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SOME DIFFERENTIAL-GEOMETRIC PROPERTIES OF

^-SPACES
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§0. Introduction

Let G/K be an irreducible Riemannian symmetric space, where G is a con-

nected compact semisimple Lie group and K its closed subgroup. The adjoint rep-

resentation group Ad(K) acts on the tangent space T0(G/K) of G/K at the origin o

as an isometry group. Let S denote a unit hypersphere in the T0(G/K) centered at

the origin o. For each point a of S, the orbit Ad(K)a of a under Ad(K) is called

an R-space. The i?-spaces form an abundant class of homogeneous Riemannian

manifolds and have several distinguished properties as submanifolds of S, and so

they have been investigated by many authors from the point of view of differential

geometry, (e.g., [5], [10], [12], [13], [16], [17], [21], [22], [24], [31], [32], [33])

In this paper, for these i?-spaces we shall study the following:

(I) In the case where G/K is Hermitian, we investigate some relations between

the complex structure and the restricted root system with respect to G/K.

(II) We express the covariant derivative of the second fundamental form of

every i?-space in S with respect to the Lie brackets in the Lie algebra

of G.

As an application of (I), we obtain many new examples of homogeneous CR-

submanifold in a complex projective space, which is stated as Theorem 3.2. As an

application of (II), we can give a partial solution to the S. Maeda's Problem, which

is stated as Corollary 4.5.

The author would like to express her thanks to Professor R. Takagi for his

valuable suggestions and constant encouragements.

§1. Preliminaries

In thispaper, let G/K be an irreducible Riemannian symmetric space of com-

pact type once and for all,where G is a connected compact semisimple Lie group
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and K its closed subgroup. Let g and ! denote Lie algebras of G and K, respec-

tively.Then G/K gives rise to an involutive automorphism 0 of g such that

I = {X e g |6{X) = X}. Put p = {X e g |6{X) = -X). Then we have

g = f + p (direct sum), [f,f]c I, [f,p] c p, [p,p] c I.

We can identify p with the tangent space T0(G/K) of G/K at the origin o. Let 5

denote the Killing form of g. We may assume that the metric g on G/K is given

by go = -Bpxp.

Let a be a maximal abelian subspace of p and a* denote the dual space of

a. For each lea*, we define subspaces ix and p; of q as follows:

p, = {X e p I(ad H)2{X) = -X(H)2X for allH e a}

h = {X e f|(ad H)2{X) = -X{H)2X for all H e a}.

Then p^ = p_;, %x = !_/, Po = a and fois the centralizerof a in f. An element X of

a* is called a restricted root of g with respect to o if dim p; ^ 0. We select a

suitable ordering in a* and denote by A the set of all positive restrictedroots of

a with respect to a. Then we have

(1.1)

(1.2)

P
~
a +
/C
^ (orthogonal direct sum), I = l0

+

AeA

[a,!;]=pA and [a,pA]=fA, A e A.

The following facts are fundamental (cf.[9]).

If A,//eAU{0}5 then

(1.3)

Moreover, if /,+ //e A U {0} or / ―//e A U {0}, then

(1-4) fr,pJ#O.

Let S denote a unit hypersphere in p centered at the origin o. The adjoint

representation group Ad(X) acts on p as an isometry group. For any a e S, the

orbit Ad(K)a of a under Ad(X) is a submanifold in 51,which is called an R-

space. For any a (^ 0) in p, we put Ma ―KA{K)a for simplicity.For any real

number t ^ 0, an i?-space M?a is similar to an jR-space Ma. On the other hand,
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every orbitin p under Ad(K) meets a ([32]).Therefore,we can say that allR-

spaces Ma with a e S C＼a exhaust allJ?-spaces.

For a manifold L and a point / of L we denote by 7/(L) the tangent space

of L at /.If Q is a submanifold in L and q is a point of Q, then we denote by

Tq{Q) the normal space of Q in L at q.

For a point b of A/fl,let T^(Ma) denote the normal space of Ma in S at

&. Any vector X in p can be uniquely writtenas X = A-＼-B + C, where A e Rb,

BeTb(Ma), CeTbN{Ma). Then we put

XSb = B + C, XMb = 5 and X^ = C.

In particular,we put

Xs = Xsa> Xm = Xmo and X = X ".

Each vector X in I induces a vector fieldX* on p as follows:

(1.5) Y* ―Ay ―
d_

It
Ad(exprX)F= [X, Y], Yep
o

Let a symbol X* stand for a vector fieldX*＼s on S or a vector fieldI*|Mo onMa

for simplicity. We put

a1 = {Xea＼go{X,a) = Q} and Aa = {A e A |X{a) = 0}.

Then from (1.5) we have

(1.6)
<

Ta(Ma)
M= £

/gA-Au

TN(Ma)=a^ +
E

AeAa

Pa

Pa

From the definitionof Aa we know easilythe following:

(i)If a,pie Aa and a + pie A, then

(1.7) X + u e Aa

(ii) If X e Aa, [i e A - Aa and X + ＼xe A, then

(1.8) A + fie A ―Aa.

Let V and V denote the Riemannian connections of Ma and S, respectively.

Let h denote the second fundamental form of Ma in S. Then we have the fol-

lowing fundamental formulas:
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(-

4d-

r

Vx; Y* =

Y

/
d_

It

y*
1 Ad(exp tX)a

0

[Y,Ad(exptX)a]
o

PA

0

^Ad(exp
tX)･

)

/M

[F,Ad(exp
o

1

tX)a]＼

Jm

= [Y,[X,a]]M, X,Yet

From these we have

(1.9) h(X;,Y:) = (VX:Y*)N

= [Y,[X,a]]N, X,Yel

From now on we assume that a symmetric space G/K is Hermitian, unless

otherwise stated. We put p = dim a. In the case where p = 1, since any i?-space

Ma is very simple, we can easily compute various geometrical quantities on Ma

which we want to know in this paper. So we assume that p >2.

Now we note the following fact.

Lemma 1.1 ([8, p.

follows. There exists a

528]). There are two possibilitiesA＼ and A2 for A as

base {X＼,...,/,} of a* such that

Ai = {2Xf, ki ±kj＼l <i< j < p},

A2 = {k{, 2Xt, kt ±kj＼＼ <i < j < p).

If A can be expressed as A＼(resp. A2), then A is called of type C (resp. type

BC). We put / = {!,...
ip}.
Let Ip denote the set of all permutations of /. Put

£/= ±1, 1 < i < P-

For any a e Ip, we put

Mi = £iA<T(i),I <i<p.
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Introduce a new lexicographic ordering in a* with respect to the basis {ju^ ...,np}.

Then the set A' of all new positive restrictedroots coincides with the set obtained

from A by exchanging every symbol X in A by the symbol ju.In thiscase, we shall

say that we took a reorder in a*, or reordered a*.

Let / be the complex structure on G/K at the origin o, and put dim p =

2n + 2. Then we can consider p a complex vector space Cn+l. We denote by Pn(C)

the complex projective space, and by n the natural projection of S onto Pn(C).

The complex structure and the Fubini-Study metric on Pn{C) can be naturally

induced from / and g0 through n. We denote them by J and <, >, respectively.

We denote the image n(Ma) of an i?-space Ma under consideration by Ma, which

we shall callan R-space. Obviously every ^-space is a homogeneous submanifold

in Pn{C).

Generally, let L be a submanifold of Pn(C) and put L = n~l(L). Then L is

a submanifold in S. For q e L and X e Tn(q)(L), there exists a unique X' e Tq(L)

such that X' e Vq and n*qX' ― X, where Vq denotes the orthogonal complement

of J(q) in Tq(L) and n^q the differentialmap of n at q. This X' is called the

horizontal liftof X at q. Then we have (JX)' = JX'. We denote by T^{)(L) the

normal space of L in Pn(C) at n(q) and put

JX = (JX)L + (JX)N,

where (JX)L e Tn{q){l) and (JX)N e T*q){L).

Let V and V denote the Riemannian connections of L and L, respectively.

We denote by h and h the second fundamental forms of L in S and L in Pn(C),

respectively.Then there is a following relation between covariant derivatives of

h and h (e.g.,cf. [1])

(1.10) (Vx>h)(Y',Z') = ((V^)(f,Z) + <(/l)z, Y}(JZ)N

+ <(/l)z,Z>(/f)AY, X,Y,ZeT<q){L).

From thiswe see

(1.11) V/j= O onVq<*<5Vh = 0 on Tn{q){l)

where S denotes the cyclicsum.

Now we recallthe notation of Ci?-submanifoldsowing to A. Bejancu (fll)

Definition. A submanifold L in Pn(C) is called a CR-submanifold if there

are two subbundles D and Dx of T(L) such that
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(i) Tj(L) = I), + T>f (orthogonal sum) for each let,

(ii)/D = X), JT)1 a TN(L),

where TN(L) denotes the normal bundle of L in Pn(C).

If a GR-submanifold L satisfiesD = 0 (resp. X)1"= 0), then L is called totally

real (resp. holomorphic). If a CR-submanifold Z satisfiesJT>± = TN(L), then L is

called anti-holomorphic.

§2. Some Basic Lemmas

Through thispaper we preserve notationsin §1. Firstwe give some basic

Lemmas for lateruse.

Lemma 2.1. Let G/K be a symmetric space and a be any point in a flS. Then

the following holds.

(i) If X e A ― Aa and jue A, then

(2-i) fo,p;T = o.

(ii)//IJeE/eA^ and Z e E^eA-Aa ^ then

(2.2) [Z,[Y^[X,a}]N]N = O.

(iii)If A + jue Aa or X ―[ie Aa, then

(2-3) [!a,pJJV#O.

Proof, (i) In the case where jue Aa (resp. fie A ―Aa), from (1.6) we have

V^ = ^ (resP- P^ = 0). Hence from (1.3) we have

fri,P^] = [fA'Pj c Pa+/z+ Pa-//-

On the other hand, since A + /i,A―ye A ―Aa, we have from (1.6)

which completes the proof of (i).

(ii)It sufficesto prove that

[Z,[Y,[X,a]]N]N = O for X elh Yet,,,

where A,jueA and veA ―Aa. From (1.3) we have

Ze Iv,
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Moreover, since

and

we have

Vx-u
-{

0

0

if X + fte Aa

if X + fi$ Aa

if X ―n e Aa

if X - n $ Aa,

[Y,[X,a]]Nep?+≫ + pLu

Now (2.2) follows from (i).

(iii)This follows from (1.3), (1.4), and (1.6)

285

(Q.E.D.)

In the case where a symmetric space G/K is Hermitian, we denote by 3 the

center of f.Then, as for a complex structure /, the following factis known ([8],

p. 376).

Lemma 2.2. (i) There exists a unique {up to sign) Z e 3 such that

/ = adZ|p;

(ii) The element Z can be written as

Z = Z0 +

where Zq e !q and 0 # Z21 e ?2A-

p

7=1

Z2L

Using this, we shall prove a key lemma.

Lemma 2.3. We have the following equations:

(2.4)

(2.5)

(2.6)

(2.7)

p
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Proof. Since Z satisfies[Z, I] = 0, we see from Lemma 2.2(ii)that

[Z0,JGi] +

Owing to (1.3), we have

/=1

[Zo,Xx]=O for XAeih

where XeA ―{X＼,...XP}. From this equation and (1.2), we have

0 = [a,[Z0,y] = [Zo,[a,y = [Z0,p,], Xe A - {X{,.. .Xp}

It follows from Lemma 1.1 and Lemma 2.2 that

JVx =

{

Px if Ae{^i,...Ap}

ZUZ^pd if XeA-{Xu..Ap}.

Now the Lemma follows from (1.3).

§3. Ci?-Submanifblds In a Complex Projeetive Space Pn(C)

(Q.E.D.)

Theorem 3.1. Let G/K be a Hermitian symmetric space and a be any point

in afl5. Then an R-space Ma is a CR-submanifold in Pn(C).

Remark. Y. Shimizu ([31])showed that an i?-space Ma is a CJ?-submanifold

in Pn(C) if Aa = 0.

Proof of Theorem 3.1. From (1.6) we have

Ta(Ma)= J2 P^

/LeA-Aa

Lemma 2.3 implies that there are elements X and /uin A ― Aa such that

Jpx = Vi and /p^ cz TN(Ma).

Then we put

/+ = {(i,j)|Xt + Xh Xt - Xj e A - Aa, 1 < / < j < p],

=
Ivwj + v^-kj if (/,y)G/+

V{iJ) 10 if(i',7)^/±-
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Moreover we put

(3.1) £
fl=

j Y,{i,j)el± V(i,j)

Yl{i,j)el+ V(i,j) + Z);i,-eA-Aa Pa,-

if A is of type C

if A is of type BC.
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By (1.1) and Lemma 2.2, we see that £)aand J(a) are mutually orthogonal. Let

T)q denote the orthogonal complement of Va+J(a) in Ta(Ma). Then we have

(3.2) Ta(Ma) = ta + i)^ + RJ(a) (direct sum).

Since n is a submersion, a space T>a -f X>^ can be identified with Tn^(Ma). By

the action of Ad(K) we can construct two subbundles D and D1 on Ma such that

Mi>a) = x>s(fl),^*(^) = ^

/D = $, /^ c TN{Ma).

Since / = ad Z| , the bundles D and T)"1are well-defined. These D and Dx are

the desired subbundles of T(Ma). (Q.E.D.)

Now we can find a class of i?-spaces with a distinguished property:

Theorem 3.2. Let G/K be a Hermitian symmetric space and a be any point

in aHS. Then

(i) An R-space Ma is anti-holomorphic if and only iffor a suitablereordering

in a* the set Aa is a subset of {A; ―Xj|1 < i < j < p}.

(ii)An R-space Ma is totallyreal if and only if A is of type C and for a

suitable reordering in a* the set Aa can be expressed as {A,-―Xj＼1 < i < j < p}.

(iii)An R-space Ma is holomorphic if and only if for a suitablereordering in

a* the set Aa is given by

{2/l;-,Xi + Xj|2 < i < j < p) if A is of type C

{Xh 2Xi:Xj±Xj＼2<i<j<p} if A is of type BC.

Proof, (i) Let Ma be anti-holomorphic. First we assert

(3.4)

In fact, assume that Xi(a)

have

ki(a) * 0, /
= !,･･･,/>

= 0 for some index /. Then from (1.6) and (3.3) we

ViL^TaN(Ma) and JP2> <=JTaN(Ma) = $£
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On the other hand, since /p2/l. <= a, we have from (1.1) and (1.6)

which is a contradiction. Thus (3.4) was proved. Since the case where Aa = 0 is

trivial,let Aa ^ 0. Then by (3.4) there are indices / and j such that

Xi + Xj e Aa or Xt ― Xj e Aa.

For this i, we put

A' = {X e Aa | X = /I,-+ A, or A = A/ ― A/ for some j}

and denote by k the cardinal number of A'. Since for any / and j with 1 < / <

j < p the case where both A,-+ Xj and A; ― Xj belong to Aa can not occur by (3.4),

we can reorder a* so that

A' = {X＼ - X2,...,X＼ - Xk+i}.

Put

A(l) = {Xi-Xj＼l <i<j<k+l}.

Then A(l) c Aa. If Afl ― A(l) # 0, then we can continue this procedure for the

set Aa ― A(l) and obtain a subset A(2) of Aa ― A(l) such that A(2) is given by

the form {X,- ― Xj ＼k + 2 < i < j < I + 1}, where / ― k ― 1 is the cardinal number

of A(2). By the induction, Aa is given by the subset of {Xi ― Xj ＼1 < i < j < p}.

The converse is obvious from Lemma 2.3, (1.6) and (3.3).

(ii) Let Ma be totally real. By (2.5), A is of type C. First we assert that

2Xi e A ― Afl for any index /.In fact, assume that there exists an index j such that

2Xj e Afl. Since a is nonzero, there exists an index k such that 2Xk e A ― Aa. Then

for these indices j and k, we have from (1.8)

Xj + Xk, Xj - Xk e A - Aa,

which contradicts (2.5). Thus the assertion was proved. Since for any indices i

and j

Xj + Xj e Aa <^> Xj - Xj e A - Afl,

we can reorder a* so that Aa is given by

{Xi-Xj＼l <i<j<p}.

The converse follows from Lemma 2.3, (1.6) and (3.3).
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(iii) Let Ma be holomorphic. First we assert that there exists an only index i

such that Aj(a) ^ 0. In fact, if there exist two indices / and j such that A,-(a)# 0

and Xj{a) ^ 0, a 2-dimensional subspace /(p2/L,+ Vix) °f Ta{Ma) must contain a

nonzero element of o, which contradict (1.6). Hence the assertion was proved.

Then we have only to reorder a* so that A＼(a) #0. The converse follows from

Lemma 2.3, (1.6) and (3.3). (Q.E.D.)

Remark. Recently Choe, Ki and Takagi ([4])and Ki, Song and Takagi ([15])

gave some examples of CJ?-submanifoldsin Pn(C). These examples form a class

of jR-spacesconstructedfrom Theorem 3.2.

Remark. For every totallyreali?-space Ma, we have

dim T(Ma) = dim TN(Ma).

This is already pointed out by S. Kobayashi ([171).

§4. Second Fundamental Forms of J?-Spaces and Its Covariant Derivatives

For a while, we do not assume that a symmetric space G/K is Hermitian.

We define the covariant derivative V/z of h on Ta(S) as follows:

(vxMy;,z;) := (Vxmy:,z;))n - h(vx:Y＼z;) - h(Y;,vx,z*).

Theorem 4.1. Let G/K be a symmetric space and a be any point in aC＼S.

Let V and h denote the Riemannian connectionof an R-space Ma and thesecond

fundamental form of Ma in S, respectively.Then we have

(4.1) (VJ;/i)(F;,Z;) = -[X,[Z,[Y,a]]M]N - [Y,[ZAX,a}}M}N,

where X.Y.Ze f.

Proof. Firstwe calculateh{yx* Y*,Z*). From (1.9),we have

h(Vx>Y*,z:) = (VLZ*)N,

where L = v*a Y*. This L can be written as

L =

/.eA―Au

where Lx e pA. By Takagi and Takahashi ([32]),we see that

L=＼Q,a} = ＼Y,＼X,a]]M,
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where Q = EieA-Afl(l/^)2)[≪

vLz* -(

-

(
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LA. From the equation above we have

d_
Jt

d

Jt

0

Ad(exp tQ)■

)

/s

[Z,Ad(expf0)a]
o

1

[Z,[F,[Z,a]]M]s, I,F,Ze!.

Hence we obtain

Next, we have

h(Vx.Y＼Z*a) = [Z,[Y,[X,a]]M]N

(VxMy;,z:))n = ＼dt

-

(

where a(t)= Adfexp tX)a. As

＼dt

(VF*Z*-Vr>Z*)a(?)
o

d_

Jt

for

Vy Z*
o a("

the

Vj- Z'＼

As for the second term, we have

d

Jt

_d_

~Jt

_d_

)-( d
Jt
fy;0,z')M,,,,

firstterm, we have

d

Jt

d_

Jt

[z

[Z

o

Y
a(t)
＼s
all)

[ZAY,a{t))]s

o

)

[Z' Ya{t)＼Ma(t)

0

[Z,[Y,a(t)}}M
o u

Ad(exp ?X)[Ad(exp -tX)Z, [Ad(exp -tX) Y:a]]M
o

= [X, [Z, [Y,a]]M]s - [[X,Z], [Y,a]]M - [Z, [[X, Y],a]]M
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Consequently using the equations above, (1.3),(1.6) and (2.2),we have

(V*;/i)(r;,Z;) = [Z,[Y,[X,a}]s]N- [X, [Z,[Y,a}}M}N

-[Z,[Y,[X,a}}M]N-[Y,[Z,[X,a)}M}N

= -[X, [Z,[Y,a))M]N - [Y,[Z,[X,a]]M]N- (Q-E.D.)

D. Feras ([5],[6]) proved the following facts.

(1) Let a be a point on S such that the endomorphism (ad a)2 of p has

eigenvalues 0,1. Then an i?-space Ma is a parallel submanifold in S.

(2) All jR-spaces Ma obtained in (1) exhaust all parallel submanifolds in S.

Kobayashi and Nagano ([18]) and T. Nagano ([21]) classifiedcompletely R-

spaces satisfying(1). After some time, S. Kobayashi ([17])realized a various class

of symmetric i?-spaces.

In the remainder of this paper, we assume that symmetric space G/K is

Hermitian.

From (1), (2) and Theorem 3.2(ii)we have:

Lemma 4.2. An R-space Ma is parallel in S if and only if the corresponding

R-space Ma is totallyreal.

Here we recall the natural projection n : S ―>･Pn(C). For each a e a OS, we

have from n

Ta{Ma) ―RJ(a) + Va (orthogonal direct sum)

From (3.2) we have

(4.2) V = & + &±.

If an i?-space Ma satisfies

V/z = Q on F,

then we shallcallMa almost parallel.

Firstwe prepare the followingLemma:

Lemma 4.3. Let a e af)S satisfy

2Ak, 2/1/, Ak + Ai, ^k ― h e A ― Aa for some k,l (k ^ I).

Then an R-space Ma is not almost parallel.
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Proof.

2-J.eA-A,, l^

(4.3)

Hyunjung Song

By (4.2), it suffices to show that there exist elements X, Y,Z e

<iiichthat

Ar;,r;,z;eta + t^ and (Vr.A)(r;,z;)#o.

The author could not show the existenceof elements X, Y and Z of X]agA-au^

satisfying (4.3) by a general method. But, according as every Hermitian sym-

metric space G/K we can find elements X, Y and Z of ^;eA-Aa ^ satisfying(4.3).

In the following we show this for a typical Hermitian symmetric space G/K and

abbreviate the proofs for every other Hermitian symmetric space since we have

only to apply the same method.

Let 0 < p < q be integers and M ― SU{p + q)/S(Up x Uq) be a Hermitian

symmetric space. Let Ey denote (p + q) x (p + q) matrix with entry 1 where the zth

row and yth column meet, all other entriesbeing 0. Let Ip denote the unit matrix

of order p. We put

h,i ~

Let q ―Bu(p + q) denote the Lie algebra of SU(p + q) and 9 the involutive

automorphism of g denned by 9{X) = Ip,qXIp,q([8,p. 454 and p. 347-p. 349]).

Let f (resp. p) be the eigenspace of 9 for the eigenvalue+1 (resp. ―1).Then

-≪

p

B)

＼{-'Z

Aeu(p), Seu(?)l

Tt(A + B) = 0 j
and

z)
Z : p x q complex matrix >

A maximal abelian subspace a and the complex structure/ on p are given

p

a =
y~l̂ -^R{Ej,P+i +

Ep+ij) and / = ad

i=＼

( (

v― 1

＼ ＼

q

p + q

0

The positive restrictedroot system A is given by:

{2kh ki ±kj＼＼<i<j <p] if p = q

{kh 2kh kt±kj＼l <i < j < p) if p < q.

Here

Ip

kA＼f^＼(Ei,p+i+ Ep+ij)) = ^/^^7, ＼<j<p.

0

p

p + q Vj

by
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By a direct calculation, we have

h,.Aj = {x(Eij + Ep+^+j) - x{Eji + Ep+^p+i) ＼xeC} (1 < / < j < p)

h.,+x,= ix(Eu - ep+',p+j)~x(Ej'~ ep+j,p+')＼xeC} (I <i< j <p)

hi = V^IR(EU - Ep+ijP+i), (l<i<p)

293

q-p q-p

hi = 2_^^(-£p+/,2/>+a ― E2p+x,p+i) + 2_^^v ―l(Ep+ij2p+x + ^2p+oi:p+i) (1 < / < /?)

a=l a=l

P;,-;7= {x(Ei,P+j + ep+u) - x(Ej,P+i + EP+j,d ＼xeC} (1 < i < j < p)

Vki+>.}= {x{Ei,P+j - Ep+u) + x{EjtP+i - Ep+li) ＼xeC} (1 < i < j < p)

p2A.= R{ELp+i - Ep+ij) (I <i<p)

q-p q-p

Vk( ― 2_^R{Ei,2p+z ― E2p+oL,i) + 2_^/?V ―1(-£"/,2p+a + E2p+a,i)

a=l a=l

Here we may put k ― 1 and 1 ―2, that is,

2

a = 5Z ^-^aiiEi,p+i + EP+u)

(l<i<p).

where a＼^ 0, a2 ＼=0, a＼＼=aj, a{ e R. Then we see that

a1 = R^/^A{a2{E^p+i + Ep+i}i) - ai(E2yP+2 + Ep+2.2))

+
pY,^R(ELp+i + Ep+u)

;=3

Ja1 = R(a2{Ehp+＼ - Ep+＼,＼)- ai(E2jP+2 - Ep+2,2))

p

+ /
J
R{Ej,p+i

~
Ep+i,i)i

/=3

x>≪

p
E

i=2

P/,±;.,+

7=3

We put

X = al＼f^＼(E＼＼- Ep+iP+i) - a＼^f^＼{E11 - Ep+1,P+2) e hkx + hk2,

Y ― y(E＼2 + Ep+＼)P+2) ― y(E2＼ + Ep+2:P+＼) e i~M-k2-,

Z = z(E 12 ― Ep+＼n+2) ― z(E2i ― Ep+2iP+＼) E f;vl+;.2,
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where yz # yz and y,z e C. Then we have

[Z, [Y,a]}M = -V^l(ai - a2)(yz - yz)(Ehp+x - Ep+hl + E2,p+2 -£^+2,2),

[X,[Z,[Y,a]]M]s = -2a＼{ax - a2)(yz - yz)(Ehp+[ + Ep+iA)

+ 2a＼{a＼- a2)(yz - yz)(E2:P+2 + £^+2,2),

[Z, [X, a])M = 2a＼a2z(ai- a2)(Ei)P+2 + Ep+iy2)

-2a＼a2z{a＼- a2)(E2,p+i + Ep+2,i),

[Y,[Z,[X,a]]M]s = -2a＼a2{ai - a2)(yz - yz){E＼,p+＼+£p+i,i - E2)P+2 - Ep+2)2)

Thus we have

[X,[Z,[7,a]]M]5 + [F,[Z,[X,≪]]M]5

= -2a2{a＼ -≪2)0i + a2)(yz - yz)(Ehp+x + Ep+hi)

+ 2fli(fli-a2)(ai + a2)(yz - yz)(E2,p+2 + Ep+2,2)

From this and (4.1), we have

(V^A)(y;,Zfl*)#0. (Q.E.D.)

Theorem 4.4. Let G/K be a Hermitian symmetric space and a be a point in

a fl S. Then an R-space Ma is almost parallel but not parallel if and only if the

corresponding R-space Ma is holomorphic.

Proof. Let Ma be almost parallel but not parallel. By Theorem 3.2(ii) and

its proof, it suffices to prove that there exists an only index / such that 2/1,e

A - Aa. For this, we put

C2 = {i|AI-(fl)#0}.

It suffices to show that § 2 = 1, where {JC2 denotes the cardinal number of C2.

The case where A is of type C. Suppose that ＼C2 =p. Then for any index

i we have 2Xt e A ― Aa. We assert that there exist indices / and j such that

Xt + Xj,Xj ― Xj e A ― Aa. If not so, then for any indices i and j with 1 < i < j < p,

we have

X{ + Xj £ A ― Aa, Xj ― Xj e Aa or Xt - 1- e A - Aa, Xt + Xj e Afl.
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Then for a suitable reordering in a*, Aa can be expressed as

{Xi-Xj＼l <i<j<p},

which contradicts Theorem 3.2(ii)and Lemma 4.2.Thus our assertion was proved.

This and Lemma 4.3 imply that Ma is not almost parallel,which is a contra-

diction.Hence we have JJC2<p. Suppose that 2 < JJC2.Then there existindices i

and j such that 24 2kj e A ―Aa. Since jiC2 <p, there exists an index k such that

24 e Aa. Since 2/,-,2A7-e A ―Afl,we choose 0#Ie I2A,+ !2/y of Xa* e T)j＼Let

0 # 7 s I;.,+4.Then from (1.6) and (1.8) we have 0 # Y* e T)a. Then we have

from (4.1) and (1.3)

(VY;h)(Y:iX:) = -2[Y,[X,[Y,a]]M]N

Since // + 4 - {h - Xk) = 24 e Aa, from (2.3) we have (Vy;/z)(7a*,X;) ^ 0,

which is a contradiction. Thus we have OC2 = 1.

The case where A is of type 5C. Suppose that JJC2 > 2. Then there exist two

indices / and j such that 2aj,2Aj g A ― Aa. If both a,-+ A7-and A,-―Ay belong to

A ―Aa, we see from Lemma 4.3 that Ma is not almost parallel,which is a con-

tradiction.Hence we may assume that

Xi+ Xje A ―Aa and /,-- Xje Aa.

Let Xeh, and Fef;,,^.. Then by (2.4)and (2.5),both X* and Y* belong to

ta + tj. For these X and Y it follows from (4.1)and (1.3) that

(VXa.h){X:,Y;) = -2[X,[Y,[X,a]]Af]N

On the other hand, since A,-―Xje Aa, we have from (2.3)

(v^)(jr;,r;)/o,

which is a contradiction.From the factsabove, we have IJC2= 1.

Conversely, assume that Ma be holomorphic. Firstlet us prove

Vh = 0 on i>fl+ I)j-.

By Theorem 3.2(iii)and (3.1)we have



296

*a + Ra =

Hyunjung Song

Z^i=2^M±A,

Ef=2P/li±i, +Pa

if

if

A is of type C

A is of type BC.

Hence it suffices to prove that:

(a) If A is of type C, then for any X,Y,Z e YlPi=i^h±M

(VjrB.A)(r;,z;) = o.

(b) If A is of type BC, then for any X, 7,Zef;., + £f=2f;.,±/w,

(Vx;/0(r;,z;) = Q.

To prove (a), it suffices to prove that

(V^A)(r;,z;)=0 for Xeth±ki, Yeth±Xp Zehl±h,

where i,j,ke{2,...,p}. From (4.1) and (1.3) we have

(v*a./i)(r;,z;) = -pr,[z,[y,a]]X- [rjzjx^y^

fc^-i+a,±(/i±/;)+ (ai±4)-

On the other hand, if X＼± Xi ± (X＼± Xj) ± (X＼± X^) is a root, then this root is

expressed as X＼± Xi, where / e {2,.../≫}. Since aj + X＼e A ― Aa, it follows from

(1.6) that

(vx;h)(Y:,z:) = o.

Using the same method as in the proof of (a), we see that (b) holds. It is imme-

diate from Theorem 3.2(ii) and Lemma 4.2 that Ma is not parallel. (Q.E.D.)

Remark. It is well-known that a parallel submanifold in Pn(C) is either

holomorphic or totallyreal. Holomorphic parallel ones were classifiedby Naka-

gawa and Takagi ([26]) and the totallyreal ones by H. Naitoh ([24]).

On the other hand, S. Maeda proposed the following problem in [20]:

Problem. Is there a sub-manifold L in Pn(C) such that L is cyclic parallel

but not parallel?

We can give a partial answer to the problem above as the following.

Corollary 4.5. Let Ma be an R-space. If Ma is cyclicparallel, then Ma is

parallel.
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Proof. By (1.11), we see that an J?-space Ma is almost parallelif and only

if the corresponding j?-space Ma is cyclic parallel.Lemma 4.2 and Theorem 4.4

imply that if Ma is almost parallel,then either Ma is totally real or Ma is hol-

omorphic. Applying (1.10) to the both cases above, we see that Ma is parallel.

(Q.E.D.)
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