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§0. Introduction

Let G/K be an irreducible Riemannian symmetric space, where G is a con-
nected compact semisimple Lie group and X its closed subgroup. The adjoint rep-
resentation group Ad(K) acts on the tangent space 7,(G/K) of G/K at the origin o
as an isometry group. Let S denote a unit hypersphere in the 7,(G/K) centered at
the origin 0. For each point a of S, the orbit Ad(K)a of a under Ad(K) is called
an R-space. The R-spaces form an abundant class of homogeneous Riemannian
manifolds and have several distinguished properties as submanifolds of S, and so
they have been investigated by many authors from the point of view of differential
geometry. (e.g., [5], [10], [12], [13], [16], [17], [21], [22], [24], [31], [32], [33])
In this paper, for these R-spaces we shall study the following:
(I)  In the case where G/K is Hermitian, we investigate some relations between
the complex structure and the restricted root system with respect to G/K.

(II) We express the covariant derivative of the second fundamental form of
every R-space in S with respect to the Lie brackets in the Lie algebra
of G.

As an application of (I), we obtain many new examples of homogeneous CR-
submanifold in a complex projective space, which is stated as Theorem 3.2. As an
application of (II), we can give a partial solution to the S. Maeda’s Problem, which
is stated as Corollary 4.5.

The author would like to express her thanks to Professor R. Takagi for his
valuable suggestions and constant encouragements.

§1. Preliminaries

In this paper, let G/K be an irreducible Riemannian symmetric space of com-
pact type once and for all, where G is a connected compact semisimple Lie group
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and K its closed subgroup. Let g and T denote Lie algebras of G and K, respec-
tively. Then G/K gives rise to an involutive automorphism ¢ of g such that
f={Xegl6X)=X}. Put p={X eg|6(X)=—X}. Then we have

g=*f+p (direct sum), [Lf<f [plcp, [pplct

We can identify p with the tangent space T,(G/K) of G/K at the origin o. Let B
denote the Killing form of g. We may assume that the metric g on G/K is given
by go = 7Blp><p'

Let a be a maximal abelian subspace of p and a* denote the dual space of
a. For each 1€ a*, we define subspaces I; and p; of g as follows:

p,={Xep|(ad H)*(X) = —A(H)*X for all H € a},
f,={X et|(ad H)*(X) = —A(H)’X for all Hea}.

Then p, = p_;, & =4, py = a and Ty is the centralizer of a in f. An element A of
a* is called a restricted root of g with respect to a if dim p,; # 0. We select a
suitable ordering in a* and denote by A the set of all positive restricted roots of
g with respect to a. Then we have

(L.1) p=a+ Z p, (orthogonal direct sum), f=T% + Z £,
AeA ieA
(1.2) [a,}]=p;, and [a,p;] =T Ae€A

The following facts are fundamental (cf. [9]).
If 4, ue AU{0}, then

£, 5] < iy + Ty,
(1.3) [f2, 9] € Pasy TP
Prpd b+l
Moreover, if 1+ pueAU{0} or A —pueAU{0}, then
(1.4) [, p,] #0.

Let S denote a unit hypersphere in p centered at the origin o. The adjoint
representation group Ad(K) acts on p as an isometry group. For any a e S, the
orbit Ad(K)a of a under Ad(K) is a submanifold in S, which is called an R-
space. For any a (# 0) in p, we put M, = Ad(K)a for simplicity. For any real
number & # 0, an R-space Mg, is similar to an R-space M,. On the other hand,
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every orbit in p under Ad(K) meets a ([32]). Therefore, we can say that all R-
spaces M, with a e SNa exhaust all R-spaces.

For a manifold L and a point / of L we denote by T;(L) the tangent space
of L at [ If Q is a submanifold in L and ¢ is a point of Q, then we denote by
T,Y(Q) the normal space of Q in L at q.

For a point b of M,, let T bN (M,) denote the normal space of M, in S at
b. Any vector X in p can be uniquely written as X = 4 + B+ C, where 4 € Rb,
Be Ty(M,), Ce TN (M,). Then we put

X, =B+C, Xy,=B and XM =C
In particular, we put
Xs=Xs, Xy=Xy, and XV =X

Each vector X in f induces a vector field X* on p as follows:

(1.5) X,*,:% Ad(exp tX)Y = [X,Y], Yep.
0

Let a symbol X * stand for a vector field X*|g on S or a vector field X*|,, on M,
for simplicity. We put

at={Xealg,(X,a)=0} and A,={leA|i(a)=0}.

Then from (1.5) we have

T.(M,) = [t,a] = Z Pis

AeA-A,

TY(M) =a*+ > v,

AEA,

(1.6)

From the definition of A, we know easily the following:
(i) If A,peA, and A+ pue A, then

(1.7) At pel,
(ii) If AeA,, pe A=A, and A+ pe A, then
(1.8) AtpuelA—A,

Let V and V denote the Riemannian connections of M, and S, respectively.
Let 4 denote the second fundamental form of M, in S. Then we have the fol-
lowing fundamental formulas:
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0 Y;‘d(exp tX)a)

= . d
VX; Y*= (E
N

_(4
T \dr

[Y,Ad(exp tX)a])
0

s
= [Yv [Xva]]Sv
* d *
Vi, Y' = (Ei—t Y pd(exp tX)a>
0 M

_[(4
T \dr

=[Y,[X,d],,, X, Yetl

[Y,Ad(exp tX)a])
0 M

From these we have
(1.9) h(X;, Y)) = (Vx Y)Y
=[v,[X,d]", X, Yet

From now on we assume that a symmetric space G/K is Hermitian, unless
otherwise stated. We put p = dim a. In the case where p = 1, since any R-space
M, is very simple, we can easily compute various geometrical quantities on M,
which we want to know in this paper. So we assume that p > 2.

Now we note the following fact.

Lemma 1.1 ([8, p. 528]). There are two possibilities Ay and A, for A as
Jollows. There exists a base {Ai,...,4,} of a* such that
Ay = {22, £ 4|1 <i< j<p},
Ay = {4,204 £ 4|1 <i< j<p}.

If A can be expressed as A; (resp. A,), then A is called of type C (resp. type
BC). We put I ={1,...,p}. Let I, denote the set of all permutations of /. Put
g=+1, 1<i<p.

For any oel,, we put

ﬂi:‘gila(i)v 1 <i<p.
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Introduce a new lexicographic ordering in a* with respect to the basis {#,...,4,}
Then the set A’ of all new positive restricted roots coincides with the set obtained
from A by exchanging every symbol 4 in A by the symbol x. In this case, we shall
say that we took a reorder in o*, or reordered a*.

Let J be the complex structure on G/K at the origin o, and put dimp =
2n + 2. Then we can consider p a complex vector space C""!. We denote by P,(C)
the complex projective space, and by = the natural projection of S onto P,(C).
The complex structure and the Fubini-Study metric on P,(C) can be naturally
induced from J and g, through n. We denote them by J and (), respectively.
We denote the image n(M,) of an R-space M, under consideration by M,, which
we shall call an R-space. Obviously every R-space is a homogeneous submanifold
in P,(C).

Generally, let L be a submanifold of P,(C) and put L =z~ !(L). Then L is
a submanifold in S. For g€ L and X € Ty, (L), there exists a unique X'eT,(L)
such that X' € ¥, and =, X' = X, where ¥, denotes the orthogonal complement
of J(g) in T,(L) and =,  the differential map of = at g. This X " is called the
horizontal lift of X at q. Then we have (JX) = JX'. We denote by T;\('q)(i,) the
normal space of L in P,(C) at n(q) and put

JX =(JX); + JX)Y,

where (JX); € Tr)(L) and (JX)" e TN (L).

Let V and V denote the Riemannian connections of L and L, respectively.
We denote by 4 and /4 the second fundamental forms of L in S and L in B,(C),
respectively. Then there is a following relation between covariant derivatives of
h and h (e.g., cf. [1])

(1.10)  (Vgh)(Y',Z") = ((Vgh)(

2)+ (X)), HIZ)Y

=0

+{(UX);, 2y TN, X,

,Z € Tn(q)(L)

a i}

From this we see
(1.11) Vh=0 on V;< @Vh=0 on Tyy,(L)

where & denotes the cyclic sum.
Now we recall the notation of CR-submanifolds owing to A. Bejancu ([1]).

DEFINITION. A submanifold L in P,(C) is called a CR-submanifold if there
are two subbundles D and D of T(L) such that
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(i) THL)= D5+ ’.D[—l (orthogonal sum) for each /¢ L,
(i) JD=D, JD' = TV(L),
where TV (L) denotes the normal bundle of L in P,(C).

If a CR-submanifold L satisfies © = 0 (resp. D* = 0), then L is called torally
real (resp. holomorphic). If a CR-submanifold L satisfies JD* = TV(L), then L is
called anti-holomorphic.

§2. Some Basic Lemmas
Through this paper we preserve notations in §1. First we give some basic

Lemmas for later use.

Lemma 2.1.  Let G/K be a symmetric space and a be any point in aNS. Then
the following holds.
(1) If leA—A, and peA, then

NN _
(2~l) [fl,p#] = 0.
(i) If X, Y e, caliand Ze Y ap Ui, then
(22) Z,[Y,[x,a]"]" =0.
(i) If A+uel, or A—pel,, then
N
(2.3) [, )" # 0.

Proor. (i) In the case where p €A, (resp. p€ A —A,), from (1.6) we have
p) = v, (resp. p}’ =0). Hence from (1.3) we have

[tia p/iv] = [f}w pp] < p/1+;4 + p,{—#'
On the other hand, since 1+, A — ueA— A, we have from (1.6)
p?—;—y = O = p/{\{‘/ﬂ

which completes the proof of (i).
(i1) It suffices to prove that

(Z,[Y,[X,a|"]Y =0 for Xe¥;, Yet, Zet,
where A,u€ A and ve A— A,. From (1.3) we have

[Yv [X7 a]] € p/1+/4 + pl—/u'
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Moreover, since

v o [P fAtuel,
Piu=30  if A+udA,

and

oV P, fA-puel,
Ah 0 if /. —uéA,,

we have
¥, 1x,a)Y enfl, + v,
Now (2.2) follows from (i).
(iii) This follows from (1.3), (1.4), and (1.6). (QEE.D.)

In the case where a symmetric space G/K is Hermitian, we denote by 3 the
center of f. Then, as for a complex structure J, the following fact is known ([8],
p. 376).

Lemma 2.2. (i) There exists a unique (up to sign) Z € 3 such that
J=adZ lp;
(ii) The element Z can be written as
Z=2Z+ izu,,
=1
where Zy ety and 0 # Zy;, € ty;,.

Using this, we shall prove a key lemma.

LemMA 2.3. We have the following equations:

(2.4) IPi+i = Puzi
(25) Jpﬂ, = p}t,?
)4
(26) Ja= Z p2/1,»7
=1

4
(2.7) > Jpy, =a
i=1
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PrOOF. Since Z satisfies [Z,f] = 0, we see from Lemma 2.2(ii) that

p
ZO) Z ZZ/I aXl a X/l € f}.'

Owing to (1.3), we have
[Zo,X;) =0 for X, ef,
where A€ A— {41,...4,}. From this equation and (1.2), we have
0 = [a,[Z0, 5]l = [Z0, [0, T2]] = [Zo,p;], A€A—{Ai,... 24}

It follows from Lemma 1.1 and Lemma 2.2 that

o e it Ae{h,...4)
P2 P (Zaov] if A€ A—{iy,.. Ay}

Now the Lemma follows from (1.3). (QE.D)
§3. CR-Submanifolds in a Complex Projective Space P,(C)

TueoreM 3.1. Let G/K be a Hermitian symmetric space and a be any point
in anS. Then an R-space M, is a CR-submanifold in P,(C).

REMARK. Y. Shimizu ([31]) showed that an R-space M, is a CR-submanifold
in P(C) if A, =¢.

Proor oF THeoreM 3.1. From (1.6) we have

Ta(Ma): Z p;t‘

ieA—A,
Lemma 2.3 implies that there are elements 4 and u in A — A, such that
Jp,=p, and Jp, <= TV(M,).
Then we put
Lo = {(, /)| i+ A ki — e A=A 1 <i< j<p),

. Pis, +Psy i (/) €1y
)= 0 if (7,/) ¢ L.
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Moreover we put

E(i’j)eli Pij) if A is of type C

3.1 D, = oy
( ) { Z(i,j)eli p(,')j) + ZX,-EA»AH p;ﬂ, if Ais of type BC.

By (1.1) and Lemma 2.2, we see that D, and J(a) are mutually orthogonal. Let
’:Dj denote the orthogonal complement of D, + J(a) in T.(M,). Then we have

(3.2) T.(M,) =D, + 5j + RJ(a) (direct sum).

Since 7 is a submersion, a space D, + @j can be identified with Tn(a)(Ma). By
the action of Ad(K) we can construct two subbundles D and D on M, such that

(Do) = Daiayy (D)) = Dy

(33) ) ) e

JD=D, Jd'<=T¥M,).
Since J =ad Z |, the bundles D and D' are well-defined. These D and D' are
the desired subbundles of T'(M,). (QED)

Now we can find a class of R-spaces with a distinguished property:

THEOREM 3.2. Let G/K be a Hermitian symmetric space and a be any point
in aNS. Then

(i) An R-space M, is anti-holomorphic if and only if for a suitable reordering
in a* the set A, is a subset of {4, — ;|1 <i< j< p}.

(i) An R-space M, is totally real if and only if A is of type C and for a
suitable reordering in a* the set A, can be expressed as {A; — 4|1 <i< j< p}.

(iii) An R-space M, is holomorphic if and only if for a suitable reordering in

a* the set A, is given by
{24, i £ 412 <i< j<p} if Ais of type C
{A24 4 £ 4512 <i<j<p} if Ais of type BC.
Proor. (i) Let M, be anti-holomorphic. First we assert
(3.4) Aila) #0, i=1,...,p.

In fact, assume that A;(a) =0 for some index /. Then from (1.6) and (3.3) we
have

Py, © T,V (Ma) and Jpy, < JTN(M,) = D
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On the other hand, since Jp,; < a, we have from (1.1) and (1.6)

which is a contradiction. Thus (3.4) was proved. Since the case where A, = (J is
trivial, let A, # . Then by (3.4) there are indices i and j such that

Ai+AeA;, or Ai—AeA,.
For this i, we put
N ={ieA,|A=X+ 4} or i=2 — 4 for some j}

and denote by k the cardinal number of A’. Since for any i and j with 1 <i <
j < p the case where both A; + 4; and 4; — 4; belong to A, can not occur by (3.4),
we can reorder a* so that

A = (g = oy 2 — At}
Put
AN ={hi-X|l<i<j<k+1}

Then A(1) = A,. If A, — A(1) # &, then we can continue this procedure for the
set A, — A(1) and obtain a subset A(2) of A, — A(1) such that A(2) is given by
the form {4, — 4|k +2 <i< j<I+1}, where [ —k —1 is the cardinal number
of A(2). By the induction, A, is given by the subset of {4, — 4;|1 <i< j < p}.
The converse is obvious from Lemma 2.3, (1.6) and (3.3).

(ii) Let M, be totally real. By (2.5), A is of type C. First we assert that
24; € A — A, for any index i. In fact, assume that there exists an index j such that

2J; € A,. Since a is nonzero, there exists an index k such that 24 € A — A,. Then
for these indices j and k, we have from (1.8)

/‘yj-l-/ﬂtk, /“tj—;ukEA—A(,7

which contradicts (2.5). Thus the assertion was proved. Since for any indices i
and j

ijﬁ-;t_/'GAa@l,'—/leA—Aa,
we can reorder a* so that A, is given by
{hi—X4|l<i<j<p}

The converse follows from Lemma 2.3, (1.6) and (3.3).
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(iii) Let M, be holomorphic. First we assert that there exists an only index i
such that 4;(a) # 0. In fact, if there exist two indices i and j such that 4;(a) # 0
and Z;(a) # 0, a 2-dimensional subspace J(p,,, + py;;) of T,(M,) must contain a
nonzero element of a, which contradict (1.6). Hence the assertion was proved.
Then we have only to reorder a* so that i;(a) # 0. The converse follows from
Lemma 2.3, (1.6) and (3.3). (Q.E.D)

REMARK. Recently Choe, Ki and Takagi ([4]) and Ki, Song and Takagi ([15])
gave some examples of CR-submanifolds in P,(C). These examples form a class
of R-spaces constructed from Theorem 3.2.

REMARK. For every totally real R-space M,, we have

dim T(M,) = dim TV (M,).
This is already pointed out by S. Kobayashi ([17]).

§4. Second Fundamental Forms of R-Spaces and Its Covariant Derivatives

For a while, we do not assume that a symmetric space G/K is Hermitian.
We define the covariant derivative VA of h on T,(S) as follows:

(Vx;m)(Y,

a’

Z}) = (Ve h(YE,Z)Y = h(Vy, Y™, Z0) — (Y, Vy; Z7).

a

TueoreMm 4.1. Let G/K be a symmetric space and a be any point in aflS.
Let V and h denote the Riemannian connection of an R-space M, and the second
fundamental form of M, in S, respectively. Then we have

(4'1) (VXM‘II)(Ya*’Z;) = _[Xv [Z~ [Y’ aHM}N - [Yv [Zv [Xva]]M}Nv

where X,Y,Z el

Proor. First we calculate #(Vy.Y*,Z}). From (1.9), we have
h(Vy. Y*,Z2) = (Vi Zz*)",

where L = Vy-Y~*. This L can be written as

where L; € p,. By Takagi and Takahashi ([32]), we see that

L= [Qaa} = [Yv [X,GHM,
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where 0 =3;.4 4,(1 /M@ a,L;]. From the equation above we have

7 * d *
Vi.Z" = (E ‘OZAd(exp tQ)a)S

(4
T \dt
:[Zv[Qva”S

=[Z,|Y,[X,d|yls, X, Y,Zel

[Z,Ad(exp tQ)a])
0

N

Hence we obtain
h(Vx: Y, Z)) = [Z,]Y, X, all, )"

Next, we have

N
_ oy (d] = . .
(Vx;h(Yu*,Za))”:(E (Vy2Z" = Vy-Z )a<r>>
0

d Yo (a .
B (Zi; OVY;“)Z ) ) (E O(Vy;mZ )Mam)) ’

where a(f) = Ad(exp tX)a. As for the first term, we have

d| = . d .
(E OVY;(t)Z ) = E 0[27 Ya(r)}s{,m
d
= 4| B e,
= [27 [Yv [Xa aHS]S'
As for the second term, we have
d| < . d .
7 O(VY;MZ Iy = O[Za Yiolu,,
d
= dt 0[27 [Y’ a(’)]]M,,m
d
=7 Ad(exp tX)[Ad(exp —1X)Z,[Ad(exp —tX)Y,a]],
0

= [Xv [Zv [Yva]]M]S - HXv Z]v {Yaa”M - [Zv [[X> Y}vaﬂM‘
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Consequently using the equations above, (1.3), (1.6) and (2.2), we have
(V)Y Z)) = (Z,[Y, (X, alls)¥ — [X,(Z, Y, d]],,]"
- [Zv [Y’ [Xva”M}N - [Yv [Za [Xva]]M]N
- _'[Xv {Zv [Y! a]]M}N - [Y~ [Z~ [Xv a]]M} N' (QED)
D. Ferus ([5], [6]) proved the following facts.
(1) Let @ be a point on S such that the endomorphism (ad a)® of p has
eigenvalues 0,1. Then an R-space M, is a parallel submanifold in S.
(2) All R-spaces M, obtained in (1) exhaust all parallel submanifolds in S.
Kobayashi and Nagano ([18]) and T. Nagano ([21]) classified completely R-
spaces satisfying (1). After some time, S. Kobayashi ([17]) realized a various class
of symmetric R-spaces.
In the remainder of this paper, we assume that symmetric space G/K is

Hermitian.
From (1), (2) and Theorem 3.2(ii) we have:

LemMa 4.2. An R-space M, is parallel in S if and only if the corresponding
R-space M, is totally real.

Here we recall the natural projection n: S — P,(C). For each ae an s, we
have from =
T,(M,) = RJ(a)+ V, (orthogonal direct sum).
From (3.2) we have
4.2) V=242
If an R-space M, satisfies
Vh=0 on V,

then we shall call M, almost parallel.
First we prepare the following Lemma:

LemMa 4.3. Let aeaNS satisfy
2k 20, A+ Ay Ak—Ae A=A, for some kI (k#1).

Then an R-space M, is not almost parallel.
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Proor. By (4.2), it suffices to show that there exist elements X,Y,Z ¢
Y ica-a, b such that

(4.3) X, Y, Z €D, +Df and (Vy.h)(Y},Z}) #0.

The author could not show the existence of elements X, Y and Z of } ;.4 T
satisfying (4.3) by a general method. But, according as every Hermitian sym-
metric space G/K we can find elements X, Y and Z of }_,_, , T; satisfying (4.3).
In the following we show this for a typical Hermitian symmetric space G/K and
abbreviate the proofs for every other Hermitian symmetric space since we have
only to apply the same method.

Let 0 < p < g be integers and M = SU(p +q)/S(U, x U,) be a Hermitian
symmetric space. Let Ej; denote (p + q) % (p + ¢) matrix with entry 1 where the ith
row and jth column meet, all other entries being 0. Let [, denote the unit matrix

-I, 0
L, = ( 0” Iq).

Let g=su(p+g) denote the Lie algebra of SU(p+¢) and 6 the involutive
automorphism of g defined by 8(X) =1, ,X1I, , ([8, p. 454 and p. 347-p. 349]).
Let f (resp. p) be the eigenspace of # for the eigenvalue +1 (resp. —1). Then

{8 Dl ")

0 Zz .
p= 7 0 Z : p x g complex matrix ;.

of order p. We put

A maximal abelian subspace a and the complex structure J on p are given by

q

—1 0
P ?
a:Z\/—lR(E,-,p“JrE,,H,,») and J=ad| v-1 P4
i=1 0 ——p~1
. ptq’

The positive restricted root system A is given by:
{24, £ 411 <i<j<p} if p=gq
{A, 20, £ 4|1 <i<j<p} if p<y.
Here
i (V=T(Eipri + Epsii)) = V=183, 1<j<p.
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By a direct calculation, we have
Uiy = {X(Ej + Epripsj) — X(Eji + Epyjpsi) | x€CH (1<i<j<p)
Gois, = {X(Ej — Epsipsj) — ¥(Eji — Epyjpi) |x€ CE (1 <i<j<p)
ty, = V-IR(E; — Epeipri), (1<i<p)

q-p q—p
f/l, = Z R(Ep+i,2p+ac - E2p+o<,p+i) + Z R \ _I(Ep+i.2p+oc + E2p+oc.p+i) (l <i< P)
a=1 a=1

Pis, = AX(Eipsj + Epsij) — X(Ejpri + Epsjii) [xe C} (1 <i<j<p)
Pits, = \X(Eiptj = Eprij) + X(Ejpri — Epyji) [xe C} (1 <i<j<p)

P2, = R(Eipyi — Epii) (1 <i<p)

q—p q—p
p/l[ = ZR(Ei,2p+cc - E2p+oz,i) + ZRV _I(Ei,2p+a + E2p+ot.,i) (1 <i< P)
a=1 a=1

Here we may put k=1 and / =2, that is,
2
a= Z V=1a;(E; p+i + Ep1ii),
i=1

where a; #0, a; #0, a? # a3, a; € R. Then we see that

at =RV ~1(612(E1,p+l + Ep+1,1) - al(E2~,[’+2 + EI’+2f2))
)4
+ z\/—lk(Ei.p¢i+Ep.i.i),
=3

Jat = R(ay(Ey pi1 — Epi11) — ai(Expr2 — Epy22))

P p
D= Prsi+ D Pusi Dy =Ja
i=2 j=3
We put
X =a3V—1(E| — Eps1pt1) — a12\/——1(E22 —Epi2p12) €taiy + By

Y =y(Ena+ Ept1 p2) — P(Eat + Epia pr1) € 6y —iss

Z=z(Eyn — Epi1p+2) — Z(E21 — Epia py1) € 8540,
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where yz # yz and y,ze C. Then we have
(Z,[Y,ally = —V—1a1 — @) (yZ — $2)(E1ps1 — Epr1,1 + Erpr2 — Epi2,2),
(X,[Z,[Y,a]]y]s = —2a§‘(a1 — @) (yZ = 92)(E1 p1 + Epi11)
+2ai (a1 — a2)(yZ — y2)(Eapi2 + Epi2.2),
(Z,[X,a)]y = 2aiarz(ay — @2)(Ey pi2 + Epi1,2)
—2aaz(ay — a2)(Ez pi1 + Epi21)s
[Y,[1Z,[X,d] )5 = 2mar(ar — @) (yZ = §2)(E1pe1 + Epr11 = Erpi2 — Epi2.2)-
Thus we have
X, (Z, 1Y, allyls + Y, [Z,[X, ] ]
= —2m(ar — @) (a1 + a2)(¥Z — yz)(E1pr1 + Epsr1)
+2a1(a1 — @) (a1 + a2)(¥Z = yz)(E pr2 + Epy22)

eat.

From this and (4.1), we have

(Vi h) (Y7, Z2) # 0. (QE.D.)

THEOREM 4.4. Let G/K be a Hermitian symmetric space and a be a point in
aNS. Then an R-space M, is almost parallel but not parallel if and only if the
corresponding R-space M, is holomorphic.

Proor. Let M, be almost parallel but not parallel. By Theorem 3.2(ii) and
its proof, it suffices to prove that there exists an only index i such that 24; €
A — A,. For this, we put

It suffices to show that §C, = 1, where #C, denotes the cardinal number of C,.

The case where A is of type C. Suppose that $C> = p. Then for any index
i we have 21, € A — A,. We assert that there exist indices /i and j such that
Ai+ A, Ai — A € A — Aq. If not so, then for any indices 7 and j with 1 <i < j < p,
we have

/‘Li+/1jEA—Aa, ii_j«jEAa or /1,’*/1j€A*Aa, /1,'+/A\,]'6Aa.
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Then for a suitable reordering in a*, A, can be expressed as
{hi—4|1<i<j<p},

which contradicts Theorem 3.2(ii) and Lemma 4.2. Thus our assertion was proved.
This and Lemma 4.3 imply that M, is not almost parallel, which is a contra-
diction. Hence we have §C, < p. Suppose that 2 < §C,. Then there exist indices i
and j such that 24;,24; € A — A,. Since §C; < p, there exists an index k such that
2/ € A,. Since 24;,24 € A — A,, we choose 0 # X ely;, + I, of X} e @j Let
0# Yef, ). Then from (1.6) and (1.8) we have 0 # Y € D,. Then we have
from (4.1) and (1.3)

(V)’(:h)(Ya*’X;) = _2{Y7 [X7 [YaaHM]N
€ [fi,b;twp/l,fik]N

Since 4 + Ak — (4 — ) = 24k € A,, from (2.3) we have (Vy.h)(Y;,X,)#0,
which is a contradiction. Thus we have §C; = 1.

The case where A is of type BC. Suppose that §C, > 2. Then there exist two
indices i and j such that 24;,24, € A — A,. If both 4; + 4; and A; — 4; belong to
A — A,, we see from Lemma 4.3 that M, is not almost parallel, which is a con-
tradiction. Hence we may assume that

li+ljeA—A, and A — 4 €A,

Let X ef;, and Y ef,,;. Then by (2.4) and (2.5), both X; and Y belong to
D, + DL, For these X and Y it follows from (4.1) and (1.3) that

(VW)X Y) = =2(X, (Y, [X, all, )™
€ [f/l,v p}uj]N
On the other hand, since 4; — 4; € A,, we have from (2.3)

(Vi) (X, Y,;) #0,

a

which is a contradiction. From the facts above, we have §C, = 1.
Conversely, assume that M, be holomorphic. First let us prove

Vh=0 on D,+ D}

By Theorem 3.2(iii) and (3.1) we have
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a

a AL P 1, if Ais of type C
D +D = o _ )
D oPi 4+, if Als of type BC.

Hence it suffices to prove that:
(a) If A is of type C, then for any X, Y, Ze Y 7, %) 4,

(Vx, m)(Y;,Z;) = 0.
(b) If A is of type BC, then for any X, Y,Z e, + 37, %, 1.,
(Vx:h)(Y,,Z;) =0.
To prove (a), it suffices to prove that
(Vx:h)(Y;,Z;) =0 for Xel;,,, Ye it Z€8i14,
where 7, j, ke {2,...,p}. From (4.1) and (1.3) we have

(Vx:h)(Y,, Z7) = =X, [Z,[Y, ] = [V, [Z.[X,d]] ] "

N
€ VA b+ (7)) £ (A £4)"

On the other hand, if 4j £+ 4; + (4 £ 4) + (A4 £ 4) is a root, then this root is
expressed as 4; + A;, where /€ {2,...p}. Since 4| + 4, € A — A,, it follows from
(1.6) that

a

(Vx:h)(Y,,Z;)=0.

Using the same method as in the proof of (a), we see that (b) holds. It is imme-
diate from Theorem 3.2(ii) and Lemma 4.2 that M, is not parallel. (Q.E.D))

REmMARK. It is well-known that a parallel submanifold in P,(C) is either
holomorphic or totally real. Holomorphic parallel ones were classified by Naka-
gawa and Takagi ([26]) and the totally real ones by H. Naitoh ([24]).

On the other hand, S. Maeda proposed the following problem in [20):

ProBLEM. Is there a submanifold L in P,(C) such that L is cyclic parallel
but not parallel?

We can give a partial answer to the problem above as the following.

COROLLARY 4.5. Let M, be an R-space. If M, is cyclic parallel, then M, is
parallel.
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ProoF. By (1.11), we see that an R-space M, is almost parallel if and only

if the corresponding R-space M, is cyclic parallel. Lemma 4.2 and Theorem 4.4
imply that if M, is almost parallel, then either M, is totally real or M, is hol-
omorphic. Applying (1.10) to the both cases above, we see that M, is parallel.

(Q.ED.)
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