y,t,g{y)(u)) (cf. Fact 5).

Let k{s) = ＼/(＼+s) for je[0,oo). Then X{s) -> 0(5 -> oo). We define

<5: 7 x (0,1] x £ -> (0, oo) by (5CM,h) = min{A(||≪||),r}. By Theorem there is

a f.p. PL homeomorphism F : Y x (0,1] x E ―≫･F x (0,1] x E such that

HF-G||<a.

Define f0 = g and /, : Y - ^pz" (0 by /,(y)(u) = 7r£JF(7,?,≪) for 0 < r < 1,

where tie : F x (0,1] x E ―>£" is the projection. We will verify that the

homotopy / is continuous. Let y e Y, t e [0,1] and £> 0. Note that the base

space X is compact. We must find an open neighborhood U of y in Y and a > 0

such that if z e U and |/ - s＼< a then ||/r(>>)(")-fs(z)(u)＼＼x< e ^0T eacn u E ^x-

(1) The case that 0 < t < 1: Since A(j) -> 0(5 -+(≫), there is a > 0 such that

k{a) < e/3. Since F is continuous and j?(a) is compact, there exist a neigh-

borhood V of y in Y and a > 0 such that if z e V, ＼t―s＼< a and u 6 2?*(a),

then ||/?(>;)(m)-/j(^)(m)||x < e/3. This fact can be shown by noting that

/ : Y x (0,1] ―s>3tf{£)(with the compact-open topology) is continuous. Here, for

completeness we give a more elementary verification:

For each ueB{a), take a neighborhood Ou of ft(y)(u) in E of the form:

Ou = O(su,e/6), where su is a section of £ with 5M(x) =/r(_y)(≪) = 7iEF(t,y,u),
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here x = n(u). Then there exists a neighborhood Vu of y in Y, Wu of t in (0,1]

and Uu of u in E such that tzeF(Vu x Wu x £/,)<= OM. Since i?(a) is compact,

there are finite ut e 5(a) such that 5(a) c (J ,-£/,,.Set v = 0,^. and take a > 0

such that (? - a, f + a) c (＼tWUi. If z e V and |f ― s＼< a and y e 5^(a), then

ve UUi for some ut. Then ^(z)(r), /rCv)(t?) e7i£F(FU(. x WUi x C/M,.)c OUi =

O(sUns/6) and hence ＼＼fs(z)(v)-ft(y)(v)＼＼x< e/3.

Since $ : F ―>■Jf≪(^) is continuous, there is a neighborhood fT of y in 7

such that for zeW, ＼＼g(y)(u)- g{z){u)＼＼x< e/3(u e Ex). Now let z e U = VH W,

＼t- s＼< a and u e Ex. In case u e 5(a), ||/f(y)(≪)-/*(Z)(W)L < £/3 < £･In case

u$B(a), it follows that ^(z,.s,m) < A(||m||J < 2(a) < e/3. Since ＼＼F- G＼＼< 3,

＼＼g(z)(u)-/,(z)(m)||x < 6{z^u) < e/3. Similarly ＼＼g(y)(u)-ft(y)(u)＼＼x< e/3.

Since ＼＼g(y)(u)- g(z)(u)＼＼x< e/3, we have ＼＼ft(y)(u)-f,(z)(u)＼＼x< s.

(2) The case t = 0: Since fo ― g : Y ―> Jff (£) is continuous, there is a

neighborhood C/ of ^ in Y such that for zeU, ＼＼g(y)(u)- g(z)(u)＼＼x< e/2.

Let 0 < 5 < a = e/2. Since ||F - G|| < d, it follows that ＼＼g(z)(u)-/,(z)(≪)||x <

S{z,s,u) <s< e/2. Therefore, if z e C/andO < s < a then ＼＼fo(y)(u)-fs(z)(u)＼＼x< e.

This completes the proof of (i).

(ii) It suffices to show that in the proof of (i), if g(y) e tf*LuU{£) then

ft(y)eJeZLuU(£). This follows from Lemma 1 since ＼＼g(y){u)-f,(y)(u)＼＼x<

8(y,t,u) < X(＼＼u＼＼x)for any ueEx. □
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