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PARTIALLY LOCALLY ATOMIC MODELS
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1. Introduction

Various atomic models are useful tools for stability theory. We know the
following about atomic models.

1) If T is w-stable then for every set there is an atomic model over it.

2) If T is superstable then for every set there is an a-atomic model over it.

3) If T is stable then for every set there is a locally atomic model over it.

In the present paper we introduce a condition on a theory called partial
stability (see definition 1), which is a generalization of stability. We also define
the notion of a partially locally atomic model (see definition 5). Then we have

THEOREM 6. If T is partially stable (stable in P), then there is a partially
locally atomic model (locally atomic with respect to P) over any countable set in P.

2. Preliminaries

Let T be a countable theory in a language L and P(x) an L-formula with
only one free variable. As usual, we work in the big model .# of T. M denotes
an elementary submodel of .#. We write A4, B, ... for subsets of .#. A denotes an
infinite cardinal.

We write P4 for {ae 4: .# | P(a)}. We abbreviate P(x;) A --- A P(x,) as
P(x) where X = x; ...x,. We abbreviate (VX)[P(x) — ¢(x7)] as (VX € P)p(%y). Let
p(%) be a type (could be partial). We write p,z;(X) for the restriction of p(%) to
{(ﬂ(if), _'99(3_0—’)} and Sq)()'ci) (A) for {Pw()'c)?) ()_C) :p()?) € S(A)}' We write Py(zy) 8S Dy
and S,z as S,, if there is no confusion.

We define two partial stablity conditions and show related lemmas.

DeFINITION 1. (1) T is A-stable in P if for all A, |A| <A implies
{p(x) € S(4) : P(X) e p(%)}| < A. T is stable in P if T is A-stable in P for some A.
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2) T is A-stable over P if for all A, |A| <4 and A < P* imply |S(A)|<A. T
is stable over P if T is A-stable over P for some A.

Fact 2 (The unstable formula Theorem [2] 11.2.2). The following properties
of a formula ¢(Xy) are equivalent:
(1) ¢(xy) is unstable;

ie., for every A >Ny, there is a set A such that |S,(4)| > A= |A|.
(2) @(Xp) has the order property;
ie, {p(xy;) 1 i <j<w}U{-9(x3;) :j < i< w} is consistent.

(3) There are a set A and a type p € S,(A) such that p is not A-definable.
LemMma 3. T is stable in P if and only if T is stable over P.

Proor. T is unstable in P
< There is a formula ¢(xy) such that ¢(Xy) A P(X) is unstable
Let y(xy) = o(¥p) A P(X)
< Y(Xy) (parameters are in y) has the order property (By Fact 2)
< Y(yx) (parameters are in y) has the order property
& Y(Jx) is unstable (By Fact 2)
< T is unstable over P. O

LemMA 4. Let T be stable in P. Then for each L-formula ¢(Xy), for each
tuple ae . # and for each set A, there is an L(P*)-formula (x) such that
M [pba) — y(b)] for all bePA If A=M and deM then M[EVxe
Plp(xa) — y(%)].

Proor. Since T is stable in P, ¢(Xy) A P(X) is stable. By the similar
argument in Lemma 3, ¢(7%) A P(7) also does not have the order property. By (3)
< (2) of Fact 2, p(X) = tpy(5%) A p(y-)(a/PA) is P4-definable. Hence there is an
L(P*)-formula y(7) such that for all be P4, ¢(b%) A P(b) € p(X) if and only if
M = (D). Hence M | p(ba) < y(b) for all be PA. O

3. Main Theorem

First recall the definitions concerning local atomicity. Let p(X) be a type over
A. The type p(X) is locally isolated if for each L-formula 6(%y), there is an L(A4)-
formula ¢(%) € p(%) such that ¢(X) - pgz5(X). Let B < 4. The set A4 is said to be



Partially locally atomic models 237

locally atomic over B if 1p(d/B) is locally isolated for any @ € 4. We now define
the notion of local atomicity with repsect to P.

DEFINITION 5. Let B < A. A is locally atomic over B with respect to P if P4
is locally atomic over P5.

The next theorem is our main theorem. From now on, by a subset of P#, we
mean a subset of (P#)" for some natural number # if the value of » is irrelevant
for the augument.

THEOREM 6. Let T be stable in P and A a countable set. If every L(A)-
definable subset of P*# is L(P*)-definable then there is a countable model M > A
such that M is locally atomic over A with respect to P.

To prove Theorem 6 we need a fact and a lemma.

FAcT 7 (Transitivity of local atomicity [1] IX. 5.7 Lemma). If AcBcC,
C is locally atomic over B and B is locally atomic over A then C is locally atomic
over A.

Lemma 8. Let T be stable in P, B a countable set and ¢(X) e L(B). If every
L(B)-definable subset of P* is L(PE)-definable then there is a countable set C > B
such that:

(1) @ has a realization in C;

(2) C is locally atomic over B with respect to P,

(3) Every L(C)-definable subset of P* is L(PC)-definable.

PROOF OF LEMMA. Since T is stable in P, R(P(%),0(%5),2) < w for any L-
formula 6(%7). So we can choose a type containing (%) A P(X) and is locally
isolated for every formula y/(x) which is consistent with P(x).

By the consistency of ¢(X) A P(X), we consider two cases.

(Case 1) ¢(X) A P(X) is consistent.

This is the easier case. We can choose a tuple ae P# such that
9(%) A P(X) € tp(a/B) and ip(a/B) is locally isolated. So for every L-formula
8(x9), tpo(a/P") is isolated by an L(B)-formula which is in tp(a/B). Since every
L(B)-definable subset of P# is L(P®)-definable, tpg(a/P?) is isolated by an
L(PP)-formula which is in 1p(a/B). So 1p(a/P®) is also locally isolated. Let
C = Ba.
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By the construction of the set C, C satisfies (1) and (2). We show that C
satisfies (3). Let ¥(Xy) be an L-formula and e C. Suppose that y(x¢) defines
a subset of P¥. And suppose that Z=a'b for some @ ca and beB and
¥(7@'b) defines a subset of P. Since every L(B)-definable subset of P# is
L(P5)-definable, there is an L(P®)-formula 6(xy’) such that 4 FVXjy'e
P[y(x7'D) — O(x7")). Since @’ € PC, M VX e P[y(%a'b) < 6(xa’)]. Thus the set
C satisfies (3).

(Case 2) ¢(x) A P(X) is inconsistent.

This is the harder one. We construct a set C and a realization 2 of ¢(X) so that
every L(Ba)-definable subset of P# is L(PC)-definable. Since B is countable,
let {y;(Xy;0;) :i < w} be an enumeration of all consistent L(B)-formulas. By
induction on i, we construct a sequence o, C1, - . -, and L-formulas 6;(7,2;) (i < w)
satisfying the following properties:

() C;=BU{g:j<ik

(i) Ciy1 is locally atomic over C; with respect to P;

(iif) ¢; is a realization Q;(Z;) where

0i(2) = PE) A 3% [«»(fc) A\ V5, € PR35 < 053]

j<i
AYF; € Pl (39:5:) < 0:(7:2)] |-

Suppose that ¢ and 6; are defined for j <i. Let & be a realization of R;(X)
where
Ri(%) = o(x) A \ V5; € PlY;(57,B)) < O;058)]-
j<i
By applying Lemma 4 to ,;(@;7;b:), we can choose an L-formula 0:(y;z;) and
ze P* such that . [ Vy; € Ply;(@i7;bi) — 6:(7,€)]. Hence we get an L-formula
0,(7,z;) such that Q;(z;) is consistent. Then we can choose a type p(z;) € S(Ci)

which contains Q;(Z;) and is locally isolated. Let ¢; be a realization of p(z;). Thus
¢; and 0; are defined. Then

¥(%) = {p(%)} U{V5; € Py (57:b) o 6:(5ie)]) - i < o}

is consistent. Let @ be a realization of ¥(%). Put C ={J,, CiVa.

The set C clearly satisfies (1). Indeed 1p(¢;/ PS) is also locally isolated for all
i < w. So C satisfies (2) by Fact 7. To show that C satisfies (3), we may assume
the following without loss of generality. Let ¢e C and Y(%y) an L-formula.
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Suppose that ¢ = @' 'b ¢ for some @' < d, b e B and ¢’ € PC\ P and suppose that
Y(xa'bc’) defines a subset of P#. It suffices to show that Y(xa'be’) is equivalent
to an L(P€)-formula. By the choice of {Y;(x:i9:b;) : i < w} and a, every L(Ba)-
definable subset of P is L(PC)-definable. Then for the L(Ba)-formula y(%a57),
there is an L(PC)-formula 6(%7) such that 4 |= Vi € Ply(xa'by’) « 0(x5")].
Since &' € P¢, M | V% e Ply(3a'be’) — 6(%¢')]. So C satisfies (3). d

With Fact 7 and Lemma 8, we now prove Theorem 6.

Proor oF THEOREM 6. We construct countable sets 4; (i < w) by induction
on i.

(Step 0) A =4

(Step i) Suppose that A4; is defined. We construct countable sets B,-j (i,j < w)
by induction on j.

(Substep 0) Let B? = 4; and {¢/(x)e L(4;): j < w} be an enumeration of
consistent L(4;)-formulas.

(Substep j) Suppose that B{ is defined.

(Case 1 of Substep j) B/ has a realization of 0l (x).
Put B/*' = B/

(Case 2 of Substep j) B/ has no realization of ol (x).

By Lemma 8, there is a set C > B{ with following properties:

(i) ¢/(x) has a realization in C;

(if) C is locally atomic over Bij with respect to P;

(iii) Every L(C)-definable subset of P# is L(PC)-definable.

Put B/Y' = C,

Thus B,.j (J < w) are defined. Let 4;,, = Uj <o B,.j . This completes Step i.

Put M = i< Ai- By the construction of M, it is easy to show that M is a
countable model of T by Tarski-Vaught test. By Fact 7 and the construction of
Aii1, P4+ s locally atomic over P4, Then again by Fact 7, PM is locally atomic
over P4, O

COROLLARY 9. If T is stable in P and not w-stable in P, then there is a model
M of cardinality Wi which has no indiscernible set of cardinality Ry in PM.



240 Keishi OkaMoTO and Kentaro WAKAI

SKETCH OF PROOF. This augument is a simple generalization of Theorem A
in [3]. We use partially locally atomic models instead of locally atomic models.
Start with a certain countable set. By Theorem 6, we can construct an increasing
chain of length w; consisting of M;’s such that each M;,; is countable and locally
atomic over M,d; with respect to P where 4; is a suitable tuple. Then the union of
this chain is a model we have been looking for. O

Question. Is the countability condition on A in Theorem 6 necessary?

References

[1] J. T. Baldwin. Fundamentals of Stability Theory. Springer-Verlag 1988.

[2] S. Shelah. Classification Theory and the Number of Non-isomorphic models. North-Holland
1978.

[3] A. Tsuboi. Large indiscernible sets of a Structure. Kobe J. Math., 10 (1993) 173-178.

Keishi Okamoto

Mathematical department,

graduate school of science and
engineering,

WASEDA University,

3-4-1, Ohkubo Shinjuku, Tokyo, 169
Japan,

E-mail: okamoto@logic.info.waseda.ac.jp

Kentaro Wakai

Institute of Mathematics,
University of Tsukuba,
Tsukuba-shi, Ibaraki, 305, Japan,
E-mail: wakai@math.tsukuba.ac.jp



