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ON A LOCAL ENERGY DECAY OF SOLUTIONS FOR THE

EQUATIONS OF MOTION OF COMPRESSIBLE VISCOUS

AND HEAT-CONDUCTIVE GASES IN AN

EXTERIOR DOMAIN IN R3

By

Takayuki Kobayashi

Abstract. We consider the equations of motion of compressible

viscous and heat-conductive gases in an exterior domain in R3. We

prove the local energy decay of solutions to the linearized evolution

problem in Lp framework.

§0. Introduction

Let O be an exteriordomain in R3 with compact smooth boundary dQ. The

motion of a compressible viscous and heat-conductivefluidis described by the

following system

p, + (v ･ V)p + p ･ div v = 0

v, + (v ･ V)v =

(0.1) 0t + {vV)0 +

P

O-dnP

p-c

/* + //

･V(divv)

k

p-c
A0 +

VP(p,0)

p

P'C

in [0, oo) x Q,

in [0, oo) x O,

in [0, oo) x O,

p

･ divv

v|5q = v＼m = 0, 01^ = 0L=0 on [0, oo) x dQ,

(p, v, 0)(O,x) = (p0, v0, 0q)(x) in Q,

where p is the density, v = (v＼,1^2,^3) the velocity, 0 the absolute temperature,

P ― P(p, 8) the pressure, pi and // the viscosity coefficients, k the coefficient of the

heat conduction, c the heat capacity at constant volume and ＼ is the dissipation
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function:

V =
%(dkVj + djVk)2 +

//{djVj)2.

The existence theorems of unique solution local in time for the system (0.1)

were obtained by Nash [15], Itaya [7,8] for the initial value problem, and by

Tani [22] for the initial boundary value problem. On the other hand the

existence theorem of global solution in time for the system (0.1) were obtained

by Matsumura and Nishida [12,13], Ponce [17] for the initial value problem,

and by Matsumura and Nishida [14] for the initialboundary value problem in

L2-framework for sufficientlysmall initialdata. Also Strohmer [21] proved the

global in time existence theorem for small initialdata in a bounded domain in

L^-framework. In particular, Matsumura and Nishida [14] showed that this

solution approaches the stationary state as t ―>oo, and also Deckelnick [3,4]

gave some estimates for the dacay rate in an exterior domain. But this decay

rate is weaker than that of Matsumura and Nishida [12] and Ponce [17] in

Cauchy problem.

In this paper, we shall give the local energy decay of solutions for the

linearlized equations of nonlinear problem (0.1). Although this system has a

hyperbolic part that is the density p, these solutions have the same decay rate as

well-known results of the local energy decay of some parabolic equations, for

example Stokes operator and Oseen operator, (cf.Iwashita [9], Kobayashi and

Shibata [11], Iwashita and Shibata [10] and Shibata [18].) In particular, this

decay rate corresponds to that of Matsumura and Nishida [12] and Ponce [17].

Now, we introduce the linearized equations for the system (0.1) below.

pt + y div v = /i in [0,oo) x O,

vt- aAv - ^V(div v) + yVp + dS/6 =f2 in [0,oo) x fl,

(0.2) Ot - K&O + codivv =fi

^01 = ^00=0, 01^ = 0^=0

(p,v,0)(Q,x) = (p(hvo,6())(x)

in [0, oo) x Q,

on [0, oo) x dGl,

inn.

where a.,y,K,co are positive numbers and fiis a nonnegative number.

System (0.2) was given by Matsumura and Nishida [12] and Ponce [17].

They seek solutions for the system (0.1) in a neighborhood of a constant state

(p,v,0) = (Jjo,O,Oo) where po,0Q are positive constants under the following

assumptions:
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(1) n,n' are constants p, > 0 and -/* + // > 0.

(2) c,k are positive constants.

(3) P is a known function of p, 0, smooth in a neighborhood of (Pq,6q)

where -=-,-=£ >0.
dp 39

Note that the assumption (1) is stronger than ours because they also study

the Neumann boundary condition.

In equations (0.1), put a = {fi/p0), fi = <ji+ fi')/Po, 7 = {{dP/dp)(po,0Q)}l/2,

K = {k/cpQ) and put co = (l/p0) ■(dP/d6)(po,0Q){0o/c}l/2. Then using the

notation {p,v,0) for the vector (＼/po){{dP/dp){po,0o)}l/2p, v,{c/0o}l/20), we can

obtain the equations (0.2).

Concerning the linearized equations (0.2), Matsumura and Nishida [12] gave

the spectral analysis and energy estimates of solutions in Li -sense and Ponce

[17] the Lp-Lq estimates for solutions in R3, respectively. Strohmer [20]

showed that the operator ―A generates an analytic semigroup in a bounded

domain. But the results for the case of an exterior domin were not known.

Therefore we shall start with a result for the case of an exterior domain.

Our main results are the following. Let 1 < q < oo, m be an integer and set

X?(Q) = {r≪;≪G W +l(Q) x W (Q) x ^(fl)}, Xq(Q) = *J(Q),

where Tu means the transposed ≪. Define the 5x5 matrix operator A by the

relation:

(0.3)

with the domain:

A=lyV

V 0

ydiv

-ocA-^Vdiv

codiv

0

coV

-kA

)

9{A) = {Tu;u = {p,v,6} e Wlq{Q) x W2q{Q) x W^Q),

vlai = O,^lan = O on an}.

Let P be projection from 2{A) into {r{v,0}; {v,^} e W2q(Q) x ^2(O),v|ao = 0,

l9|5o= 0 on dQ,} and /?(―^4)be the resolvent set of the operator ―A. Then

and

Theorem A. Let 1 < q < oo. Then ―A is a closed linear operator in Xq(Q)

(0.4) p(-A) D2 = {lGC;CRe/l+(Im X)2> 0}
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where C is a constant depending only on a,fi,y,K and co. Moreover, the following

properties are valid: There exist positive constants Xq and 5 < (n/2) such that

＼X＼＼＼(X+ A)-lf＼＼Xq{n)+ ＼＼P(X+ A)-lf＼＼2^ < C(Xo,S,m)＼＼f＼＼Xq{n)

for any X - Xq e J2s = (^ e ^5 larS ^1 ^ n
~
$} an^ any f e ^(^)-

Theorem A means that ―A generates an analytic semigroup e~tA on Xq(Q).

Then let Bb = {x e R; ＼x＼< b}, Qb = O (1 Bb and setting

(0.5)

Yqtb(Q) =

{

u = T{p, v,9} e Xq(Q); u(x) = 0 for x e i^3＼^,
f

/>(*) Jx =
ol

Jo,

we have

Theorem B (local energy decay). Let 1 < q < oo and let bo he a fixed

number such that Bf,03 R3＼Q. Suppose that b > bo,u = T{p, v,0} e Yq>b(Q). Then

the following estimates are valid:for M > 0 integer, m e Yq^{O) and t > 0

(0.6) ＼＼d?e-tAM＼＼xginb)+ ＼＼Sfe-tAu＼＼2^b< C(q,b,M)r'/2-M＼＼U＼＼Xqiny

Remark. In dealing with the system (0.2), it is natural to introduce

the bace space Xq(fl) without the condition JQ p(x) dx ― 0 because the Stokes

formula does not hold in an exterior domain. Hence we shall treat the case

JQ p(x) dx # 0 also. In this case, roughly speaking, since k = 0 seems to be a

pole in the sence of §1 (1.22), it is difficultto expect the same results in

Theorem B. Therefore, we decompose the semigroup e~tAas the following and

by using Theorem B we have

Corollary C. Let

(0.7) Xqjb(Q) = {ueXq{n);u{x) = OforxeR3＼Bb}.

Taking <pe C^(Qb) so that JQ (p{x)dx = 1, for u = T{p, v,9} e Xq>i,(Q), we have

the following representation

(0.8) e~uu=T＼ (b, (p,t)u + T2(b, q>,t)u
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where ej (j ― 1,2,..., 5) are unit row vectors in R5, Ndu = ＼Dp{x) dx and

Tiib, q>,t)u = e~tA{u - (JV^ii) ･$*,},

T2(b, <p,t)u = (iVQi≪)
L
.ei - y

J'
*-** V^

LA

Moreover, the following estimates are valid:for M>0 integer, ueXqtb(Q) and

r>0

(0.9) II^T^M"!!^) + WdfPTiibMtW^

ZC{q,b,v,M)rV2-M＼＼u＼＼X
i{Q),

(0.10) ＼＼df+lT2{b^t)u＼＼Xqm + ＼＼d^lPT2{b^t)u＼＼2^b

<c(^^9>,M)r3/2-M||≪||^(Q).

The most important part of the proof of our main results is the cutoff

technique in Shibata [18]. In §1, the same resolvent estimates of the operator

―A in a bounded domain as in Strohmer [20] are proved. The difference

between ours and Strohmer [20] are the following:

(i) We shall show that the resolvent set of the operator ―A contains a

parabolic region,

(ii)We do not assume that jQ p(x) dx ― 0. (see Remark.)

The regularity of resolvent {X + A)~x in R3 near X = 0 isinvestigated in§2, which

is the essentialpoint of our proof of Theorem B. The proof of Theorem A in §3

and a costruction of a parametrix of the exterior stationary problem in §4 are

done by the method of cutoff technique. And then, with the help of a theorem

concerning the relationship between the regularity of functions and the decay rate

of their Fourier image, which was given by Shibata [18], we prove Theorem B in

§5. Since the resolvent set contains a parabolic region, we can not take the same

path of integration for the Laplace tranceform between the resolvent and semi-

group as in Iwashita [9] etc. Hence we shall use the same way as in Kobayashi

and Shibata [11].

Notations. Three dimensional row vector valued functions are denoted with

bold-face letter,for example u= (m, 112,113).As usual, we put

dt = d/dt; dj = d/dj; A = d2t+ d22+ d22;

dl = a?>0?d?3, a = (ai,a2>a3), lal = ai + a2 + a3;
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dy = (d≪p;＼a＼=m)] 5> = (<?>; M < m);

divn = d＼U＼+ c*2≪2+ S^uy,

Sobolev spaces of vector valued functions are used, as well as of scalar valued

functions. Thus, if D is any domain in R2, we put

IIMII^D = q(b＼

l/<7

＼＼U＼＼
q,D =

3

V^ II ll<7

)
l/<7

＼＼U＼＼m,q,D= ＼＼KUWq,D^ ＼＼ttL,q,D = ＼＼KU＼＼q,D> (≫≫V) = L U(X)

)

v(x) dx

Lq(D) denotes the usual Lq space on D, W%{D) = {ue Lq{D)＼ ＼＼u＼＼m^D< oo}, 9"

the set of all tempered distributions on R3 and Cq'(D) the set of all functions

of C00^3) whose support is contained in D. For function spaces of three

dimensional vector valued functions, we use the bold letters,that is for example,

Lq(D) = {Lq(D)}3 likewise for W (D). To denote various constants, we use the

same letter C and C(A,B,...) means that the constant depends on the qualities

A,B, For two Banach spaces X and Y, &$(X,Y) denotes the set of all

bounded linear operators from X into Y and ||･ ＼＼@,xY) means its operator norm.

§1. Stationary problem in a bounded domain

In thissectionwe consider the stationaryproblem in a bounded domain D

in R3 with smooth boundary 3D;

(1.1a)

(Lib)

(1.1c)

(Lid)

(Lie)

Xp + y ■div v ―f＼ inD

Av-aAv- BV(divv) 4-y ･ Vp + co-V9=f2 in D

X9 ―kAO + co ■div v = A

v＼dD = 0

o＼dD = o

inD,

on 3D,

on dD.

here X is a complex parameter.

We shall prepare some results to show a unique existence of solutions to

(1.1). The following proposition is concerned the existence theorem of solutions

to the Stokes equations.

Proposition 1.1([2]). Let 1 < q < oo, m be an integer >0 and let D c R3

be a bounded domain with smooth boundary 3D. Then for everyf e W {D) and

every g e W +l(D) with ＼Dg(x)dx = 0 thereexistsa unique u e W +2(D) which
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together with some pe W +l(D) satisfies

-An + Vp = /, div u = g in D

u = 0 on 3D.

635

Here p is unique up to an additive constant. Furthermore, the following estimate is

ll≪IL+2,g,D+ ＼＼^P＼＼m,q,D^ C{＼＼f＼＼m,q,D+ IML+l^Z)}*

where C = C(D, q,s) is a constant.

The following proposition is well-known as a general Poincare's inequality.

Proposition 1.2 (cf.,eg. [5]). Let 1 < q < oo. There exists a constant C > 0

swc/i ?/za£the ineaualitv

N,,i,<c|||vM||,,i) +
]

u(x) dx

}

holdsfor any u e W^(D). Furthermore,if q # 1, D is bounded and if ue W^(D)

with u ―0 on 3D, then we have

＼H＼q,D^ ciiviiii^.

The next resultis well-known as the system of Laplacian with Dirichlet

boundary conditions.

Proposition 1.3. Let 1 < q < oo and let D a R3 be a hounded domain {or

exterior domain) with smooth boundary 8D. Let 0 < d < (n/2) and k > 0. Then

for every X e J2s> every f e Lq{D) there exists a unique solution u e W^{D) such

that

Xu ― kAu = f in D, u ― 0 on dD

Furthermore, the following estimate is valid:

＼M ＼＼*＼＼q,D+ Mkq,D ^ c＼＼f＼＼qtD, ＼＼u＼＼3^D< c(X){＼＼f＼＼w + IklUI

where C = C(D,q,5) is a constant.

The following proposition is concerned the existence theorem of solutions to

the elastic equations.
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Proposition 1.4. Let 1 < q < oo and let D c R3 he a bounded domain {on

exterior domain) with smooth boundary dD. Let a be a positive number, n be a

complex number such that Re{a -+-rj} > 0. Then there exist positive numbers X$

and 8 < (n/2) satisfying the following conditions: For every X ― Aq e Yls> every

f e Lq(D) there exists a unique ue W^{D) such that

(1.2) An-aA≪-?/Vdivfi=/inD, u＼dD = 0ondD.

Furthermore the following estimates is valid:

(1-3) W ||≪|U + hhqn ^ CII/IL ,, ||≪||3_, < C(X){＼＼f＼＼l,q,D+ II≪L n},

where C C(D,q,S,Ao,a,n) is a constant.

Proof. Since

(1.4) det

-a|£|2-tf? -tflfc

-^2^3

＼

= -(a + */)a2|£|6,

(1.2) is the elliptic when Re(a + ^) > 0, which means that a priori estimate:

W II≪II,,D+ ＼Hl^D ^ C{＼＼f＼＼qtD+ ＼＼u＼＼qtD},＼＼M＼＼3AtD< C(A){||/||Uf/) + IHI^},

is valid for X ― Xqe Y^s- Taking sufficiently large number Xq, we have (1.3).

Define the operator T(X;rj) by the relation:

(1.5) T(X-fj)u = Xu-aAu-rjVdivu,

with the domain: R{T(k;ri)) = {≪ e W2q(D);u＼dD = 0}. Then, by (1.3) T(X;r/) is

densely defined closed operator in Lq(D) and the range of T(X;rf) is closed in

Lq(D). Since the dual operator of T{X;rj) in Lq{D) is T(A;?/) in LP(D) where

(l/p) + {l/q) = 1, the closed range theorem means that a unique solution for

(1.2) exists in Lq(D). Combining this with a priori estimate (1.3), the proof is

completed.

Now we will lead to the main theorem in this section. Let 1 < q < oo, m be

an integer and let

(1.6) Y?(D) =
|r{/i,/2,/3}

6 X;(D);

£/i(x)
rfx = OJ, Yq{D) = Y?{D)
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Define the 5x5 matrix operator Ad by the relation:

0

AD=＼yV

＼0

ydiv

-aA-jgVdiv

rodiv

0

eoV

-kA

)

･

637

with the domain: <3{AD) = Yq(D)C＼@(A) i.e,Ad is the maximal restrictionto

closed subspace Yq(D). Applying thisnotation to (1.1),we have

(X + AD)u=f

where u = T{p,v,0} and / = T{f＼Ji,h}. Then

Theorem 1.5. Let 1 < a < oo and let Dei?3 he a bounded domain with

smooth boundary 3D. Then, Ad is a closed linear operator in Yq{D) and

p{-AD) =>{G)UT!

where 2' = {k e C; 6(y2 + co2)Re k + a(Imk)2 > 0}. Moreover, the following

properties are valid: There exists a number 0 < 5 < (n/2) such that

(i.7) ＼k＼＼＼(k+ADyif＼＼Yq{D)+ HPCA+^ryii^ < c{q,d,D)＼＼f＼＼YiiD)

for any k g Sj U {0} and any f e Yq{Q).

Proof. We shall prepare the following three lemmas to prove this

tiiprvrpm

Lemma 1.6. Let 1 < q < oo, and D c i?3 be a hounded domain or an

exterior domain with smooth boundary 3D. Let A be the operators defined in (0.3)

with Q = D. Then there exist positive numbers Xq and 0 < 3 < (n/2) such that if

ue3l{A) satisfies(X + A)u=f with f e Xq(D), then the following estimate is

valid-

＼M＼＼*＼＼x,(D)+ ＼＼P≫Wd̂ C(q,h,8,D)＼＼f＼＼Xt{D)

for X ―Xq e Ej.

Proof of Lemma 1.6. Let u = T{p,v,9} and let / = T{f＼,fiJ-i}.Recall

that the equation (X + A)u―f means that the equations (1.1) hold. Applying

Propositions1.3 and 1.4 to the system X - kA and X - a A -/?Vdiv in (1.1),we
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see that there exist positive number X＼ and 0 < 8＼< (n/2) such that

(1-Ba) ＼A＼＼nq,D+ ＼Ml/2＼＼R＼＼i,q,D+ ＼＼0＼＼2,q,D

^C{||/3-fi)divv|L , + !!%,},

and

(1.8b) WHvll^ + IAI^IIvll^ + llvH^

<C{＼＼f2-yVp-coV0＼＼q,D + ＼＼v＼＼q:D}

hold for X ―X＼e Ej, with C depending only on q,X＼ and <5i.Furthermore it

follows from the equations (1.1a) that

(i-9) mp＼＼q,D<y＼M^D + ＼＼Mq,D,

and

(1-10) WllV^ll^^yllvH^ + ll/,!!^.

Combining (1.8a),(1.8b),(1.9) and (1.10), and taking sufficientlylarge number Xq,

we have lemma 1.6.

Lemma 1.7. Let 1 < q < oo, m be an integer >0 and D be a bounded

domain in R3 with smooth boundary 3D. Then, (―Ad)~ exists.Furthermore, the

following estimate is valid:

＼＼(-ADylf＼＼Y,{D)+ ＼＼P{-AD)-lf＼＼m+2tgtD< C(q,m,D)＼＼f＼＼YT{D)

forfeY (D).

Proof of Lemma 1.7. Putting u = T{p,v,0} and f ―T{fi,fi,f3}, we

consider the system (1.1) with X ― 0 in stead of the equation Ar>u = / in Lemma

1.7. Since it follows from (1.1a), (1.1c) and (Lie) that

(1.11) -jcA0=/3--/iinZ>,
y

0＼dD = 0 on dD,

and sinceD is a bounded domain, thereexistsa unique solution9e W +2(D) to

(1.11) such that

(1.12) ＼＼nm+2,q,D < c f m f
m,q,D
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We have by (1.1a),(Lib) and by (Lid)

(1.13) - aAv + V(yp) =f2 + - fSVft- co■＼70in D,

div v = ― in D,
y

v＼dD = 0 on 3D.

639

Applying Proposition 1.1 to the system (1.13),there existsa unique pair

{v,p)e W +2(D) x W +1{D) with fDp(x)dx = 0 satisfying(1.13) such that

(I-14) llvL+2.fl.2>+ IHL+l.*.Z>

≪ y
m,q,D

+
y
m,q,D

Combining (1.12) with (1.14) implies that thislemma holds.

}

Lemma 1.8. Let 1 < q < oo, X e E' U {0} and D a R3 he a hounded domain

with smooth boundary 3D. Let A be the operatorsdefinedin (0.3) with Q = D.

Thaw

Ker(A + ^) = {0},

where Ker T is the kernel of the operator T.

Proof of Lemma 1.8. Let (A + A)u = 0, u=T{p,v,0} e 9{A). Then we

(1.15a)

(1.15b)

(1.15c)

(1.15d)

(1.15d)

Xp-＼-y ■div v = 0 in D

Xv - txAv - $V(div v) + y ■Vp + co ■V0 = 0 in D

XQ - kA0 + co ･ div v = 0

v|ax>= 0

O＼bd - 0

inD,

on 3D,

on 3D.

We can assume that X ± 0 by Lemma 1.7. Noting that Re{a + /?+ {y2/X)} > 0

when a > 0, fi > 0 and X e If, in view of (1.4), since the systems ―kA and ―aA ―

{fi+ (y2//l))Vdiv with Dirichlet boundary conditions are elliptic,by boot-strap

argument, we see that {p,v,0} e W^+l(D) x W*q+2{D) x W^+2(D) for allintegers

tC> 0. When 2 < q < oo, since D is a bounded domain, we see that {p, v,0} e

Wi(D) x W＼(D) x H^2(D). When ＼<q<2, by Sobolev's imbedding theorem,
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{p,v,9} e W＼{D) x W＼{D) x W%{D). Thus, multiplying (1.15b) by v,integrating

the resulting relation over D and using integration by parts, we have by (1.15a)

(1.16) A||v||*
jD
+ a||Vv|£i) + K) ＼＼&yv＼＼22D+ a>(VO,v) = O

Similarly, multiplying (1.15c) by 0, we have

(1.17) >l||0||!i2)+ k＼＼W6＼＼22iD+ c(div v,6) = 0.

Since Re{co(divv,l9)} = -Re{c≫(V0,v)} and sinceIm{ft}(divv,l9)} = Im{eo(V8,v)}

it follows from (1.16), (1.17) and Schwartz's inequality that

(1.18) ReX ■(||v||^ + ＼＼BtD)+ a＼＼Vv＼＼iD+ K＼＼0＼＼lD

+

(1.19)

and

(1.20)

＼mId =

ReA-y2

w2
||divv||2

||divv||L, = O,

a + Hflll^iflm^O,

|ImA|||0||2n<£≫||divv||2
jZ).

When Re A > 0, by (1.18) and (1.19) we have 6 = 0, v = 0 in D because 0 = 0,

v = 0 on 3D, which implies p = 0 in D by (1.15a). When Re A < 0, sinceIml # 0,

it follows from (1.18), (1.19) and (1.20) that

a||Vv|£z> + K＼＼Ve＼＼lD+^＼＼diyv＼＼lD< - 2ReA

!

|A|2
+

llmApf
lldivvIlL,

Noting that ||divv|||>z>< 3||Vv|||
^
and 6(y2 + (o2)ReX + a(ImA)2 > 0 when k e 11',

we have Vv = 0 in D. Combining this with (1.19) and (1.20) implies that 0 = 0,

v = 0 in D and that p ― 0 in D by (1.15a). This completes the proof of Lemma

1.8.

We are now in the position to prove theorem 1.5. Note that Lemma 1.7

allows us to show the case k # 0. Putting m = T{p, v,9} and/ = T{f＼,f2ifs},we

consider the system (1.1) in stead of the equation {k + A/>)≪=/. In view of

Proposition 1.3 and 1.4, fixing a complex number k＼e X^s+^o, it follows from

(1.1) that for keY!

{i + p(!))v = t(m-J + [-jWl+f2-OjV^-KArlf3]
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where / is the identity operator,

P(X) = TUl;fi +I)
1

[(A - At) - co2V{l-kA)~ldiv]

641

( y2＼
TI X＼;[1+ ―＼= the operatordefinedin (1.5),
V A/

and

(X ―kA)~1= the resolventfor the system in Proposition1.3.

By Proposition 1.3 and 1.4 P(X) is a bounded linear operator from

{ueW2q{D);u＼8D = 0} into W＼(D) n {u e W2q(D);u＼8D= 0} which is compactly

imbedded into {u e W2(D);u＼dD= 0} as follows from Rellich'scompactness

theorem, and hence P(X) is a compact operator from {u e W2(D);u＼8D= 0}

into itself.Noting that by Lemma 1.8 we know thatI + P(X) is injective,by

Fredholm's alternativetheorem we see that / + P{X) has the bounded inverse.

Hence, setting

v = (i + p(A))-1tL;j3 + I)
1
[-jV/,+/2-o>v(;i-kA)-1/3]

O=(k-KiS) l[f3-codivv}, P = j[fi -ydivv],

implies that

p(-AD)=> H＼J{0}.

Furthermore, since the resolvent (X + A^y1 is analytic in X p(―Ad), Lemma

1.6 and Lemma 1.7 mean that the estimates (1.7) is valid, which reach the desired

pnnr.incirvn

Remark 1.9. In Theorem 1.5 we assume that jDf＼dx = 0, which means

that jDpdx ― 0 by the equation (1.1a), (l.ld) and by Stokes formula. When

＼Df＼dx # 0, taking <pg Cq'(D) such that jD (p{x)dx=l and define the operators

Nj = Nj((p,D) (j = 1,2,3) from Xq(D) into itself by the notations:

Nif = f-(Nnf)-vei

(1.21)
N2f=-{NDf)

(

?

)

N3f=(NDf)(P-el

foif=T{fuf2J3}eXq(D)
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where e＼and Npf are the same symbols as in Corollary C. Then we can write

(A + A)~l as follows:

(1.22) ^ + A)-l = (l + AD)-lNl+Ux + ADylN2+＼N3.

Combining thisand Theorem 1.5,we see that ―A is a closedlinear operatorin

Xq(D), p{―A) i3£'and the followingpropertiesare valid:

＼MII(A+ A)-lf＼＼Xa(D)+ |＼P(X+ A)-lf＼L ,

<C{8,q,D)
{

ll/llw +
1

11/ilU

}

for any XeY,§ and any / e Xq{D).

§2. On the stationaryproblem in R3

In this section,we shall show the basic estimations of solutions to the

following stationarylinearizedequations in i?3 with a complex parameter X:

(2.1)

A/? + y-divv=/i,

Xv - aAv - jftV(div v) + y ■Vp + co ■V≪9=/2 in i?3,

Al9 - ^A0 + cw ･ div v = f3.

By taking Fourier transform on (2.1)we obtain

[X-I + A{Z)]it=f,

where / is the identity, &{f) = / stands for the Fourier transforms of /,

≪= T(p,v,6), f ― r(/i,/2,/3).Here A(£) is 5 x 5 symmetric matrix as follows:

A{£) =

where i = ＼/―Iand Sjk = 0

0

o

)

when k ^ j and = 1 when k = j. Then we have

(2.2a)

(2.2b)

[A■I + A{QYl = {det[A ･ / + A{Q)Yl ■Ak 0,

detU-/ + i(^)] = (2 + a|^|2)2F(A;|^|),
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where

(2.2c) F{X-1£|) = I3 + (a + fi + k)＼£＼2X2+ [(a + p)K＼tf + y2 + c≫2]|f|2i + y2*^4,

and A{1;£) = (fly(A;^)) is the 5x5 matrix and the components are

an = (X + a|£|2)2{A2 + (a + fi+ /c)|£|22+ [≪2 + (a + fi)K＼Z＼2]
■|^|2},

≪i5=≪5i = -?≫a + a|^|2)2|^|2,

(2.2d) au = 5y-,i= -*y(A + a|^|2)2(^ + ^|2)</_1 (y = 2,3,4),

55,y = fl/,5= -≪c≫A(A + a^l2)2^! (j = 2,3,4),

a55 = (X + a|^|2)2{22 + (a + ^)|^|2A + y2|£|2},

ay = (A + a|£|2){A(A + a|<r|2)(A + *|£|2>fy

+ (^|^|2 - ^-i^OC^2 + [0k＼Z＼2+co2 + y2]! + y2/c|£|2),

(i,7 = 2,3,4).

From the spectral analysis of A(£) given by Matsumura and Nishida [12] (cf.

Ponce [17]) we have

Lemma 2.1. Let {A/(^)}?=1 he the roots of det[A ･ / + i(£)] = 0, w/iere

24(£) = 25(^) = -a|<^|2. Then it follows that:

(i) kj{£) depends on ＼£＼only, Xj{Q) = 0 a/irf ReA7-(^) < 0 for any |f| > 0,

7 = 1,...,5.

(ii) A/(<^) # A/c(^), j ＼=k and j,k= 1,2,3,4 for all ＼£＼except at most four

points of |f| > 0.

(iii) There exist positive constants r＼ such that XAQ has a Taylor series

expansion for ＼£＼<r＼as follows: X＼(£)= h(^) is a complex number,
/b(£) is a

real number and

r + ≪ (y2 + co2)

Similarly, there exist positive constants r^ > r＼such that /i/(^) has a Laurent series
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expansion for |£|> r2 as follows: If a + 0 ^ k, then h{£) are real numbers and

*i(o = (≪+/o(≪ra2-

A2(o = *(≪ra2+

HZ) = -
y2

CD2

yV-O^+a^Xa + j?)
{oc+ P)(a + fi-K)

k ― a ― B

+

+

If a + P = k, then k＼(Q ― ki(£)is a complex number, h(^) is a real number and

*i(0=k(≪1£I)2 + v^(4?I) + ,

HZ)
K

(Iv) rank[X＼{C)･I + A{Q] = 3 for all ＼E＼>0 except at most one point of

＼Z＼> o.

(v) The matrix exponential has the spectral resolution

for all ＼£＼except at most four points of ＼£＼> 0.

(vi) There exists a positive constants /?o>A>/?2 o^d r＼such that ―/?0|£|<

ReAy(^)< -fidtffor ＼£＼< n and ReAy-(O < -fi2 for ＼£＼> r2,j = 1,2,..., 5.

(v) HP/OH < C for |£|<n.

(vii) ||e"^(^|| < C(l + r)3e~^ /or |£|> n a≪J a positive constant fi.

Now we set for / e Xq(R3), f = T{fj}j=l

(2.3) R0U)f(x)=^-l{[X-I + A(nrlf(m(x)

-'
{

E Mm ･>
}

where R^X) = &-l{det[X ■+i(£)]~1ay(A;£)J2r}.When/

fi = ifiihif*) we shall use the representation as follows:

= T{fiJiJs} where

(2.4) *o(A)/(*) = T{Ro,P(A)/(x),J?o,vW/W, RoAQA*)}-

Then we shallhave the followingestimatesof Ro(X)f which is the core of our

argument.
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Theorem 2.2. Let 1 < q < oo, b be a positivenumber and Xq^(R3) be the

same symbol as in (0.7). Then for any f e Xqfi(R3) any X e {A e C;ReA > 0,

0<|2|<l}

＼＼Mm＼xq{Bb)+ ＼＼PMm＼2,q,Bb< cii/iiw,

■

(

m)f＼＼MBb) + II oW/||2-A

<r f＼l＼^/2~k＼＼f＼＼

where k are integers > 1 and C = C(q, b,k) is a constant.

Proof. First we note that since it follows from (2.2b), (2.2c) and Lemma

2.1 that F(k＼Z＼)= a-kAmk-k2{£))a-h(£)＼ we have

F(A; '^
M(t) - hit)" Aitf) - ^3(0 "^ - A,(0

4-

+

1 1 1

i i i

HQ-HQ m)-h(Z) i-k{&'

Combining this equation and Lemma 2.1 (iii)means that

(2.5) ＼f(a;i^ir1! < c£|^r2£i£r4+2efor ReA ^ °>fe *3 and °^e ^ *>

and which implies that

(2.6) |det[A + i^)]!"1 < C|£p8 for Re A > 0 and £e R＼

since ＼k+ a|^|2|> a|^|2 for Re A > 0 and £e R＼

Now let/ = r{/;-}j=1.Choosing /(r)£ Q°(-R) so that *(r) = 1 if |r|< 1 and

= 0 if |r|> 2, put

(2.7) ^(^(x) = ^-l{X(＼Z＼)det[A■I + AiQY'-atM- ^)}(x)

+ ^'li{l - *(KI))det[A ･ / + iCOJ-^^A; QftfMx)

= T^{X)fj{x) + T2,iJWfJ{x).

Using Theorem 7.9.5 of [6] concerning the Lo-estimate of the Fourier multiplier,
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it follows from

(2.8)

5
E

7=1

(2 2a)

(-)

Takayuki Kobayashi

(2.2d), (2.6) and (2.7) that

T2,M)fj

5 5

+
EE

＼,q,R} j=＼ j=2

{

(ffw*
2m,B?

^C{||/1||UJ?3 + ||/2||,ji?3+ ||/3|U3},

where k are integers > 0 and C is a constant independent of ＼k＼< 1. Using a

polar coordinate system, we can write as follows: for multi-index a,-(1 = 1,..., 5):

|ai| < l,|a,-|<2 (i = 2,...,5)

(2.9)
(£]
(dxrThij(x)fj(x)

^

372

＼R3
(*0V^(l^l)

(^)fc((det[A
･/ + A(Z)]rl*i,ft mWW

1 f

Jo
(- j rla'l+2{(det[A ･ / + A{r)])-l~aij{k-rm)}

J＼(O＼=＼

where dSw denote the surface element on the unit surface.By Taylor series

expansion, we have

(2.10)

where

e^)rx{r)fj{ra})

gAx,co)

m-＼ A

l＼ ＼dr)

Hm(x,a),s,r)
(m

e*X*a>)r
,r

-1)!

)fj(rco)

(i)

r=0

,/>l,

e^^x(a)fj(aco)

Note that since fj e Lq:b(R3), we have

＼fj(0)＼<C(h)＼＼fj＼＼q^

{2Al)
＼g<{x,a>)＼<LC(b,W + ＼x＼?＼＼fj＼＼q,#,

＼ ＼Hk(x,eo,S,r)＼ds<C(b,k)(l + ＼x＼)k＼＼fj＼＼qtR3

Jo
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In view of (2.2d), putting

a,y(A;rco)

it follows from (2

(2.12)

P

9), (2.10) and (2.11) that

(dxrTuj(A)fj(x)

< C(l + ＼x＼)m

{ro-1
EE

+

P

i:

IWII
q,&

{(det[A ･ / + A(r)])-lapM r)}r^+2+'dr

{(det[i ･/ + A{r)))-laM{b r)}r^+2+m dr
＼
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In order to show that the restof assertionsin Theorem 2.2 holds, we need the

followinglemma.

Lemma 2.3. Let m > 0, M > 1 be integers.Put

IunMX) =
Jo
W7

dr, bmMiX) =
I1

Jo {X + ari)MF(X-r)M

for Re X > 0, ＼1＼< 1. rfe≪r/iefollowingfacts hold

(i) |/i,w,mW| < C{m, M)ifm> AM, ＼I2,m,M{X)＼< C(w, M)ifm> 6M.

(ii) //"0 < w < 4M, ?/ie≪

(i) ＼Iisn,MW＼̂ CK M)ifm> AM, ＼I2/nM(X)＼< C(m, M)ifm> 6A

(ii)If 0 <m< AM, then

＼h,m,MW＼£ C(m,M)msix{＼l＼m/2-2M+l/2:＼X＼m~3M+1}when m is even,

< C(m,M)max{|Ar/2-2M+1/2, |Ar-3M+1}|LogA| when m is odd.

IfO<m<6Mandif- ＼>-(l+^-V then

＼h,m,MW＼ ^ C(m,M)m&x{＼A＼m/2-3M+l/2, ＼X＼m~AM+l}when m is even,

< C(m,M)max{Ur/2-3M+1/2, ＼l＼m-AM+x＼＼LogX＼when m is odd.

(iii)Let M >m and / > 1 an integer. Then Re 2 > 0, ＼X＼< 1

1

ylM-lm

o {l + ar2YFU-r)M
dr < c(m,/,M)max{|A|-M^-w, ＼^＼-M-f-2m+l＼
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Proof of Lemma 2.3. (i) It follows from (2.5) and the inequality

＼k+ ar2! > at2 when Re X > 0 that (i) holds.

(ii)We shall show (ii)by using decomposition into partial fractions. We can

write F(X＼r) as follows:

F{X- r) = K(y2 + (a + /^(r2 - a+(A))^ - ≪_(A))

where

a±U) =
A

2^
■
co2 +kA

y2 + (a + P)k
*(

Then we have the following estimates

(2.13a)

(2.13b)

co2+k1 ＼2
+

y2 + (a + /W

AkX

Y2+ (a + m

- 1/2 1

(fl+(A)-a_(A)), a+(A) = O(A) and a_(A)=0(22) as X -> 0,

(

a+(X) +

which implies that

(2.14a)

(2.14b)

-a]
= OU) as X ->

0 if
1 1 / CO2＼

- *- 1+―

a k ＼ yl I

y M

(x-aJX)) (x-a-{X))M p

＼Aj{X)＼< C＼X＼m-1M+j

Also we have by (2.13)

(2.14c)

(2.14d)

(x + -
)

a.) (X

M (

7=1 I

a+

CM)

)M(*

(-

a)

+ Bj{X)(x-a-(X))-J}

＼Bj{1)＼< C＼A＼2m-m+2J for |A| < 1

-a-{X))M

+Dj{X){x - a+{X))-j + Ej(X)(x - a^{X)YJ

＼CAX)＼, ＼DAk)＼ < C＼k＼m~m+i for ＼X＼< 1 if

＼Ej{X)＼<C＼k＼lm-AM+2i for |A| < 1 ifi

a k ＼

<K

}

■
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Moreover, putting a{X)

(2.15a)

(2.15b)

(2.15c)

__x

I1

Jo

1

a'
a+(X), we have by elementary calculus,

ds

o s - a(k

ds

) Cilog|a(A)| + C2,

(s-a(X))k+l

I"

Jo

C3aU)~k + C4,

- -k= Csa{X)l'2-＼
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where k are positiveintegers, C,-(j ― 1,3,5) complex constants depending only

on k and Cj {j = 2,4)CCO({A e C;ReA > 0 and |A| < l})-functions depending

also essentiallyon k. Combining (2.13), (2.14) and (2.15) shall reach to the

statement.

(iii)Noting that

,r2M-2/n

(Z + ar2yFU;r)M

1

i M+t+m
A,

M+t+m
E

A:=0

it follows from (ii)that

I'

Jo

1

A

M+S+m
£

M+S+m k-e /
E

≪=o V

f M + S + m

V k

V k

)

<

M + S + m

k
)(

(-*)M+<+"-ka + u?)k-<

-aT+^-^W)^

2 ―M―2t―m+k―n

k-t

n

Jl r2(2Af+(f-A:+≪)

o F{X-r)M

)

dr

(_ff＼M+f+m-k+n

< C(w,/,M)max{|/l|1/2-M-<f-m, ＼x＼-M-t-2m+iy^

and It follows

1
1

1

from (2.5) that

/-I

0 A k=0

1

iM+f+m
A

(M + / + m

＼ k

A:=0 V

M + if+ m

k

(-a)M+'+m-k(X + a^)k-'

r2(2M+/-A:)

F(X-r)M '

F(X-r)M
dr

^IM+t-k)

F(k-r)M
dr

( ＼M+f+m-k
r r ,

("a) lT^^J{^fdr

<C{m,t,M)＼k＼-M-'~m.

This completes the proof of Lemma 2.3
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Now we return to the proof of Theorem 2.2. By directcalculationwe

have

(2.16)

(2.17)

(2.18a)

(2.18b)

F(A;r)* =

(-

k k-t

/=0 ≪=0

(')(

{(a+jff)/a

FU;r)
･＼k k

I ^

3*

w

+

k-e
£

≪=o

F&r)

n
) {(a+p + KW+tf + a?)}'

An3*"2'"3"'*

(')(

First when -

n
) {2(a + p + K)k + y2 + (B2y

{a + B)nKn2U-2n~U yg+An

}■£(!)

(A + or2)*

>K"S)

-y(k)

, setting

/iU;r)

2*3*-'(<x+j? + K)'vl*-'ryJ

^Xk-'r2'.

= rA＼kp-^r2＼Xr or r3,

/2(A;r)=AV,2r4,2r2orr4,

G{A-r) = {X + ar2)F(l;r),

it follows from (2.16),(2.17),(2.18),Appendix 1 and Lemma 2.3 that

(2.19)

and

(2.20)

X;r)-lJi(X;r)}^+2dr

nth

< Cmaxjl

I1

Jo

＼Ml/2-n},

F(i;rrl

r)-lJ2{k＼r)}rW+2dr

uswu GU-ryl

<Cmax{l,|A|1/2-"}

k
W＼r)

k

Wir)

}

r＼≪i＼+2dr

M+1dr
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Also when - = - ( 1 +
a k V

― j, noting that by (2.2d) we have

pi2 + [/k|£|2 + co2 + y2]X + y2K＼£＼2= fSX{k + k＼£＼2)+ {co2 + y2){k + a|^|2)

in view of (2.19),

(2.21) IX

our task is to show that

j
^{G(X;r)-lMMr)}W+2dr

<Cmax{l,|2|1/2-"}
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where /3(A;r) = A2/2 or Xr6.It follows from Lemma 2.3 (iii),(2.17), (2.18a) and

Appendix 1 that (2.21) holds. Hence it follows from (2.2),(2.13), (2.19), (2.20)

and (2.211 that.

i

7=1 K)≪
5 5

+EE

＼,q,Bb /=i ,-=2
{tJTujWj

2,q,Bb

}

< Cmax{l, ＼X＼ll2-k]■Ill/ill!,^ + ||/2||^3 + ||/3||^3},

where k are integers >0 and C is a constant independent of ＼X＼< 1 and Re A > 0,

and combining this with (2.8) implies that the statement of this theorem holds.

Finally in this section, we shall investigate the continuity as k ―>■0 for the

operator Rn(X) and the properties for J?n(0).

Lemma 2.4. Let 1 < q < oo, b be a positivenumber and letf e Z^(i?3)

Then TR0(0)fe ^loc(i?3) x WlUR3) x ^2loc(i?3)am/

(2.22) lim R-3

R->oa

f
＼Ro(0)f(x)＼'dx= 0.

JR<＼x＼<2R

Moreover, for any a > 0 and 0 < s < 1/2 the following estimates are valid:

(2-23) II Ro{fyf- Ro{R)f＼＼w}(Ba)xWi(Ba)xWt(Ba)

<C(q,a,b,e)＼X＼E＼＼f＼＼Xq{Ri)

for Re A > 0, ＼X＼< 1 and f e Xq^(R3), where C(q,a,h,e) is a constant independent

of Rek > 0, U| < 1 and fe Xah(R3).

Proof. Noting that when 2 = 0

A{Q~l =
1

(
K + (a + /?>c|£|2}|£|2

-*yK＼Z＼2Zj

- H£l2

-iyc＼S＼2Zk

{djk＼tf - <,&}≪

0

lV2K

-H£l2

o

72|£|2
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since the kernels of Fourier integral operators in Ro(O) are the same as those of

the Stokes system and the system A, we have (2.22) by Lemma 2.2 and 2.3 in

Iwashita [9]. Hence our task is to show (2.23). Choosing x{r) e Q°(-K) so tnat

^(r) = 1 if
＼r＼< 1 and = 0 if ＼r＼> 2, using the notations defined in (2.3) and (2.4),

we have

(2.24) RgaWx) - RuiOWx)

^-l

L
m

+ &
-{

det[A-/ + i(O] deti(O

(i-*(l£D)
5,v(A;f)

= {TiM ~

det[A./ + i(O]

kcojw

deti(£)W)]w
ri,≪/(o)M(*)+ l^W - T2ij(0)}fj(x

Since it follows from (2.2a),

<fd?{i-x(＼m

?% {i-*(i*

and

,,{

?% V-x(＼Z＼)}

for M < 2,

(2.25)

{

xi＼Z＼)

(2.5) and (2.6) that

{
fill (0; 0

)

< c＼x＼,

(7 = 2 5)

det[A-/ + i(O]

~aXj{X-A) aij(R;Z)

detU-/ + i(ai detifa

5,y(A;f)

det[A-/ + i(£)]

%(0;0

det4(f)

ReA>0, |A|<l and £ei?3, by

detira

}

< C ―- la

<C-^ (i#l,7#l),

using Theorem 7.9.5 of [6] con-

cerning the Z^-estimate of Fourier multiplierwe obtain that

X)||{72,iy-(A)-72>y(0)}/y||

7=1

<c＼M 11/11w.

w (i?3)+

Also since it follows from (2.2a), (2.5) and

aAl-A)

t

7=1

J2＼＼{T2dV-Tyt(f>)}fj＼＼wz(#)

i=2

(2.6) that

≪≫(0;0

det[A ･ / + i(£)] deti(£)

}

< c＼MW2~2e

for 0 < e < i Re k > 0, IAI < 1 and £ e R＼ we obtain that for lociI < 1,
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N < 2 (i# 1)

(2.26) |aj{ri≪w-r,≪(o)}/;wi

＼&et[X■I + A(i)＼ deM({)
IIl
i(j?s)II/IIi.,(/{3)
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ZC(q,b)W＼＼f＼＼x,W) for/el^i?3).

Thus it follows from (2.25),(2.26) and (2.24) that (2.23).This completes the

nroof.

§3. The resolvent set of -A

In this section, we shall prove Theorem A. To prove this theorem we need

the following lemma concerning the uniqueness, which is a key in our argument.

First note that by Lemma 2.1 (iii)

det[i + i(£)] ^ 0 for X e E" = {X e C; C＼Re X + (Im X)2 > 0}

where C＼is a constant depending only on oc,fi,y,k, and co.In the view of thisand

Theorem 1.5, taking a constant C in the parabolic region

Z = {X e C; CRe A + (Ini/l)2> 0}

so that £ cz X' fl£". we have

Lemma 3.1. Let 1 < q < oo. If A el,, then

Ker(A + ^) = {0}.

Proof. Let (2.+ A)u = 0. In view of the proof of Lemma 1.8, by boot-

strap argument, we see that Tu e W^+1 (Q.) x Wq+2 (Q) x W^+2 (Q) for any

integer / > 1. We fix an integer / such that / = 0 when 2 < q < oo and

/ > 3(1/0 - 1/2) when 1 < q < 2. Let Tve W^+l{R3) x W'q+2(R3) x W^+2(R3)

be functions such that v = u in Q. Put / = (1 + A)v, then since (1 + A)u = 0 in

O, we see that supp/ is compact, and moreover / e Xl+l{R7'). Since supp/ is

compact, / e X＼{D) when 2 < g < oo. When 1 < q < 2, since S>3(l/q- 1/2),

by Sobolev's imbedding theorem we have / e X^O) too. Put w = Ro(X)f where

the symbols are the same as in (2.4). Since det[A + A(£)]^ 0 for any £e R2 and

IgS, by Parseval's formula we know that Tw e ^(i?3) x W22(R?) x W22(i?3).

Since (A + y4){≫- Ro(X)f} = 0 in R3, by Fourier transform we have {k + AU;)}
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{v( ) - w(g)} = 0, which implies that v = w in i?3 because det[A + ^(^)] # 0.

Thus employing the same argument as in the proof of Lemma 1.8, we have

u = 0. This completes the proof.

A proof of Theorem A. In view of Lemma 1.6, we only show (0.4). Now

we shall construct parametrix to (1.1) in ft. Let dQ c Bj^, b be a fixed constant

h > Ro + 3 and let Qb = ft(1Bb. Given AeSandge Xq(Qb), let w e Wj(ft6) x

W2{Q.b) x WP^(ft^) be solutions to the problem:

(A + A)w = ginQb,

Pw = 0 on aft*.

The existence of such w is guaranteed by Remark 1.9.In terms of w, let us define

the operator L(X) by relations:

(3.1) w = L{X)g

= {Lp{X)g,Lv{X)g,Le(X)g}.

Here and hereafter, for f e Xq(Q), we put/0(jc) =/(x) for xeO and=0 for

x e i?3＼O, Ubf stands for the restrictionof/ to Q^. By Remark 1.9 and (3.1) we

have

(3.2) ＼mmbf＼＼Xq{Qb) + wmmbf ＼＼2,q,nb

< C{q,b,l)＼＼f＼＼x,a)for any/eX,(O).

Let Ro(X),Ro,p(X),Ro>v(A) and Rote(X) be the same symbol as in (2.3) and (2.4).

Since det[A + A(g)] # 0 whenever £e R3 and X e S, by Theorem 7.9.5 of [6],we

see that

(3-3) PoW/oll W + H/ttoW/oll^tf

<C{q,X)＼＼f＼＼Xqm forany/e^Q).

Let 9? C00^3) such that <p(x)= 0 for ＼x＼< h - 2 and =1 for |x| > 6 - 1. We

introduce the operator Qi{X) by the relations:

(3-4) Qx{X)f = r{ft,PW/, fii,v(A)/,d|fl(A)/}

: = (pRoU)(fo) + (1 - ?)IW)n4/ for any/ e *,(!*),
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Then by (3.2)and (3.3)we have

(3.5) TQX{X)f e W](O) x W2q{G) x W2q{O) for any/ e Xq(O)

(3.6)
＼＼QiWf＼＼xq{n)+ ＼＼PQi(m＼2,q,a

<C{q,k,b)＼＼f＼＼xja) for any/eX,(O)
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and

(3.7a) (X + A)QX (X)f = f+ V(X)f in Q,

(3.7b) Pfi1(A)/ = Oonan,

where V(X)f = T{Vp(X)f, Vv(X)f, V9(X)f} and

(3.8a) Vp{X)f = yV<p[RoAV(fo) ' Lv(X)Ubf),

(3.8b) Vv{X)f = -a[Ap + 2(^)ay][i?o,v(A)(/o) - Lv(X)Ubf]

-TOf[%W(/o)-ivWni/]y}

-j]V<p{div[ROtV(X)(fo)-Lv(X)Ilbf]}

+ yVq>[R0,p(X)(f0)-Lp(X)IIbf]

+ codj<p[Ro,d(X)(f0)- Le{X)Ilbf]p

(3.8c) V0(X)f = -K[A(p + 2dj9dj][JRo,eW(fo)
~
Le(X)nbf]

+ codj<p[R0jV(X)(f0)- Lv{X)Iibf]r

Our task is to prove that / + V{X) has the bounded inverse from Xq(Q) ontc

itself.It follows from (3.2), (3.3) and (3.8) that TV{X) e @(Xq(Q), W^(Q) x

W＼{Q) x Wlq{Q)) for each AgE. Since supp V{X)f a Db-X = {xeR3;h-2<

＼x＼< h ― 1}, by Rellich's compactness theorem V{X) is a compact operator frorr

Xq{Q) onto itself.Thus by Fredholm's alternative theorem, it suffices to shov＼

that /+ V{X) is injective in Xq(Q) in order to prove that /+ V(X) has the

bounded inverse. Let (/+ V(X))f ― 0 in Q, feXq(Q). Then it follows frorr

(3.5),(3.7) and Lemma 3.1 that

Ql(X)f = 0inQ,

P0AX)f = QondQ,
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which together with (3.4) implies that

(3.9a) *o(A)(/o)=O foi＼x＼>b-l,

(3.9b) L{X)Hbf = 0 for ＼x＼< b - 2.

Put z = HbRQ{X)(fQ) - w where w = L(X)TLbf in Qfc and = 0 in i?3＼Q. By (3.9b)

we know that Tw e Wlq{Bb) x W2q{Bb) x W^(5*) and

(A + A)w = nj/o in 5ft,Pw = 0 on |x| = 6,

where O^/0 stands for the restrictionof /0 to Bb, and hence we see that

(X + A)z = 0 in Bbi Pz = 0 on |x| = 6,

which with the help of Theorem 1.5 means that z = 0 in Bb. As a result,we have

(3.10) *o(A)(/o)=I(A)nA/ in Ofe.

Combining (3.4) and (3.10), we see that

(3.11) *o(A)(/o) = ^o(A)(/o) -L(X)IIbf} + R0(X)(f0)

= Q{{X)f = 0 in Qb.

It follows from (3.9) and (3.11) that R0(X)(f0) = 0 in Q, which together with

(2.1)implies that/0 =/ = 0 in O. Therefore, we have proved that (/ + V(X)) has

the bounded inverse (/+ V(X))~l from Xq(Q.) onto itself.Given/ e Xq(Q), if we

put ≪= ft(!)(/+ F(A))"1, by (3.7) and (3.6) we see that (X + A)u =f in Xq{Q)

and ≪g Q){A), which means that the inverse (A + A)~ of (A + A) exists,and it is

bounded, that is by (3.6)

＼＼(X+ A)-lf＼＼Xqm + ＼＼P{k+ A)-xf＼＼2^

< cte,M)||(/+ ^W)"111^,(0))ll/ll^f(n)

for any / e Xq(Q), which completes the proof.

§4. Behaviour of (1 + A)'1 near 1 = 0

In this section we shall discuss behaviour of (X + A)~l near X = 0. Our goal

of this section is to prove the following theorem.

Let Yq(Q) and Yqj,(Q) be the same symbols as in (1.6) and (0.5),

respectively.
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Theorem 4.1. Let 1 <q<oo, bo a number such that Bb0 => R3＼Q and

let b > b0. Put De = {X e C; RqA > 0, 0 < ＼1＼<e}, <& = ^(7^(O); 2{A)) and

j/(De; R/) is the set of all <&-valued holomorphic functions in D£. Then, there

exists a positive number e and R(X) e s/(DF＼<W) such that

(4.1)

(4.2a)

(4.2b)

R(X)f=(X + Aylf,

PW/IIW) + WPXWfh** * c(<7,M)||/||w,

(

<c

RU)f
Xq{ lb)

+
l(
≪w/ik,A

(<^MW(1/2)-*||/||v(n),

for any X e DE, f e Yq>b(Q-b)Rnd k>＼ integers.

In Theorem 4.1,in view of proof of Remark 1,9,taking ＼j/e C (Qb) such

that L ＼l/(x)dx=1, we have the following corollary:

Corollary 4.2. Let 1 < q < oo, ho be a number such that Bbo o i?3＼O and

let b > bo. Put X = 8{Xqjb(£l)＼3)(A)).Then, there exists a positive number e and

R{X)esf{De;%) such that R{X)f = (A + A)~lf,

PW/II^) + WPxWfWi** * c(^*jC){||y||^(n) + ＼M-l＼＼Mq#},

RU)f
*■,(≪*)

+ w
k

PR(X)f
2,q,Qb

< C(q,b,k,e)＼A＼W-k{＼＼f＼＼Xq{m+ lir'WM^},

for any Xe De, f ―T{f＼,fi,fz}e Xq^(R) and k > 1 integers.Moreover,

R{k) = R(X)Nl +1 R(X)N2 +jN3

where Nj = Nj(＼J/,Qb)(j = 1,2,3),are the same symbols as in (1.21).

To prove Theorem 4.1,in the same way to the proof of Theorem A we shall

construct a parametrix near X = 0. The following proposition concerning the

uniqueness is a key in our argument, which was proved by Iwashita [91.
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For an integer m > 0 and real numbers x.q with 1 < a < oo, we set

W^(Q) = {u; (1 + |x|2)T/25> e L,(fl), |a| < m}

W?{G) = the completion of C^(D.) by ^ ＼＼d≪x■＼＼qfl.

＼a＼=m

Proposition 4.3. Let 1 < q < oo. Suppose that u e Wq(Q.) D Wlq>r(Q) and

p<= Wq(Q)C＼L^(Q.) with some x, r' e R satisfy

-An + V/7 = 0, div u = 0 in O,

n|afi= 0 on 5Q,

Then, u

lim -^
JR<＼x＼<2R

＼u(x)＼qdx =

0 and p = 0 in O

Remark 4.4

w2(Q)nwlq'(n)

lim-U ＼p(x)＼Ux= O.

R-+00 K3 J/}<m<2/?

In view of proof of Proposition 4.3, we can replace

by WlE(Q), Wl(Q)nU(Q) by WUO), where

W
E{Q) =
{u; thereexistsa(/e W loc{R3)such thatu = U in Q}.

Moreover, we can show the same uniqueness theorem for the system

-Au = 0 in Q, u＼m = 0 on da,

as Proposition 4.3.

Now we shallshow the following resultson uniqueness for (1.1)

Lemma 4.5. Let 1 < q < oo. Suppose thatT{p,v,9} e W^)£(^)x ^^(Q) x

WqE(Q) satisfiesthe homogeneous equation:

ydivv = 0,

- aAv - jftVdivv + yVp + coV9 = 0 in Q,

- kA9 + codiv v = 0,

v|an = O.fllan^O on tfl,
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(4.4)

Then p = 0,
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lim

R->cn

lim

R-+ao

1

1$

lim ―z

<2R

<2R

Ji?<|jc|<2i?

v = 0 and 0 = 0 in Q

＼p(x)＼qdx = O,

＼v(x)＼qdx = O,

＼6(x)＼qdx = 0.
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Proof. By (4.3), we have

(4.5) -kA0 = 0 in fi,0＼dn= 0 on dQ,

and

―aAv + yVp = coV9 in Q,
(4.6)

div v = 0 in Q, v|5Q = 0 on dQ.

In view of Remark 4.4, applying Proposition 4.3 to the system (4.5) with (4.4),we

have 9 = 0 in O, which implies p ― 0 and v = 0 in O by applying Proposition 4.3

to the system (4.6) with (4.4). This completes the proof.

A proof of Theorem 4.1. To prove Theorem 4.1, we shall use the symbols

in the proof of Theorem A. For any g e Yqjj(Cl),w = L(0)g satisfiesthe following

relations:

(4

(4

7a)

7b)

Aw = g in Q.b, Pw = 0 on 5O^.

MYq{nb) + ＼＼P^hg,ab<C(q,b)＼＼g＼＼Y<i{nby

Choosing <pin C^iR3) so that (p{x) = 1 for ＼x＼> b - 1 and = 0 if |x| < h - 2, we

define the operator Ri(X) by the relations:

(4.8a) ili{k)f = T{Ri,p{X)f, i?i,v(i)/,RifiWf)

= *W(/o) + (1 - ^)L(O)/,

for / e 1^,6(ft) and /leD£U{0}. Here, note that T{p, v,0} = L(O)f satisfiesthe

equations (1.11) and (1.13), and which implies that p = Lfi(0)f is unique up to an
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additive constant by Proposition 1.1. Hence, Lp(0) is chosen in such a way

that

(4.8b)
[
(1 - <p)Lp(O)fdx =

f
i?o^(O)/o dx -

I

Jnb JBb Jnb

<pRo,P(R)fodx

Then by (4.7b),Theorem 2.2 and Lemma 2.4 we have

(4.9a) Rx(k)esf{pB＼<y),

(4.9b) ^(O) e 0(1^(0), <£(O) x W^(Q) x ^(Q)),

(4.9c) (A + yi)Ui(A)y =/ + Si{X)f in n,PRi(X)f = 0 on 5Q,

where

(4.10a)

and

(4.10b)

(4.10c)

(4.10d)

Si(A)/ = r{S,
P(A)/,S, vU)/,Si *tt)/},

SliP(X)f = X{＼- <p)Lp(O)f + yVp[Uo|V(A)(/o) ~^v(O)/],

51|V(^)/ = A(l-9>)Lv(0)/

- a[A^ + 2(djq>)dj][RoAMfo) ~Lv(O)/]

-^V{^[i?o,vW(/o)-Iv(O)/];j

- ^VKdiv [i?o,vW(/o) - ^v(O)/]}

+ yV^[^(A)(/o)-L/,(O)/]

+ o)3/H^o,ffW(/o)-^(0)/]y>

Si,eWf = l{＼ - q>)Le{O)f

- K[A<p + 25^57][^(A)(/0) - Le(0)f]

+ (odj(p[Ro,vmfo)-Lv(0)f]j-

It follows from (4.10),(4.9b),Theorem 2.2 and Lemma 2.4 that

(4.11a) TSY{X) e a{YqJb{Q), W'(Q) x 1V1JCI) x ^(Q)) for any X e De,

(4.11b) SHOlG^F^ia),!1^)).
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Noting that the Stokes formula implies that

(4.12)
f
Shp(A)fdx

= k
[
(1 - (p)Lp{O)fdx+

[
ydivRo,v(k)fodx

jnb JBb

-
I
(pydiv[J?0,vW/o - Lv(O)f] dx
Jnb

= k{
＼
(1 - q>)Lp(O)fdx -

I
Ro,p{X)fo dx +

f
9Ro,PWfodx)

UOb JBb iab )
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we have to modify Si (A) such that totalintegral over Qb is zero because S＼(X)f

does not belong to Yq>b(Ci)when X ^ 0. To do this,choosing ＼f/e C^(Q.b) so that

JQ ＼j/(x)dx=＼ and set

(4.13a) *2(0)=*i(0),

(4.13b) R2(X)f = T{R2,P(l)f, RivWf, RifiWf for X e De,

where R2JX) = i?ivm,i?2fl(/l) = i?i≪(!)and

(4.13c)

Also, put

(4.14a)

(4.14b)

R2,PWf = Ri,p(X)f-j Si)P(X)fdx＼lt.

S2(0)=5i(0),

S2{k)f = T{S2Mf, SiAVf, S2fi(X)f] forX e D£,

where S2,eW = Slf8(X)

(4.14c)

and

(4.14d)

S2M)f = SiMf

$iM)f = SiAW-＼ J

^A

SitP(A)fdx＼j/,

SltP{X)fdxVt

Then, it followsfrom (4.9),(4.10),(4.13)and (4.14)that

(4.15a) R2(X)ej*(De;<3f),

(4.15b) {X + A)R2{X)f =f + S2{X)fin Q, PR2U)f = 0 on 8Q,
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and by (4.10), (4.11) and (4.14) we have

(4.16a) TS2{X) e R{Yqjb(Q), W＼(Q) x W＼{Q) x w＼(Q)) for any X e D8,

moreover, noting (4.8b) and (4.12),it follows from Lemma 2.4 that

(4.16b)

(4.16c)

f
S2)P{X)fdx = R forA£DeU{0},

＼＼S2(X)-S2(0)||,(v,(n)|r .(Q)) < C(qAS)＼MS

for Re A > 0, |A|< 1, where 0 <S < 1/2. Then, we shall show the following

Lemma.

Lemma 4.6. Let 1 < q < oo. Then, I + 52(0) e ^(F^(O)) Aas ?/*£?bounded

inverse (I + S2{0))~l.

Proof. Since supp52(0)/ is contained in Q.},,it follows from (4.11b),

(4.14a), (4.16b) and Rellich's compactness theorem, 52(0) is a compact operator

from Ygtb(Q) into itself. Thus, to prove this Lemma, by Fredholm's alternative

theorem, it suffices to show that / 4- 52(0) is injective. Let (/ 4- 52(0))/ = 0 in O,

fe Yqjb{£l). Our task is to prove that / = 0. It follows from (4.7b), (4.9b),

(4.13a) and (4.15b) that TR2(Q)fe WlqE{Q) x W2qE{a) x ^£(Q) and satisfies

(4.17) AR2{0)f = 0 in Q, PR2{0)f = 0 on dCl.

Since R2(0)f = Ro(O)(fo) for ＼x＼> b - 1 it follows from Lemma 2.4 that

lim ―-r
Ji?<|x|<2i?

＼(R2(0)f)(x)＼'dx = 0

Hence by (4.17) and Lemma 4.5 we have

(4.18) R2(0)f = 0inQ,

and it follows from (4.8a),(4.13a) and (4.18) that

(4.19a) R0{0)(f0)=Qfor＼x＼>b-l,

(4.19b) 1,(0)/ = 0 for x e Qb-2■

Let us define w by the relations:w(x) ―L(0)f(x) for xeOj and = 0

xeR3＼Q.b, and then by (4.19) we see that z = 7r9jRo(O)(/o)- w possess

for

the
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following properties:Tze Wlq{Bb) x W＼{Bb)x W2q{Bb) and

Az = 0 in Bb,Pz = Q on Sb,

where nQbvis the restrictionof v to Bb, and hence by Lemma 1.8 we know that

z = 0 in Qa, which means that

(4.20) Jlo(0)(/0)=L(0)/inlV

Therefore, employing the same argument as in the proof of Theorem 3.1, by

(4.19) and (4.20) we have / = 0, which completes the proof of this Lemma.

We return to the proof of Theorem 4.1. In view of Lemma 4.6,

(I + S2(0))~le#(F?)6(Q)), and then put

M = n(/+52(o)r1ii,

where ||･|| stands for the operation norm. By (4.16c) and Neumann series

expansion, there existsan e > 0 such that / + S^W also has the bounded inverse

(7 +
iSr2(^))~1

from Yqj,(Cl)onto itselfwhenever XeDE, and moreover

(4.21) ＼＼{I+ S2{X)Yl＼＼<2M forl£D£.

If we look at (4.13) with (4.8) and (4.10), by Theorem 2.2 we have

(4.22a) P2WHW) + II≪2WI|2,,A < C(fi,a)||/||w

(4.22b)

(

RiWf
X?(QA)

+
c*
'*≪

<C{eM＼^l2~k＼＼f＼＼xq{^ k^1

for / g Yqb(Q) and X e De. Put

R(X) = R2(X){I + S2(X))-1

and then by (4.15) we see that R(X)f e 9(A) and

(4.23) (A + A)R(A)f=fm£l

2,q,nb

for any XeDE and / e Yqj,{Q). In particular, when / e F^(O), by (4.23) and

Lemma 3.1 we have R(X)f = (A + A)~lf for Xe DE and / Yq${Q). Combining

(4.21),(4.22) we have (4.1) and (4.2), which completes the proof of Theorem 4.1.
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§5. Proofs of Theorem B and Corollary C

In thissection,we shallprove Theorem B and Corollary.C. To do thiswe

prepare the followinglemma, which was proved by Shibata.(see Theorem 3.2

and 3.7 of [18])

Lemma 5.1. Let X he a Banach space with norm ＼■＼x.Let /(t) be a

function of C°°(R- {Q}; JQ such that/(t) = 0, |t|> a with some a > 0. Assume

that there exists a constant C(f) depending on f such that for any 0 < Id < a,

<C(f)＼r＼-l/2-k,k =

x

Put g(t)=
f00
f{x)e-^dx. Then

J―00

0,1

＼g(t)＼x<C(l+ t)-1/2C(f).

Now we shallprove Theorem B. In view of the factsthat when 0 < t < 1 by

Theorem A we have

113-e-tAu＼＼xq{a)+ ll^^≪ll2^

<T C＼＼(＼-L A＼M+N />~tAu＼＼ <T tTt~N~M＼＼u＼＼

for any u e Xq(Q) and any integers N > 1,M > 0, we have only to show the case

t> 1. Note that by Corollary 7.5 of [16, Chapter 1] we can write

(5.1) e
tA
If =

1

2ni

for all u e @(A2), because

(5.2) Tx<x + A)~lm

(e+t'oo

E―tQD

(?Hk + AYludk

1 (E+e 00

e―<oo

^a+,)- udk
2nit

C(e)
< ^-=- llull

Y (o＼
for any Re k > e > 0

Xq(Q) 1 + |A|

by Theorem A. Since S>(A2) is dense in Xq{Q), the equation (5.1) holds in Xq(Q).

Let ≪e Yqjb(Q),b > b0 and let ^ e C^(R3) such that ＼j/(x)= 1 for ＼x＼< h

and = 0 for ＼x＼> b + 1. Since we can move the path in the following integral to
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the imaginary axis by Theorem 4.1,(5.1) and (5.2),we have

d*x^e-tAu
1 f f£+≪00
―-D"

I

2n^t Z＼J£_,OO

1

2nt
I J-00

ea＼jj

'>

Tk(X + A)-

d

Js

ludA

(t's + A) uds

}

for any u e F^(Q) and multi-index a,-(i = 1,2,3) : |ai| < 1, |a,-|< 2 (i = 2

where Dx = T{{dxf＼{dxf＼{dxf'}. Taking r,{s)e C (R) so that 7(5)=

＼s＼< 1/4 and = 0 for ＼s＼> 1/2 we have

(5.3)

where

/>^e-*≪ = /o(0≪+ .MO*

Mt)* =
2-*>xW

/oo(?)≪ =

1

2nt

By Theorem A we have

(5.4) ||DU1-^))

D^

(-)

J-00

J ― 00

e'ts{＼-ri{s))j^S+ A)-luds)

N

(*s + A)~lu＼＼p

< (i -n(s)){＼＼( +̂ AyN-lu＼＼Xqm + ||F(^ + ^)-Ar-1M||2i^}

<C(N)(l + ＼s＼rN＼＼u＼＼Xq{n),

and hence by the relation (1//) ･{djdX)ea = ea, we have

(5.5) l|df/oo(0≪ll*n * C(N,M,a)t-N＼＼u＼＼xm

for any integers TV > 2, M > 0. On the other hand, noting that

a?Mt)f =

_r(M+l)

＼
df-nrlD＼^

^etstti{s)^s)n

M

E

≪=0

c{n)D≪x
＼ J-00

it follows from Theorem 4.1 and Lemma 5.1

d
~― R{is)fds

CIS

!)W*)-

)

665

,3)

1 for

^tf(*)/}*}

that

(5.6) ＼＼d?Mt)4q,n * C{MAq){l+t)-{M+V2)＼＼u＼＼x{m
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for any u e Yqib(Q),integer M > 0 and t > 1. Combining (5.3),(5.5) and (5.6) we

have for any u e Yqj,(Q), integer M > 0 and t > I

(5.7) H^-^ll^n) + WtfPe-'uW^ < C(l + t)-''2-M＼＼U＼＼Yqbm.

This completes the proof of Theorem B.

Next we shall prove Corollary C. Let u e Z^(Q). Taking ^ e C^°(O^), such

that Jfii(j){x)dx― 1, in view of Remark 1.9, we have

{A + A)~lu = (A + A)'lNlU + -AX + A)-lN2u + -rN3u for u e Xq,b(Q)
A A

where TV,-= Nj{<f>,Clb)U= 1)2,3) be the same symbol as in (1.21).Combining

thisand (5.1),we have

(5.8) e tAu -M e^ + A) -lNxudX

+

I
2ni

e^ + A)-lN2u~

＼eaN3mdA.

A

Putting T＼(b,fa t)u = e~tANiu and T2{b, fa t)u = y

1

2^ P-ioo A.

f

Jo

etludX ―u for any ueXq{Q), and since

Chapter 1] we have

('

Jo

e~~suds =
1
)/?+<■ oo

fi-iao

eaa + AYlu
dX
T

e sAN2uds + NT,u, since

by Theorem 7.4 of [16,

for ≪e 9 (A) and t > 0,

it follows from (5.1) and (5.8) that the relation (0.8) holds. Moreover, nothing

that N＼m,N2ue Yqb(Q), since by (5.1) and (5.8) we have

(5.9) dte~tAM -,{

+
2ni J

≪_<00

00
ea{X + AylNxudX

oo

ea(X + A)-lN2udA,

}

it follows from (5.7), (5.8) and (5.9) that the estimates (0.9) and (0.10) hold. This

completes the proof of Corollary C.
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Appendix 1. Let n be an integer > 0 and let

F(X;r)=A3 + (a+p + k)?X2 + {(a + P)k? + J1 + ^Vl + yVr4.

TlhpTi

(Appl) (ffw1
0</<[(≪-O/2]

"

TxF^

K≫-0/2]-'

E

k=0

C(k,^n){F(l-ryn-l+2'+k

r)

X/J-3/-2A:

Moreover, set G(X:r) = (X + cc^FU; r),then

(App2)
(

n

=
£ £

m=0 0<*f<[(m-/)/2]

x＼Tx F(X;r)
}

[(m-t)/2]-f
£

A:=0

m-3f-2k

(

{c

C(m,k,S,n)

{

iSF(kr) }

FU;r)

667

G{k-rYn-xF{k-r)n-m+2M

awr

Proof. Since it directly follows from (Appl) and Leibniz rule that (App2)

holds, our task is to show (Appl). Now we shall show (Appl) by induction on

n. When n ― 0, obviously (Appl) holds. Assume that n > 1 and that (Appl) and

that (Appl) is valid for smaller values of n. Noting that (d/dXfF{X＼r) = 6, we

have

(App3)

, f[(n-t)/2]-< ,, sn-M-2k( , ,x 2 ＼k＼

g c,V,≪;r-{^(i,)) g)

+

Kn-0/2}-

k=＼

m
( A %H+l-3/-2/tf / j＼2 ＼k

+ J2 C(k,S,n)F(l;ryn+2'+k＼

= In,i(br)+ InMr)+L3U;r)

j -＼n-2-M-2kf / j ＼2 )k
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Since [(≪ - /)/2] - / = [{n + 1 - /)/2] - / when both n and t are even or odd,

and since [(n ― /)/2] ― / = [(n + 1 ― /)/2] ― / ― 1 when ≪ (resp. /) is even and /

(resp. w) is odd, we have

(App4) /n,i(A; r) = In+l (A; r).

Also since n ― 3/ ― 2([(n - /)/2] - /) = 0 when both n and ≪fare even or odd,

and since n ― 3£ ― 2([(≪- /)/2] - /) = 1 when n (resp. /) is even and ≪f(resp. n)

is odd, we have

(App5) /n,2(A;r) = 7≪+i(A;r).

Note that 0</<w ifO</<[(≪- /)/2] and ≫ = 3m + k (k = 0,1,2). When

n = 3m, 3/w + l, since 0<^<m if 0 </<[(≪ + 1 - *f)/2], it follows from

(App3), (App4), (App5) and the induction assumption that

F(Mr)-l =

m

E

■f=0

m

E

w

E

d
_
lnU;r)

/≪+i(A;r) +

/≪+i(A;r)

m-1

E

<f=0

/≫,3(A;r)

0<≪f <[(n+l -0/2]

Similarly,when n = 3m + 2, since0 < / < m + 1 if Q </<[(≪ + 1 - /)/2],and

since[(n- /)/2]-^-1=0 if £= m, it follows from (App3), (App4), (App5)

and the induction assumption that

F(A;r)-l =

m

E

m

E

<f=0

m

E

d
_
Ukr)

m

<f=0

m+＼

WA;r) + E

r)

In+itt;r)

0</<[(≪+l-0/2]

This completes the proof.
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