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1. Introduction and Statement of the Results

Let as usual s = a + it be a complex variable, d(n) the number of positive

divisors of the integer n, and ((s) the Riemann zeta-function. For a positive

integer k, the fundamental explicitformulas for |((l/2 + /T)|2 or its averaged

form with Gaussian weight (Aa/^)"1 exp(―(t/A)2) are known for k ― 1,2: namely,

Jutila's explicit formula for |((l/2 + /T)|2 with the Atkinson function f(T,n)

((1.3),(1.4) below), and in the fourth power case, Motohashi's explicitformula

for {Ay/n)'1 J^ |((l/2 + i(T + t))＼*exp(-(r/A)2) dt with spectral analytic quan-

tities([7],[8]).

One of the most important features of these formulas consistsin the fact that

one can derive non-trivialinformation on the size of |((l/2 + iT)＼from them with-

out appealing to any general theory of exponential sums. Indeed, the Hardy-

Littlewood classicalbounds ((1/2+ /T) ≪ Tl/6+s follows immediately from the

formulas. The aim of the present paper is to give an alternative explicitformula

for |((l/2 + zT)| endowed with such a nature:

Theorem. Let 6 be a constant with 0 < 6 < 1 and ota number satisfying

6 < a < 1. Then one has
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where Tc{ol) = (1 + ot)2T/(2na) and

(1.2) fc(T,n) = 2T &rcoshy/nn/(2T) - inn^/l/A - T/(2nn) + n/A

As for the order of {(112 + iT) I, one has

Corollary. The estimate £(1/2 + iT) ≪ Tl/6+s follows from (1.1).

The formula (1.1) should be compared with Jutila'sformula ([5,Theorem 2],

see also Chapter 15 in Ivic [31):under the same assumption for Theorem, one has

(1.3) <g-2 + iT
)
2

^ ^

{-l)nd{n)

' -i /rr/i /a , t-> it's.

i<^r(a)V^(l/4+r/(27r≪))1/4

+ 2

＼<n<Ta/{2n)

d(n)

cos(/(7≫)

cos(T＼og(T/(27me))-n/4)
v^

+ o(iog r),

where T(a) = (1 - a)2T/(27ta) and

(1.4) f{T,n) = IT arsinhvW^T7) + limy/l/A + T/(2nn) + n/4.

The function f(T,n) appeared for the firsttime in Atkinson's now famous

formula ([1])and plays important roles in the quadratic theory of £(s)(see, e.g.,

Ivic [3],[4]).Through many applications of the Atkinson formula, it turned out

that, as far as one is concerned with mean values in short intervals,its "differ-

entiated form" (1.3) suffices for most purposes. Our formula (1.1) with the

function fc(T,ri) gives an alternativeform for Jutila'sformula with the Atkinson

function f(T,n).

From the fact that the formula (1.1) has the factor (1/4- T/(2nn))~l/A and

that (d/dT)fc(T,n) = 2 arcosh(^/7r≪/(2r)) holds, one can observe that the size

of |C(l/2 + iT)| depends heavily on the behavior of the divisor function d(n)

with n near 2T/n.

The bulk of the present paper is detailed analysis of applications of the

Voronoi" formula to an expression for |((l/2 + zT)|2 ((2.1) below). It is closely

related to the transformation theory of Dirichlet polynomials developed by Jutila

([5],[6]).In applying saddle point method, as is described in section 4 and 5,

somewhat a delicate analysis around the saddle points is required.

In the last section,together with the proof of Corollary, averaged forms with

Gaussian weight are discussed in comparison with the existing formulas.
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Notation. Throughout the paper, T stands for a large parameter and the

abbreviation L ―log T is frequently used. It will be convenient in the proofs

to use the letter c to denote certain positive numerical constants and, e positive

constants which may be arbitrarilysmall, but are not necessarily the same ones

at each occurrence. For complex numbers z＼ and zi, the symbol ＼z＼,zi]stands

for the oriented segment from the point z＼ to zi. We reserve the letter rj for

exp(7n/4). Symbols T(oc) and Tc(cc) are denned in (1.1) and (1.3). /a is the

interval [aT/(2n),T/(2n)}. Also recall that arsinh(z) = log(z + (z2 + 1)1/2) for

＼z＼< 1 and arcosh(z) = log(z+ (z2 - 1)1/2) for ＼z＼> 1.
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2. An Application of the Vorono'i Formula

The following expression for |C(l/2 + iT)＼2is the startingpoint of our proof:

(2.1)

c

sums:

(2.2)
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＼<n<T/(2n)
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l<n<T/(2n)

<H

d(n)
cos(T log TI (lime) - tt/4)+ 0(L)

G E

＼<n<T/{2n)

d(n)n-l/2+iT + 0(L)

-ni'4)(1 + 0(7-1)),

+ 0(L)

v^

where L = log T. This follows from the approximate functionalequation for

C(l/2 + iT)2:

d(n)n-l/2-iT+X2

combined with the functional equation [,{1/2―iT) ―/(I/2-/T)C(1 /2 + iT) where

x(s) = ns~l/2T{l/2 - s/2)T(s/2)~l and the formula

= exp(*Tlog(7727H?)

which is obtained by Stirling'sformula.

Putting a a number satisfying0 < 0 < a < 1, we splitthe sum (2.1) into two

= E,+£2

where Y2＼*s the sum of the terms with otT/(2n) <n< T/(2n) and Yli the others.
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The firstsum J2＼ls to ^e transformed by the Voronoi formula for A(X), the

error term in the Dirichlet divisor problem:

(2.3) D{X) = ]T' d{n) = X(logX + 2y- 1) + 1/4 + A(X)

＼<n<X

where y is the Euler constant and the symbol Yl[<n<x denotes that the last term

in the sum is halved if X is an integer. VoronoT's classicalformula for A(X) is

(2.4) =-^§*
(

Yl{4nV^X)+- Ki(4ny/nXU

where Yv is the ordinary Bessel function of the second kind and Kv is the modified

Bessel functions in usual notation and the series is boundedly convergent in any

closed finite subinterval of the interval (0, oo), and uniformly convergent in any

such interval free from integers. By using the well-known asymptotic approxi-

mations for Yv- and ATV-Bessel functions (see, e.g., Ivic [3, (3.12), (3.13)]), one can

describe the series in (2.4) as the sum of the series with terms containing trigo-

nometric functions: namely, for a given positive integer K, one has

(2.5) A(X)
K
£

k=＼

akX"A-k'2

00

£

n=＼

din)
, l/4+*/2

sin(47rV≪X-(-1)^/4) + 0{XllA-K'2)

where a^s are computable absolute constants. We use the firsttwo of them;

(2.6) ai = l/(V2n) and a2 = -3/(32V2n2).

Here, before applying the Voronoi" formula, we multiply every term in the

relevant sum J2＼ by a trivialfactor 1 = exp(―2nin), which regulates the distri-

bution of the saddle points which appear in the exponential integrals.

Denote by Ia the interval [aT/(2n), T/(2n)＼ and write the firstsum Yl＼ as

(2.7) Ei = Re 2?r1£0

where the letterrjstands for exp(7n/4). Then the sum ^0 is transformed by using

(2.3), up to a possible error term 0(1), into

(2.9)
[
X~l/2 exp(*T log{T/(2nXe)) - 2niX){log X + 2y) dX

JL

+ I JT1/2 exp(/T ＼og{T/(2nXe)) - 2niX) dA(X).
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By using the firstderivative test,the firstintegral in (2.9) is estimated by

0(1). The main contribution comes from the second integral term. This we inte-

grate by parts to give, coupled with the classicalestimation for A(X),

(2.10) -i
A(X)

d

X
{X~l/2 exp(>T ＼og{T/(27tXe)) - 2niX)} dX + 0(1).

Thus, using the Voronoi formula (2.5)for K = 2, we have

(2.11) ^=-(l/(v/27r))Re(F1(+) + F1H) + (3/(32v/27r2))Re(^+)-FJ-)) + ^(l)

1

where

(2.12) V[±]

and

(2.13) vi±}

^1-1exp(iTlogr/(2^))X;^

≪=i

Xl/4 Qxp{±Ani^/^X)1-{X'1'2 exp(-*T log X - 2niX)} dX
r dX

i ^1^exp(zTlogr/(2^))^^

≪=i

"

1

Jlx

X~x/A exp(±4W^X)-7-{X-1/2 exp(-/T log X-2niX)} dX.
Q.A.

The termwise integration is legitimate from the bounded convergence of the series

in the Voronoi formula.

3. Integral Terms Without Saddle Points

In the series Vj~^(y=l,2) in (2.12) and (2.13), since the derivatives of

the functions ―AnyfnX ―T log X ―2nX are monotone and smaller than

-cT~l/2(^+ y/T), the integrals involved are estimated by cTl^(y/n +y/f)~l.

These contribute to the series Vj (j = 1,2) an amount O(L).

As for the integrals involved in the series Vj (j = 1,2), saddle points can

occur. Denote the functions in the exponential integrals in the series Vj

(7=1,2) by

FIX) = F(T, X, n) = Any/^X - T log X - 2nX.
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For the terms with n > 2T/n, the saddle points, the roots of the equation

F'(X) = 0;

(3.1)

are given by

(3.2)

x- y/nx+T/(2n) = 0

x± = n/2 - T/(2n) ± ny/l/4 - T/(2nn).

The saddle points occur for the terms with n > 2T/n and, since the points x+

always exceed the bounds T/(2n), only the points x~ comes into question. We

denote x~ by xn for simplicity.According to the occurrence and the location of

xn in the interval /a = [v.T/(2n), T/{!%)], we have the following three cases;

[I]: 1 <n < 2T/n, the case with no saddle point,

[II]: 2T/n <n< Tc{oi) where Tc(ol) = (1 + a)2T/{2na), the case with saddle

point coming into the interval Ia, and

[III]: Tc(oc) < n, the case with the saddle points being outside the intervalIa.

Main contribution comes from the series v＼ and the computation of this

part is rather complicated. The series Fi can be treated in much the same way

as the series V＼ , and in fact,easier than that. The series FJ contributes to Yl＼

an amount O(Te). Hence we shall dwell on the computation on the series V＼+'

only.

In view of F'(X) = (2n/VX){^- T/{2ny/X) - y/X), the integrals in the

cases [I] and [III] are estimated as follows by using the firstderivative test.

In the case [I],since F'(X) < -cT-^2{y/2T/n - y/n) holds from F"{X) > 0,

the integrals are estimated by cT3/4(2T/n - n)~l. These contribute to J2i an

amount O(Te).

In the case [III],F"(X) changes sign at the point xn with

(3.3) *. =
I(IY.

n＼nj

Since xn < T/{2n) holds in this case, F"(X) may change sign in the interval

4. We divide the case further;the case [III]i:Tc(oc) < n < 2T/(na) and the case

[III]2:n > 2T/{na).

In the case [III]i, xn comes into the interval /a. We split /a into /0+/1

where Io = [ocT/(2n),xn] and I＼= [xn,T/{2n)}. In the interval Jo, since

F'(X) > cT~ll2(yfn- y/Tc{(x)) holds from F"(X)>0, the integrals are esti-

mated by cT3/4(n-Tc(a))~l. In the interval Ix = [jcB,T/{2n)}, since F'{X)>

cT~xl2{y/n- ^2T/n) holds from F"(X)<0, the integrals are estimated by

cT^A{n-2T/n)-1.
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In the case[III]2,sinceF'{X) >cT-ll2(^n- y/2T/n) holds from F"(X)<0,

the integralsare estimated by cTl/4n~1/2or cT3/4(n -2T/nyl. Thus the terms

in the case fill]contributeto V, an amount O(TE).

4. Integrals Round the Saddle Points (1)

It remains for us to compute the integral terms in the case [II]. One may

suppose n > 2T /n + 1 with an admissible error. To evaluate the integrals by

changing the contour 4, we give an approximation of the exponential part iF(X)

of the integrands in somewhat a general setting:let us put X = x( 1 + cou) with

ccT/(2n) < x < T/(2n) for small u and a complex number co with ＼co＼― 1 which

will be given later in each time the contour is changed. Then, by Taylor's theo-

rem, we have an approximation;

(4.1) iF{X) = 4niy/nx - iT log x - 2nix + 2nico(^/nx - T/(2n) - x)u

+ ico2(T/2 - (n/2)^x~)u2 - ieo3{T/3 - {7i/4)y/H)u3

+ O((T+y/^)u4).

To calculate the saddle-point terms, we give some facts on the saddle points

xn = n/2 - T/{2n) - ny/l/4- T/(2nn) with 2T/n + 1 < n < Tc{a). Note that

(4.2) 2nxn/T = {^nn/(2T) + y/im/(2T) - I)"2.

In the second order approximation in (4.1) for x ―xn, one has

(4.3) T/2 - (n/2)y^x~n= n^ix~^l/4 - T/(2nn).

This follows,combined with (4.2),from that the left hand side is equal to

n^ixn{^T/{2nn)^/T/{2nxn) - 1/2).

Since T/2-{n/2)^/nx~n= ny/nx^y/l/4-T/(27tn) = T/4-nxn/2 holds by the

equation (3.1)satisfiedby xn, combining thiswith (4.3),we have

4n^x~n = (T- 27cxn)/y/l/4-T/(2im),

which is, by the definitionof xn,

= -4nn^J＼/4- T/{2nn) + 2nn.

Also from (4.2) one has

＼og(T/(2nxn))= 2 arcosh(y/7m/(2T)).
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From these and

we are led to

(4.4)

Akio Miyai

-2nxn = -nn + T + 2nny/l/4- T/(2nn),

T ＼og(T/(2ne)) + AnJnXn - T log xn - 2nxn

= 2T arcoshy/7tn/(2T) ―Inn 1/4- T/(2nn) + nn.

This gives the function denoted by fc(T,n) in (1.2) in Theorem.

Let S be an arbitrarilysmall positive number, fixed throughout in this and

next sections. We divide the case [II] into two cases, [II]i: 2T/n+l <n<

2T/ti+T1/3+s and [II]2: 2T/n+Tl/3+s <n< Tc(ol).

In the case [II]i,note that T/3 - (n/4)y/nx >T/＼2- cTl/3+s holds. Putting

Ml
r-l/3L

we change the contour /a to C＼ + Ci + Q + Cq + C3 + C4 where Q = [aT/(2n),

(ccT/(2n))(l -rjui)],C2 = [(aT/(2n))(l -rjui),xn(l - rjui)},Co = [xn(l -ijui),xn],

C^ = [^.^(l+ii/i)], C3 = Ml +iul),{T/(2n))(＼ +iux)＼ and C4 = [{T/{2n)){＼ +/≪,),

r/(27r)]. Here, in the approximation (4.1) of iF{X), 00 is chosen as co = ―77 on

C＼, C2 and Co, and as co = i on Cq, C3 and C4. The variable X is changed by

X ― x(l + cow) into u with 0 < u < u＼ on Q, Co, Cq and C4, where x = ocT/(2n),

xn or T/(2n). In view of xw < jc≪,the conditions Re(/co(v/≪^ ― T/(2n) ―x)u) < 0,

Re{ico2(T/2 - {n/2)^)u2) < 0 and Re(-ico3{T/3 - (n/4)^/Hx)u3) < 0 are sat-

isfied on each of the contours C's. Note that, on the contours Cq, C3 and C4,

Re(/co2(r/2 - (n/2)^Jnx)u2) = 0 holds. The error term O((T + y/nx)u4) in (4.1)

is estimated by cT~l^LA. Thereby, on the contour C2 and C3, the integrands are

estimated by small factors exp(-cL3) and these contribute to ]Tj an amount

0(1). The integrals on C＼, Co, Cq and C4 contribute to J2＼ an amount O(TS+E),

for the number of terms in the case [II] 1 is O(Tl/3+s): this follows from the estimate

2T/n+l <n<2T/n+TVi+s

^M 3/4 f

Jo
(1 + cou)-l/4Qxp(iF(x(l +cou))) du ≪ Ts+£

for co = i or rj and x ― a.T/(2n), xn or T/(2n).

5. Integrals Round the Saddle Points (2)

To evaluate the integrals in the case [II]2: 2T/n+ Tl/3+s <n< Tc(a), we

split the interval Ia into Iq +1＼ where Iq ― [a71/(27r),3cM] and I＼= [xn, T/(2n)], xn
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being defined in (3.3). Since xn < xn holds, the saddle point does not come into

I＼and since F"(X) < 0 holds there, the integrals on I＼are estimated by the way

similar to that on the interval I＼in the case [III]iin section 3. These contribute

to Yl＼ an amount O(Te).

As for the contour /0 = [aT/(2n),xn], note firstthat T/3 - (n/4)y/nx > T/12

holds for x in the interval 70. We change the interval Jo into C＼+ C2 + Co +

Cq + C?,+ C4, where C's are indicated in the following together with evaluating

the integrals on each of them.

Let us put

(5.1) m(x) = ui{x,n) = min{(r/3 - (n/4)^yl/3, (T/2 - (n/2)^)-l/2}L.

We define the contour Q by [aT/(2n),(aT/(2n))(l - rjm(aT/(2n)))}. In the

approximation (4.1),co is given by co ― ―rjand the variable X is changed into u

with 0<≪<Mi byX = xi(l― rju) with xi = <xT'/{2n).On thiscontour, the con-

ditions Re(/co2(r/2-(7r/2)v/^xT)w2)<0 and Re(-/co3(r/3- {n/4)y/nx~i)u3)<0

are satisfiedand the error terms O((T + y/nx)u4) in (4.1) are estimated by

cT~l/3L4. Since T/(2n) + xi ―yfnx＼= ^ocT/2n(y/Tc((x) - ＼/n)holds, the inte-

grals on this contour are estimated by cT3/f4(Tc(oc)―n)~land contribute to J^＼

an amount O(Te), here one may suppose that n < Tc(oc) ―1.

The contour C2 is defined by the curve X ― x(l ―rjui(x,n)) with nT/(2n) <

x < xn. Here in the approximation (4.1),a> is chosen to be ―rj.On this curve, the

conditions Re(/a>2(T/2- {n/2)y/nx)u＼(x,≪)2)< 0 and Re(-/co3(T/3- (n/4)y/nx) ■

ui(x,n)3) < 0 are satisfiedand O((T + y/nx)u4) ≪ T~^3L4 holds. Thereby, by the

definition(5.1) of u＼(x,n),the integrals are estimated by small factors exp(-cL2).

At the end point x = xn of the curve C2, since T/2 - (n/2)^/nx^ > cT2/3+s/2

holds from (4.3), note that one has

(5.2) m(*,,≪) = (T/2 - (7t/2)^Hx-n)-l/2L.

The segment Q passing through the saddle point xn is defined by Co =

[xn(＼-riu＼{xn,n)),xn{＼+riuo)}where, using (4.3),

(5.3) mo = (T/2 - (n/2)^Tn)-l/2T8l5

cx-l'＼n-2T/n)-l"Tsl5

On the segment Co, in the approximation (4.1), co is chosen to be r＼and the

variable X is changed into u with ―u＼(xn,n)< u < uq by X = xn{＼+ rju).The

main contribution of the series V^ comes from the integrals on Co, thisis to be

evaluated later.
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Since u0 < cT'1/3'3/20holds from (5.3),if one puts

(5.4) u2 = (r/3 - (7r/4)^)-1/3L,

the inequalityuq < ui holds. We define the segment Cq by Cq = [xn(l+ rjiio),

xn(l+tju2)], where co is chosen to be rjin the approximation (4.1).On this

contour, since

|exp(^2(r/2 - {n/2)^x~n)u2- irj＼T/3- {n/A)^x~n)u3)＼

< exp(-(r/2 - {n/2)^x-n)ul + 2~~l/2(T/3- {n/4)^)ul)

< exp(-cr^5)

holds and the error terms O((T + y/nx)u4) are estimated by cT~l^3L4,the inte-

grals on Cq are very small. Also note that,under the condition n >2T/n +

r1/3+<5,since

(5.5) xn-xn>cT2^/2

holds, the end point xn(l + r＼uj)of the segment Cq is contained in the half plane

a<xn. The assertion (5.5) follows, in view of y/x^ = 2~l{yfn―y/n ―2T/n), from

xn - xn = {y/x~≫+ y/%){n~l/2T/n-2~l(y/n- y/n - 2T/n))

= 2~ln-xl＼yfx~+ Jx-){^n-2T/n - {n - 2T/n))

= n~xl2(^fxnxn + xn)^Jn - 2T/n.

On account of this,the point xn{＼+ rjui) can be written also as xn{＼+r/U2) =

x'n(l+ iui) for some x'nwith xn < x'n< xn and M3 with T~l^L ≪ ut,≪ T~l^3L.In

fact one may take x'n―xn{＼+2^xl2ui) and

u3 = M2(v/2 + u2)~l.

By putting

u4 = (T/3 - (n/4)y/^x~nyl/3L = (r/12)"1/3L,

the segment C3 with the starting point xn(l + rjui)= x'n{＼+ M3) is defined by

Ci = [x'n(l+ iui),xn(＼+ 1U4)] and C4 by C＼ = [xn(l + iu^),xn}. Note that on

these contours C3 and C4, in the approximation (4.1), the conditions

Re(/co2(r/2 - (n/2)y/nx)) = 0 and Re(-/co3(7/3 - (n/4)y/nx)) < 0 with co = i

are satisfied,and the error terms O((T + a/^)w4) are estimated by cT~x^L4. Since

U4 > U3 > cT~lj/3Lholds, the integrals on C3 are estimated by exp(―cL3). On the
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segment C4, since ^/nxn - T/{In) - xn ―(T/{2nn))(n - 2T/n) holds, the integrals

are estimated by cT3/4(n ―2T/n)~l, which contribute to Yl＼an amount O(T8).

Thus we are left with the integrals on the contour Go passing through the

saddle point xn:

Jc
0

X1/4 Qxp(47ziVnX)-r-{X-1/2 exp(-*T log X - 2niX)} dX.
dX

These we integrate by parts to give

(5.6) -2my/n{ X~3/4(l+ (SniVrix)
*)
expUmVnX-iTlog X~2niX] dX

by using (5.2) and (5.3), with an admissible error term O(exp(―cL2)). In the

approximation (4.1) of iF(xn(l -＼-rju))on the contour Q, the terms ―ir}3(T/3 ―

(n/4)y/nx^)u3 + O((T +
i/nx^)u4)

are negligible. This follows, by using (4.3),

from the estimate

E

2T/n+Tl/i+i<n<Tc{ot)

d{n)n-^Axl'＼T + yfan){xH{n - 2T/n)yx ≪ Ts

In view of (4.3), (4.1), (5.2) and (5.3), the integral (5.6) is equal to

(5.7) ―2nirjy/nx^4 exp(4ni^nxn ―iT log xn ―2nixn)

x
[
(1 + 0{u + {nxnyl/2)) exp(-(r/2 - {n/2)^x~n)u2) du.

J―oc

The error term in (5.7) contributes to YL＼an amount O(TE). Combining these with

(2.2),(2.11),(2.12),(4.3) and (4.4), we are led to the formula (1.1) in Theorem.

6. An Exponential Sum Bounding |C(l/2 + zT)|2

The proof of Corollary is carried out in a familiar way by means of the well-

known inequality

(6.1) <H
L2

_ T 2
'6
2
+ ^ + 0

) 2

dt + L

due to Heath-Brown [2, Lemma 3], and an exponential integral ([2,(A.38)]); for

Re B > 0,

(6.2)
f
exp(At - Bt2) dt = ^nJB exp{A2/＼4B)).

J-OD
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We substitute the formula (1.1) for the integrand in (6.1) multiplied by

exp(-(?/A)2) with A=Tl/3L. If we choose a = 1 - T'1^ in (1.1), the first

sum in the formula may be degenerated to O(TS). As for the second sum in

(1.1), denoting g(T,n) = T log(T/(2nne)) ―n/4, by Taylor's theorem one has,

for ＼t＼<AL3,

g(T + t)= g(T,n) + (log T/{2im))t + t2/(2T) + O(＼t＼3T-2),

the error term O(＼t＼2T~2)being negligible. Hence, by using (6.2) with A ―

log(T/(2nn))i and B ―(2T)~ /+A , we can see that,in view of log(r/(2^≪)) >

T~1//3for 1 < n < ocT/(2n), the integral terms from the second sum are very

small. From this,Corollary follows. Or, taking 9 small, if we choose a = 1/2 in

(1.1),we have that,uniformly in A with T£ < A < 71/3, |£(l/2+ iT)＼2is surpassed

by an exponential sum

(6.3) v^A £
(-l)nd(n)

2r/,+i^9r/(4,)Xl/4-r/(2;m))1/4
cos(/c(7≫)

x exp(-(A arcosh y/nn/{2T))2) + O(ATS).

From this, Corollary also follows by choosing A = T1/3. This is obtained by

using, combined with (6.1) and (6.2), for ＼t＼<AL2,

(6.4) {＼/A-{T + t)/{2nn)YXIA = {l/A-T/{2nn)YXIA + O(nx'＼n-2T/n)-5IA＼t＼)

and

(6.5) fc(T+t,n) =fc(T,n) + 2 arcosh(y/Tin/{2T))t - y/n{2Ty/n - 2T/n)~lt2

+ O(Vii{n-2T/n)-y2＼t＼3T-1).

The argument to obtain exponential sums of the type (6.3) is closely related

to the averaged form with Gaussian weight; if we denote

/(r,A) = (Av^)-1
f

J―00

i ＼
+ i(T + t)＼

we are led to the expression,from Theorem,

(6.6) I(T,A) =
23/4^1/4 ^ (-l)"d(n)

≪=27/^+l Kn ~ ZI I71)

+ 0(T£)

exp(-(r/A)2) dt

cos(/c(7≫) exp
L nn ― 2T
IT

'■)
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for A with r1//?< A < T1//3.This should also be compared with the expression

with the Atkinson function f(T,n) in the form given by Motohashi ([7,(1.18)]);

namely, one has

(6.7) I(T,A)
23/V/4

71/4
]PV

ni/4

^ cos(/(r,/i))exp( nn

if
A2) + 0(L)

for A with T1/4 < A < TL~l. For a range of A with T1'1 < A < T1/2, thisfollows

from Jutila'sformula (1.3).

Remark. Among various expressions obtainable by applying the Voronoi

formula to the sum (2.1), the formulas (1.3) and (1.1) seem to be the only two

formulas that bear the exponential sum of the type (6.3) or (6.7) which bring the

bounds C(l/2 + *T)≪ Tl/6+E. To an

explicitformulas and other formulas

return elsewhere.

intimate relationshipbetween these two

with the function fr(T,n), we hope to
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