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MORSE THEORY AND NON-MINIMAL SOLUTIONS

TO THE YANG-MILLS EQUATIONS

By

Hong-Yu Wang

Abstract. By generalizing a method of Taubes, we use Morse

theory to find the higher criticalpoints of Yang-Mills functional.

Topology and Analysis name mathematical subjects with robust interaction,

often along the basic theme: Study relationship between the criticalpoints of

functional and the topology of function space. We consider in this article a

vector type non compact variational problem―the Yang-Mills equations, and

we raise the question of proving the existence of "true criticalpoints" for this

functional, in a framework where the Palais-Smale condition does not hold.

This article should be considered as sequel to [27], where the most of the

notations and the terminology were introduced. The reader may find that the

exposition in [13], [22], [24], [26], and [27] are useful introductions to Morse

theory for the Yang-Mills equations. The main purpose of this paper is that it

clearly explains the background and motivation, and gives a method for finding

the non-minimal solutions to the Yang-Mills equations on a compact oriented

4-manifold.

In our main result,we suppose that there is a known isolated non-minimal

Yang-mills field("isolated means that the Hessian of Yang-Mills functional is

non-degenerate). We then use the min-max method to produce infinitelymany

other non-minimal Yang-Mills fields.

Theorem. Let M be a compact oriented Riemannian 4-manifold. Let Aq he

an isolated non-minimal Yang-Mills connection on M with the structure group

SU(2) such that d＼P+FA0＼= 0 along a simple closed geodesic and ＼P±Fao＼> 0 on

this geodesic. Then there is a constant K > 0 such that for any positive even

integer k > K, there exists an irreducible non-minimal Yang-Mills SU(2) con-

nection with the same degree as Aq.
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Theorem is proved by firstusing a gluing procedure to construct an

approximate solution space N(k) thatinvolve many parameters, in our con-

structionN(k) is diffeomorphic to

2k
JJ{(0,1) x F^ xsu{2)SU(2)}/TAo x E, x 2*

1=1

where F^ are the frame bundles A+M of self-dual and anti-self-dualforms on

M, Ta0 is the isotropy group of connection Aq, and 5^ is the symmetric group on

k letters.One then shows that one can produce a new non-minimal solution as a

small perturbation of some approximate solution A on Nk-

It should be remarked that in the case of rinding the self-dual solutions

Taubes [22] constructed many "higher degree" solutions over the generic 4-

manifolds. In a certain limit, these solutions have the curvature localized near

a finite set of points, with approximately one unit of "topological charge"

concentrated at each point. These Taubes' solutions can be interpreted as a non-

linear superposition of single instanton solutions. The non-minimal solutions in

our construction admit a similar interpretation as a superposition of instantons

and anti-instantons glued to form a "necklace" along the closed geodesic.

The previous theorem can be applied to concrete 4-manifolds, for example,

Sl x S3 and S2 x S2 with the product metrics (see [27]).

This articleis organized as follows. In Section 1, we recall Morse theory

and provide several examples. Section 2 describes the basic features of Yang-

Mills functional. In Section 3-4, by generalizing the Taubes' approach in [22],

we introduce the techniques which are used to find the non-minimal solutions to

the Yang-Mills equations (cf.[27]). Section 5 gives some remarks, in particular,

we consider the existence of non-minimal solutions to the Yang-Mills equations

on the round 4-sphere S4.

Before turning to a detailed description, acknowledgments are due: The

approach in this article was suggested by Clifford Taubes (Actually, this

approach was a joint work of Taubes and the author [27].) and inspired by

Wente's [28] solution of the Hopf conjecture. Further acknowledgments to the

Mathematics Department of the Duke University and Mark Stern for their

generosity, kindness and hospitality,where much of this work was carried out.

1. Morse Theory

In geometric analysis and mathematical physics we face many elliptic

partial differentialequations. One asks an important question: Can one rig-

orously establishthe existenceof solutionsto these equations.
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A strategy is to translate the problem of finding the solutions to the partial

differentialequations into a problem in the calculus of variations.

Morse theory proposes to relate the criticalpoints of the functional to the

topology of the function space. If the functional is nice (in a technical sense)

then the function space being topologically complicated will imply that the

functional has many criticalpoints (i.e.solutions to the variational equations).

It is perhaps useful to look at a finite dimensional example first[211.

Example 1.1. Let T2 be the torus Sl x Sl and let / : T2 -> [0,1] be a C2

function on T2.

Claim: Any such f has at least three criticalpoints.

The maxima and minima of / are of course the criticalpoints. If the

minimum is not attained at a unique point then there are already at least three

points. Hence we can assume that f~l(Q) = {p} is just one point.

To find the third criticalpoint in this case, one can use the uncontractible

loops on T2. Let A = {continuous loops on T2, starting and ending at p and

not contractible on T2}. One can apply the min-max method to A, showing

liot

C = min^ A maxjeA/(A(j))

is a criticalvalue that is attained at a criticalpoint with index 1, so is neither a

maximum nor a minimum. For details,see [21].

The relevant lessons from this example are as follows: First, one requires a

non-trivial topology to have a good a priori reason to have extra, non-minimal

criticalpoints. Second, one requires a compactness to deduce that the min-max

sequences actually converge.

Most functionals arisingin the geometric analysis and mathematical physics

are defined on the infinitedimensional Banach spaces―which are non-compact.

There are the standard conditions on a functional on a Banach manifold which,

when satisfied,allow one to apply the min-max or Morse theory methods. The

most well known of these conditions is the Palais-Smale "Condition C": A C2-

function / : & ― M satisfiesthe Palais-Smale condition on f~l([a,h}) if any

sequence {xn} such that a <f(xn) < b and Vf(xn) ―>0 is precompact.

Unfortunately, the standard conditions do not apply to many interesting

functionals. In particular, the Yang-Mills functional does not satisfy the Palais-

Smale condition. But the failure of Palais-Smale condition is not the final word

for many variational problems. To develop a strategy when Condition C fails,it
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is instructiveto consider what can happen on some simple non-compact, finite

dimensional manifolds. Now let us consider the following example [3].

Example 1.2.

This drawing displays a sequence {xn} (a "criticalpoint at infinity") such

that V/(xM) ―>0 and f(xn) ―≫c which does not have any convergent sub-

sequence. For small e > 0, the set fc+E = {x ＼f(x) < c + e) is not connected

while fc~E= {x＼f(x) < c ―e} is connected. Thus this "criticalpoint at infinity"

induces a difference of topology in the level sets of /.

If one wants to use a global argument to prove the existence of the true

critical point xq, then one should take into account this "critical point at

infinity", which plays the role of a minimum.

The lesson to be learned is that when faced with a variational problem for

which Condition C fails,one should: (1) find the "relevant non-compact ends"

of Banach space (i.e."criticalpoints at infinity");(2) analyze the function on

the "relevant ends".

The function in Example 1.2 is defined on a contractible space (namely M).

For the variational problems on a general Banach manifold 3C one must

understand which topological features of 9E are represented by actual critical

points of/ and which are accounted for by the non-compact ends.

The "relevant ends" (both compact and non-compact) of/ can be defined

as follows:

Crit.(N,d) = {xe%＼N-S<f{x)<N + S, and ＼＼Vfx＼＼<S},

Cnt.{N,8)~ = {xe Crit.{N,d)＼f{x) < N}.

When 5 > 5' > 0 are given, there is a natural inclusion pairs:

i :(Crit.(N,S'), Crit.(N,Sf)~)―* (Crit.(N,S), Crit.(N,S)~).
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It is the effect of the map i on the relevant homotopy groups of pairs which

determines whether Crit.(N,S) contributes to the Morse theory of/ on SC.

Intuitively,the "relevant ends" of/ consist of approximate solutions to the

Euler-Lagrange equations of/. One can then hope that by a small perturbation,

one can find the exact solutions to the Euler-Lagrange equations.

Finally, let us briefly recall the Taubes' approach to the self-dual con-

nections over the generic 4-manifolds [221.

Example 1.3. Let M be a compact, oriented, Riemannian 4-manifold. By

the gluing operation, one may graft the basic instantons over S4 into the trivial

connection over M at distinctpoints in M to get an approximate solution space

for the self-dual equations on M. Also one has a parameter space N. For any

y e N, one has an approximate solution A{y). The Taubes' approach to the self-

dual equations on M is that by the small perturbation, one may solve the non-

linear ellipticequations to get an exact self-dual connection over M. But the

linearization of the self-dual equations on M at an approximate solution is not

strongly elliptic,there are the obstructions to solving the self-dual equations

which come from the small eigenspace of the Hessian of Yang-Mills functional

at this approximate solution that arises from the negative part of the inter-

section form on M. In order to overcome this difficulty,Taubes considered the

expansion of Yang-Mills functional restricted on the approximate solution space

in parameters. Taubes proved that if the degree of the bundle constructed by the

gluing operation was large enough, the parameters account for all the small

eigenvectors. Hence one may solve the self-dual equations in the direction of the

complement of the small eigenspace, then move the positions of parameters to

find an exact self-dual connection over M. For details,refer to [221.

The lesson of thisexample: To constructa Morse theory with a functional,

/, on a non-compact Banach manifold, SC,an appropriate strategyis to 1) find

the set Crit{N,d) in the Banach manifold as defined above. 2) Restrict the

functional to these sets and study the effectof the map i on the relative

topology of the pairs of space. 3) Determine the obstructionsto finding the

"true criticalooints."

2. Yang-MIIIs Functional

The Yang-Mills equations were introduced by theoretical physicists.In the

past decade these equations became important in mathematics. Simon Donaldson

obtained beautiful and spectacular results concerning the differentialstructures
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on the four-manifolds by using the moduli spaces of the self-dual solutions to the

Yang-Mills equations on the compact 4-manifolds ([9],[10]). Atiyah-Hitchin-

Singer [1] and Freed-Uhlenbeck [10] gave good simple introduction to the Yang-

Mills equations, one can find useful materials in these references.

Let P be a principal SU (2) -bundle over a compact, oriented 4-manifold, M,

with a Riemannian metric g. Let ^(P) be the connection space which is an

affine space. Fix Ao ^(P),^(P) = A0 + Q}(AdP), here AdP is the adjoint

bundle.

Consider the Yang-Mills functional (action functional) on #(/*):

(2.1) YM{A)

1

2
JM

li^l2

Where, FA is the curvature of A, FAe H2(AdP). The norm (2.1)isinduced from

the Riemannian metric on TM and the Killingform on the Lie algebraof SU(2).

The Yang-Mills functionalhas a topologicallower bound

(2.2) YM{A)=±
Jm

＼FA＼2>8n2＼C2(P)＼.

Where, C2{A) is the second Chern classof P.

The variationalequations of YM is

(2.3) VYMA(-)=O,

or

(2.4) D*FA = Q.

Here Da is the covariant exterior differentialassociated to A, D*A is the formal

adjoint operator of Da. Equation (2.4) is the second order, non-linear partial

differentialequation.

A connection A is an absolute minimal solution to (2.4) if and only if

Fa = + * Fa where * is the Hodge star operator and the sign is + if Ci{P) < 0

and ― if C2(P) > 0. The equations FA = ± * Fa are called the self-dual or the

anti-self-dualequations. These equations are the firstorder P.D.E. like as the

Cauchy-Riemann equations on the two dimensional surfaces.

In terms of the algebraic method, one is easily to construct the basic

self-dual or the basic anti-self-dual solutions over S4. These solutions are

called the instantons or the anti-instantons. Using the stereographic projection

S4＼{south pole} ―≫̂4, identify J?4 ~ 2tf quaternions. One has the following

explicit formulas:
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The basic instantons

(2.5)

C/1={XG^4||X|< 1},

u2 = R＼{0}.

are expressed as

wh = (wl,wl) =

with the transition function

{

Urn

follows:

xdx

X2 + ＼x＼21
Im

g+2: Ulf)U2^SU(2)

Where, X is the scalingparameter. The curvature

(2.6) Fk = {fI,fI) -
(

X2xdx

＼x＼2{A2 + ＼x＼2)

)
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of this connection is given by

k dxAdx Ax dx A dxx ＼

(A2 + |x|2)2'W(^2 + |x|2)2|x|)

Similarly, the basic anti-instantons are expressed as follows:

(2.7)
Wx_ = (Wi,W})

with the transition function

{

= Urn
xdx

X2 + ＼x＼2
Im

gT2--Ulnu2-+SU(2),

The curvatureof Wx_ is given

(2.8) Fi- = {fLfI) =

by

(
A2 dx A dx l2x dx A dxx

U2 + ＼x＼2)2'＼x＼U2 + ＼x＼2)2＼x＼

)

An important problem in the analytic aspect of the Yang-Mills theory is to

find the general solutions to the Yang-Mills equations. One of the difficultiesis

that the Yang-Mills equations are not strong ellipticP.D.E.. Because the Yang-

Mills equations are invariant under the action of the gauge transformation

group AutP (thisis the inner automorphism group of P which can be identified

with the group of the smooth cross-sections of a group bundle P xAci5(7(2), the
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Hessian of Yang-Mills functional has an infinitedimensional null space: If A is

a solution of Yang-Mills equations then V2YMa(ci, ･) = 0 for any a = DaQ where

<j>e Cl°(AdP).Indeed Q°(AdP) can be viewed as the infinitesimal gauge group or

the gauge algebra. By the direct calculation, the Hessian of Yang-Mills

functional may be written as

(2.9) V2YMA(a,b) =
I
{DAa,DAb + {FA,aAb + hAa).

JM

This pathology can be remedied by considering YM(-) as a functional on the

quotient space 08{P) = ci{P)/AutP. Since M is a compact 4-manifold, one can

define the L|-Sobolev structure (k > 3) on 08{P) which is viewed as a Hilbert

manifold as in [23]. When restrictedto the tangent space of an orbit [A] e 08{P),

V2YMA(-, ･) defines a bounded, ellipticbilinear form. We would like to point out

here that the quotient space 08(P) is not quite Banach manifold since when A is

an reducible connection then the tangent space to [A] e 08{P) is an infinite

dimensional cone. Recall the reducible connection, we say [A] e < {P')is reducible

if the principal SU(2)-bundle P ^ X＼c Xi and the covariant exterior differential

DA = d＼c di are both decomposable. Here X2 = X＼l,such splittingcorresponding

to the singular points on 08(P). For details of the above, refer to [8],[10].

Actually, the main difficultyin solving the Yang-Mills equations lies in

the failure of Palais-Smale conditions for the Yang-Mills functional. K. K.

Uhlenbeck established the weak compactness theorem for the Yang-Mills

functional ([14], [23], [25]). The weak compactness of a good sequence (in

technical sense) is discussed in Proposition 2.1, below. This proposition is in

many respects analogous to the existence theorem for the harmonic maps from

S2 that are derived by Sacks and Uhlenbeck [191.

Proposition 2.1 (cf. [23]). Let M be a compact, oriented, Riemannian 4-

manifold. Let P ―>M be a principal SU(2)-bundle with the degree n > 0. Let

{[Aj]} cz 3$(P) be a good sequence for which limi^aDYM(Ai) ―> YMX. There

exists a subsequence of {[Aj＼],also denoted {[At]), and a finite set of the pairs

{(Pa, Aa)}
=0,
wnere Po ^ M is a principal SU(2)-bundle and Aq is a smooth

connection on Pq which is a solution to the Yang-Mills equations on M. While for

a > 0, each Pa ― SA is a principal SU{2)-bundle and A^ is a smooth connection

on Pa which is a solution to the Yang-Mills equations on SA for the standard

metric on T*S4. These data have the following properties:

(1) {[-4,-]}converges strongly in L＼locof M＼{finite set} to [Aq}＼

(2) For a > 0, Aa is not flat;
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(3) 5Xo YM(Aa) = FMoo;

(4) Eto k(Pa) = n.

Here the good sequence of connections,{A{}, in £${P)means that{YM(Ai)}

is bounded and lim,-^ ||VFM^.(-)|L -≫■0.

Briefly this proposition says that any good sequence of connections which

goes to infinity has a subsequence which, outside some points {pj}J=x <=

M,m <n, converges to a true solution of Yang-Mills equations (may be a

trivialconnection) uniformly on the compact subsets and whose a portion of the

energy becomes concentrated in smaller and smaller neighborhoods of {pj}]L＼.

In fact, by choosing an appropriate sequence of the blow-up of the normal

coordinates at {pjYjL^ over these smaller and smaller neighborhoods the con-

nections can be seen to converge to the Yang-Mills connections over S4. At the

last moment (i.e.in the limit) the bundle P becomes the connected sum of

{Px} =o> an£*tne standard 4-spheres break off at {pj}JLi, carrying with them the

partial energy and topology of the old connection. It is possible that there are

two or more 4-spheres bubbling off at one point pj.

In subsequent sections, we shall devote to finding the "end sets" of Yang-

Mills functional (i.e.approximate solution space), studying the effect of Yang-

Mills functional restricted to these sets and finding the non-minimal solutions of

Yang-Mills equations in terms of the perturbation method.

3. The Gluing Construction

Naive Morse theory will not work for the Yang-Mills functional on the

quotient space 88{P) due to the Uhlenbeck's weak compactness theorem.

According to the lessons learned from the examples in Section 1, one should

find the "end sets" ("criticalpoints at infinity")in 88{P). The weak compactness

theorem provides the crucial tool for describing these ends. Taubes [24] showed

that the weak-compactness can be reversed by "gluing in" in instantons and

anti-instantons over S4. Indeed, by the gluing operation one is able to graft the

instantons and anti-instantons over S4 onto a background connection over the

generic manifold, M, at distinct points M, and to construct the "end sets".

Using these "end sets", Taubes constructed the self-dual and anti-self

connections on the compact oriented 4-manifolds and explained how the Morse

theory for the Yang-Mills functional can be recovered by examining the

restrictionof the functional to these sets.Actually, the "end set" is a countable
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set of finitedimensional, non-compact varieties.For details,refer to [22],[24].

There is some trouble in extending the Taubes' approach to the problem of

finding the non-minimal solutions of Yang-Mills equations. To explain this,

consider the following simple example.

Example 3.1. By using the gluing operation,graftan instanton with the

scaling parameter l＼,the gauge g＼e SU(2) and an anti-instantonwith the

scalingparameter A2,the gauge gi e SU(2) onto the trivialconnection over S4

at points{pi} and {P2}, respectively.Hence one has a family of approximate

solutionswhich depend on the parameters {M,9i,Pi,^2,92,P2}- Consider the

Taylor's expansion of the action functionalin the parameters [26]:

YM(A(h,gi,phh,g2,P2))=l6n2-
Q^2

{(glF+{N)g-l＼g2F+{N)g-2l)
dist.(pup2)

+ {g1F_{N)g1-＼glF_-{N)g-l1)}

+ higher order term,

where Q is a universalconstant and F+(N), F-(N) are the curvaturesof the

standard instanton and anti-instantonat the north pole.

To explain Example 3.1, recall the Taubes' implicit function theorem [21].

One may solve the non-linear ellipticequations according to the following

procedure: First, construct an approximate solution space of the equations.

Second, consider the Taylor expansion of the corresponding functional of the

equations in the parameters (that is, the functional is restricted on the

approximate solution space). Third, find the non-degenerate criticalpoints of

the firstorder term of the functional restricted on the approximate solution

space. Finally, by the small perturbation get an exact solution to the equations

(Here, use the implicit function theorem to kill the higher order terms of the

functional.)

Now turn to Example 3.1.If one wants to find the criticalpoints near those

almost Yang-Mills connections that were constructed in Example 3.1, one

should find the criticalpoints of the following the firstorder term of Yang-Mills

functional restricted on the approximate solution space.

QX＼k＼

dist.{p＼,p2)A
{{giF+{N)gil,g5+{N)92l) + {gxF-{N)gX＼giF.{N)gix)}
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By the direct calculation, it is not hard to see that we must let dist.{pi,pi) ―>■n,

and Ai,^2―>0. Therefore finding the non-minimal solutions in the preceding

construction will be bubbling off two spheres at the north and south poles

respectively, this means that the instanton and anti-instanton will be blown up.

Hence, the Taubes' implicit function theorem does not work here.

On the other hand, Parker [12] showed how, by changing the metric on S4

amount, one can form a non-minimal Yang-Mills connection with degree zero

and with energy arbitrarily close to two instanton units. Parker's solution

consists of a very small instanton and a very small anti-instanton, centered at

the antipodal points. If the metric were round, as before discussing, both the

instanton and anti-instanton would bubble off under the gradient flow.

However, with the slightly altered metric, the instanton and anti-instanton

become balance. Hence, Parker in effect turned the "end point" into a critical

point.

According to the example discussed above, one can not directly use the

Taubes' approach to find the non-minimal solutions. The situation is more

complicated. One requires that the approximate solutions have nice properties.

Hence, one must make small change to look for suitably a balance condition for

the approximate solutions. We now describe our construction in some generality

[27]. This construction was inspired by Wente's [28] solution of the Hopf

conjecture.

Let Po ― M be a background principal SU{2) bundle over M, let A$ be a

smooth background connection on Pq. Now, let C be a simple closed geodesic

on M (Without loss of generality, assume that the length of C is equal to 2n

exactly.). Fix a tubular neighborhood, Vq, of C. Let {s,.ya}^=1 be a coordinate

system on Vq with s : Vq ―≫[0,In] restricting to C as the arclength. Require

/|c = 0 and {d/ds,d/dy≪}＼={ orthonormal on C.

Choose 2k points {q＼,... ,q2k＼ m Vo such that

(3.1) ― > s(qi+i)- s(qi)>
3tt

4k

For sake of simplicity,set d ― n/k. Over each qi} pick up/- e FM＼qt (Here, FM is

the frame bundle of TM.). We have the Gaussian coordinate system fy.: U(qi) ―>■

Bp c=MA'. Where p is the injectivity radius of M, and require d < p. Choose

re(d,p) and for each /, choose Xt e (0, r/2), gi e 5(7(2). Together, the data C

and (Ai,fi,gi)i=-,gives our parameters for gluing.
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Set

Reintroduce the

AQ＼ = T + a where

(3.2)

Hong-Yu Wang

= {x＼O<dist.(x,qi) < r}

= {x Idist.(x, qA < If}.

connection Aq and fix a gauge along Vq In which

(1)

(2)

― ＼a = a obeys

(3) a＼r= a＼rds and ya -―|a = 0.

Here, the gauge is unique up to a ―>go-gT1 for g e SU(2). It actually depends

only on the holonomy of the connection Aq around C. In fact -PoIko can ^e

trivializedover open domain Vq, hence A$＼Vo can be written as Aq＼Vq= T + a

where a satisfiesthe conditions (3.2) by choosing suitable gauge (i.e.solving the

ordinary differentialequations along C).

We shall glue the instantons and anti-instantons onto Aq along the geodesic

C and for this,we require the bump function ft.This is a smooth function on <%,

0 < p < 1 with p{t) = 1 if t < 1 and 0(t) = 0 as t > 2.

With this all understood, set

Aq over M＼Vq,

(3.3) A =

r + E?!i Pr(x,qi)ffi9iWfg;1+ a over K0＼U£,^i,

r + hitygiWtg^ + Q-hfaqt)

■(a + Y*j*iPr{^jWfj9jWJgjX)]hJx +hidh7' over KAt//,

ffigiW}grl over Ut

Here, (Wj, Wf) = {W＼.^ W＼^ as i = odd and {Wj, Wf) = {WlXi_,!＼%._) as

i ― even. The gauge transformation hi is given by requiring that hAqA = 1 and

(3.4) a,- = hi
[a + Y.Pr{x,qj)<t>}jgjWfgjlw

+ hidhTl
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(3.5)
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xAqi) ― 0 and

d

d＼x - qt＼

■Ja,-= O

579

In fact,h{ is the polar gauge transformation which is given by solving the

ordinary differentialequations.Usually it is easy to do computation in polar

gauge (cf.[23],[24],[25] and [27]).So, we get a parameter space

(3.6)

and a map

(3.7)

2k
m c (</,/,)x pQ＼qox n((°'0x ^x 5c/(2))'

Ni3y^(P,A{y)),

with ―C2{(A(y))= ―CiiAo) as Xt sufficientlysmall.

However, the map *F is not an injectivemap as it is invariant under

the certainsymmetry group which acts on N＼.This invariance of the map *F is

due to the specialstructuregroup SO (A) of the frame bundle Fm- It is well

known that structure group SO{A) ^ SU{2) x{±}SU{2). Hence AdP＼qô P+

A2T*M＼qo. Thus the parameter space may be reduced. Define

(3.8)
2k

N2 cz(d,p) x P0|w x^(2)
n((°'Q x

P±A'rM x*u(2)SU{2))

i=l

- (rf^)x n((°'D x p±A2rM)/r^0.

Hence, +1 depend on the parity of /, and F^o is the centralizerof gauge group

Aut{Ao). Hence, the map factors through N2.

Therefore we obtain the "end sets". If the background connection Aq is a

solution to the Yang-Mills equations, then ＼(^2) <= @{P) is an approximate

solution space. In the remainder of this article,we always require that Aq is a

solution of Yang-Mills equations.

We now study the interaction between the mixed instantons and the

background connection. Set r ―d3/5, X{ = Sjd2. For any y e N2, expand

YM(A(y)) in the parameter d.

Proposition 3.1 (cf. [27]). If the Yang-Mills functional is restricted to the

parameter space, one has
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(3.9) YM(A(y)) =
2L
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＼Uy)＼2

YM(A0) + I6n2k

+

+

+

£
i=odd

E

/=even

/=odd

+ £

y'=even

+

where Q is a positive constant.

(3.10)

^(P+FAtM^gjF+iNfa1)

-Q
m(S')

s>s}ds/disL{qj,qi)4

{ }

2

2

j

j=[i±(2l+l)]mod2k

0</<[l/2rf-2/5]-l

IIVFM^OH^, <C3

2

(4>}igiF..(N)gTl,t}igjF-{N)g]-1)

£ -e^p^7<fo<-(≪,*)4

z'=odd
i=[y+ (2/+l)]mod2A:

0</<[l/2rf-2/5]-l

■(ffjgjF+(N)grl,ffigiF+(N)gr[)

2k
]T {sfd5^l/5){Ci + C2＼lnd＼+ higher order terms}

i=l

In terms of the Taylor's expansion above, one can give a priori estimate for

the dual norm, ||VFAf4(>,)(-)||^(
)5
of the firstvariation of Yang-Mills functional

Ik£
^5(1/5)

We now give remarks about the gluing operation and expanding the Yang-Mills

functional in the power seriesin parameters. There is a physics intuition behind

the expansion of Yang-Mills functional.In physics, the connection is supposed to

describe the force field due to certain the pseudo-particles. For a physicist, the

Yang-Mills functional measures the energy that is contained in the force field.

The connect-sum construction (the gluing operation) can be interpreted in a

heuristicsense as the addition of the specific,extra pseudo-particles to a system of

pseudo-particles (each pseudo-particle contributes a unit charge to the instanton

number).
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If the new pseudo-particle can be added to make the net force attractive(or

repulsive),the normalized energy, the firstorder term of the expansion of Yang-

Mills functional, will decrease (increase). Hence, the firstorder term of the

functional is viewed as the interaction between the instantons and anti-

instantons. This kind of the interaction phenomena of the "mixed pseudo-

particles" has been used by Taubes [23] for the Yang-Mills equations on S4,

it has allowed him to prove that the Yang-Mills moduli spaces of SU(2) (or

SU(3)) connections are path-connected spaces. It has been also considered by

Bahri-Coron (cf.[3],[5]),they have used it to prove that the existence theorem

for the Yamabe equation on the certain domain in Mn.

Similarly, a simple calculation verifies the Yang-Mills-Higgs functional:

Monopoles attract anti-monopoles at large separation. By the min-max tech-

nique, Taubes [21] rigorously established the existence of non-minimal solutions

of Yang-Mills-Higgs functional.

For the Yang-Mills functional, the situation is more complicated. Let

us look at the forces of the mixed pseudo-particles in our construction. The

first order term of the functional smoothly depends on the parameters

{si,gi,qi]＼<i<2k{dim.N2 = 16k). The important fact is that for the firstorder

term of Yang-Mills functional in the preceding Taylor expansion, there exists a

saddle point on the parameter space N2.

The conclusion here is that the unstable solutions of the higher energy

should not be unexpected.

4. The Global Setting

The heading of this section asks an important question: Can one rigorously

establish the existence of non-minimal solutions to the Yang-Mills equations.

The proof for the cases S2 x S2 and S1 x S3 were developed by the author

[27]; S4 and Sl x S3 were proved by L. & R. Sibner and K. Uhlenbeck [20],

T. Parker [12], and L. Sadun and J. Segert [16], [17].

The strategy is to use the perturbation method in which Taubes constructed

many self-dual or anti-self-dualconnections over the generic 4-manifolds. By

this, one means the following: Suppose A(y),yeN2 is a approximate solution

and a{y) e Ql(AdP), then A(y) +a(y) is a solution to the Yang-Mills equations

if and only if the energy, YM, is stationary with respect to all the infinitesimal

variation of the fields.That is, if and only if

jtYM(A(y)+a{y) + tv)＼hd0= 0

for all tpeQ}(AdP).
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Hence, we must solve the equation below:

(4.1) VYMA{y)+a(-)=O, for y e N2

But the equation given above is not strong elliptic.By the Taylor expansion, the

small eigenspace of the Hessian, V2YMA^(･,･), of YM is the obstruction to

solving Equation (4.1). Let us analyze the obstruction to solving Equation (4.1)

(i.ethe small eigeespace of V2YMA^(-, ･)).According to the construction of the

approximate solutions, A(y) for y e N2, it is reasonable to think that the small

eigenvalues of V2YMA(y)(-, ･) come from the small eigenvalues of V2YMAo(-,-)

and V2YMW+ (-,･)･For details,refer to [4],[24] and [27].

Henceforth, always take the background connection, Aq, to be an isolated

solution to the Yang-Mills equations, with |.P+i%| a non-zero constant and

d＼P±FAo＼= 0 along the geodesic C. Since the background connection Aq is an

isolated solution, the small eigenspace of V2YMA^(-,-) depends only on the

small eigenvalues of V2YMw+ (-,-)･^Y direct calculation,itis not hard to obtain

that the small eigenspace of V2 YMA^(･,･) is of dimension 16k. Hence, our

parameters account for all the small eigenvalues of V2 YMA^(-, ･)

(dim N2 = 16fc)(cf.[26]). The small eigenspace of V2YMA^(-, ･) at each y e N2

defines a vector bundle V ―>N2 as a subspace of Y* T&. Here, *＼: N2 ― 36 is

an inclusion. It is possible to divide Equation (4.1) into two parts

(4.2)

and

(4.3)

(/ - n(A(y) + a, £))*DA{y)+aFA{y)+a = 0

n(A{y)+a,ZyD*A{y)HtFA{y)+a = O

Here n(A(y) +a, £)is a projection onto the small eigenspace of ^2YMA^+a(-, ･).

Equation (4.2) is a strong elliptic equation. Let ^(>>) be the unique

solution of Equation (4.2). One defines

(4.4) My) = n(A(y) + Rdy), £)*D*A(y)+≪({y)FA(y)+≪dy)

In fact, ft{y) is a smooth section on the vector bundle V ―> Ni- The key step is

to find the zero points off^(y). Using the Kuranishi's method (which is just the

implicit function theorem), write f{{y) =f^(y) +f%{)>)･ Suppose that f^{y) ― 0

and yf^{y) is non-degenerate. If f^(y) is the higher order term, by moving the

positions of y = {{si,gi,qi)]t＼＼we get f^iy) ― 0 yia tne implicit function theorem.

Here y near by y (cf. [22], [27]). Hence one must find a suitable f£(y) and analyze

the properties of fHy).
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We now recall Proposition 3.1. By the Taylor expansion, the firstorder

term of the functional, YM{A(y)), smoothly depends on the parameters

{{si,qi,gi)]t＼}-Let H denote the firstorder term of the Taylor's expansion of

Yang-Mills functional,

(4.5)

(4.6)

H
E

i=odd

+ £

/=even

+ E

y=odd

+ £

/=even

co(s3)
4 d4(P.FAo(qi),ffigiF4N)g

)

,-■>

s]d*P+FAa{qj),ffjgjF+{N)gjl)

co(s3)

s?sfds-dist.{quqj) 4

sfsfd%-dist.(qj,qi) 4

2

CO

2

y'=even

7=[i±(2/+l)]mod2Jt

Q<l<[l/2d-2l5]-＼

■(ffi9iF^N)g;＼fgjF4N)grl)

£ -e

i=odd
i=[j±{2l+l)]mod2k

0<2/<[l/2^"2/5]-l

2

■(ffjgjF+(N)g]-＼ffigiF+(N)g7l).

Where F+ (TV) are the curvatures at the north pole of the standard instanton or

the standard anti-instanton over the round 4-sphere.

Suppose that at {gi}＼<i<2k tne expressions below take the criticalvalues

(maximum)

-(P.FAoJ}lgiF.(N)gT1)1 i = odd;

- (P+FAo,ffjgjF+(N)g7l), j = even.

Fix/- =fj, 1 < i < 2k such that fc correspond to the coordinate system {s,y*}l=l

on the neighborhood Vq. According to the construction of the approximate

solution A{y), one can choose gt = gj = g with g independent of the positions of

{qi}]<i<2k smce Fa is a harmonic 2-form valued in the Lie algebra of SU(2). Set

Seven= ^even = -(P+FAo(qj),ffgJF+(N)gJl)

Here Qodd and QeVen are positive constants since by assumption ^Ili^JI = 0 along

the geodesic C and ＼P±Fa0＼> 0 on that geodesic, choose {qi＼＼<i<2kin the
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geodesic C and dist.{qt,qi+{)= 1 = d. Set

a2 _ =2 _ f).
5odd = si=odd ~ i£/=even

(4.7)

(4.8)

― iseven

s2even

{

Q(gF+(N)g-＼gF+(N)g-l)

192Q

s2

11/2^1-1 , ＼

= Qodd 192Q

[＼l2d-2l5)-l

E

/=0

1

[l/2<f-2/5]-l

E

/=0

1

(2/+I)4

r

2

(2/ +I)4

r

Here Sodd and seven are constants which satisfythe following estimates:

0 < C＼ < Sodd,Sevea< Q,

where C＼ and Cj are independent of k.

Set j> = {(J,-,^,&)£i}eJV2, here j,-=odd= Jodd and i,-=even= Jeven-It is not

hard to see that when k is large enough H at y e Nj takes the criticalvalues.

The gradient of H, WH, is close to the smooth section on V ―>N2. Actually,

S/H is first order term of the Taylor's expansion of the smooth section on

V -> N2. Set f^{y) = V/T, f£(y) =ft{y) - VH. In terms of the expansion of

Yang-Mills functional restricted to the parameter space N2, it is not difficultto

check thatf* is the higher order term. Suppose H takes the critical

ye {&,%,&)*!, then f＼(?) = 0. By the direct calculation,V/^-

following expression:

(4.9) VfUy)=Qco(s3)?odds1eveT1d4

0 128Cri

e

i

<x=2

(

■

128Cr≪

0 960CU

0 960C*

(-

I
- l92CsE2kx2k

-1

/=0

(-

1

(2/+I)4
hkx2k ― E2kx2k

[i/id-y^-i j

S
(5^7/2'xM

[＼/2d-^}-＼ j

h (2/+1)4

[＼/2d-2l5]-＼

E

/=0

1

(2/+I)4

)

E2kx2k
I

hkxlk + E2kx2k

hkxlk ― E2kx2k

)

)}

value at

has the
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Here Cs, Ct* and Cxt are positiveconstants,hkx2k is identity,and E2kx2k is

(4.10) Eij

....,l .-,,.4 if i = odd, j = even and
＼(i-j)mod2k＼ J

＼{i-j)mod2k＼<2[＼d-2l5}-＼,

0 for any other case.

By using the Fourier transformation,a prioriestimatesfor the eigenvaluesof

Eik-xikare given as follows(cf.[27]):

Proposition 4.1. Let E2k*ik be the 2kx2k matrix which is defined by

(4.10). For Eikxik, there existthefollowing properties:

1. The eigenvaluesof Eikxik can be writtenas follows:

(4.11) h 2
I'^'H cosl(i-l)(2l+ m]

h (2/+1)4
for 1 < i < 2k;

[l/M-vi-i .

(4.12) A_ = 2 2 ―_,;

1=0 {2.1 + 1)

and

(4.13) ＼X(＼> ＼cos(i- 1)^1, for 1 < i < 2k.

2. If k ― even, # w ≪or ZiarJ ?o see that Xk/2+i ― 0 and hk/2+＼ ― 0 flW^ the

corresponding null space is spanned by the following two eigenvectors:

(4.14)

{ M = (1,0,-1,0,.. .,1,0,-1,0)

i; = (0,1,0,-1,...,0,1,0,-1)

3. If k = odd, E2kx2k is a non-degenerate matrix.

The proof is referredto [27].

According to Proposition 4.1, a priori estimatesfor the Hessian f£―VH

are given as follows:

Proposition 4.2. Let N2{s,q,g) be a parameter space definedin Section3.

Fix y = {(si^q^gi)^} e N2 such that at which H {the firstorder term of the

Taylor's expansion of Yang-Millsfunctional) takes a criticalvalue. Then the

Hessian, Vf}(y) = V2i^L, at y is of thefollowing properties'.
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1. When k ― even, Vf} (y) has a two dimensional null space which arisesfrom

the parameters Si, and other non-zero eigenvalues are of the order O(d).

2. When k = odd, the Hessian V/^1(y) contains five null eigenvectors which

arisefrom the parameters (qt,T}), and the order of other non-zero eigenvalues is

(9{d) too.

Proof. This is a direct consequence of Proposition 4.1, the proof is

omitted.

We can use the gluing procedure developed in thissection to establisha

global setting.According to thisglobal setting,we construct the approximate

solutionspace N2(w,p,q,k) thatinvolves many parameters,in our construction

N2 is diffeomorphic to

2k
TT{(0,1) x FlM xsu{2)SU(2)}/TAo xItxSt
1=1

where F^ are the frame bundles of bundles A+Af of the self-dualand anti-self-

dual 2-forms on M, Ta0 is the isotropy group of the connection Aq, and 2^ is the

symmetric group on k letters.Then we can produce a new non-minimal solution

as a small perturbation of some approximate solution A in Ni-

Theorem 4.3 (Theorem). Let M be a compact oriented Riemannian 4-

manifold. Let Aq be an isolated non-minimal Yang-Mills connection on M with

the structure group SU(2) such that d＼P+FA0＼= 0 along a simple closed geodesic

and ＼P+Fao＼> 0 on this geodesic. Then there is a constant K > 0 such that for

any positive even k > K, there exists an irreducible non-minimal Yang-Mills

SU(2) connection with the same degree as Aq.

Remark here that the resultabove shows that,if we found an isolatednon-

minimal solution to the Yang-Mills equations on M, by using the gluing

procedure and perturbation method we can construct an infinitenumber of

gauge inequivalentirreducibleSU (2)-connections over M which are the non-

minimal solutionswith the same degree as the background connection.None of

the solution found above are symmetric with respect to the Lie group actions

on the base manifold M. In fact,our solutionshave a uniform background

curvature, with concentrations near points, spaced evenly along a geodesic.
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Near half of these points, the solution looks self-dual,and near the other half,it

looks anti-self-dual.

One more remark that it is a technical condition that one requires that

d＼P+FAo＼= 0 and ＼P±Fao＼> 0 along a simple closed geodesic. Of course Sl x S3

and S2 x S2 are homogeneous spaces and the harmonic curvatures of back-

ground connections will satisfy that technical condition, so those examples in

[271 are OK.

Proof of Theorem 4.3. The strategy for proving the theorem above is

to generalize the approach in [21]. Schematically, the approach is the following

one. According to the preceding global setting,we have constructed a smooth

section, /j, of V ―>Ni- Our method for finding the zero points of fa (i.e.

Equation (4.4)) will be to decompose /* into /* +/? and to reduce the question

of finding the zero points of the given smooth section to the equations for the

non-degenerate criticalpoints for H.

Note that f% =f£ +f£ is a smooth section of V ―>･N2. Suppose that

y = {{stAvQifiLxS is a critical point of H, then f£(j) = 0. According to

Proposition 4.2, when k = even the tangent map V/^(y) of/^1 contains two null

eigenvectors

{ w= (1,0,-1,0,..., 1,0,-1,0)

1;= (0,1,0,-1,... ,0,1,0,-1)

Let V ― {t＼u + t2v＼{t＼,t2) e ffl2} be the null space of Vf^(y) spanned by u and v.

Denote by T±N2 the orthogonal complement of T in TyNi, it is non-degenerate

and so can use the implicit function theorem such that/j =/* +/? is zero in the

direction T±. Let T = {t＼u + tiv＼＼t＼＼+ ti＼< e) be the small neighborhood of

the origin at V, here e > 0 is small enough. For any h{t) = {t＼u + t2v} e T,

let y{t) = {{si{t),qi,gi)^:l} such that {*{*)}imu = WizizTk + A(0- Hence

5,-(0)= 3i. In terms of the implicit function theorem, by the small perturbation

one may find y'(t) = {{s^q^t)^))^} eN2 such that .£(/(?)) =0 which is

restricted to T^-Ni- Therefore the problem of finding the zero points of fz(x) is

reduced to the problem of finding the critical points of Yang-Mills functional

restricted to the parameter space T.

If |r|is small enough, then ＼y(t)-y'(t)＼is small too. Consider the Taylor's

expansion of Yang-Mills functional restricted to y'(t)in the parameter t
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YM(y'(t) = YM(An) + I6nk2

+

+

+

E

i=odd

E-

even

i=odd

+ £

y=even

CO

d4QoM^(t)

J ＼(i-j) mod 2kf

-48co(*V ;WiW―j
|(.;-0 mod 2k＼4

U P' + l)4

[l/2<f-2/5]-l

h (2'+i)4

[l/ld'^-l j
£

/=o

[i/2d-y5]-i

(2/+I)4

r

}

^3)

2

d4Qewensj(t)
2

£

7=even
j=[i±2(l+l)]mod2k

0</<[l/2rf-2/5]-l

£

i=odd
i=[j±2(l+l)]mod2k

0</<[l/2rf"2/5]-l

+ kC(t)d5hnd

YM(Ao) + l6n2k

{

{

1920

1926 J2

1=0

CO

2

(^)

2

- 96kQo)(s3)d4

- 96kQco(s3)d4

+ kC{t)d5hnd.

Since sodd and seven are chosen as follows

■Sodd~~
6even

^even ― fcsodd

1

(2/+I)4
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YM{y'(t)) = YM(A0) + I6n2k

-96w(s3)kQd4(s20dd + t2l)t22

-96£≫(/)^4(4en + ^)4

+ kC(t)d5hnd

= YM(FAo) + I6n2k

[l/2d-2'5]-l

-96eo(s3)Qd4k J^

1=0

ii/2d-ys}-i .
＼r !
U (2/+1)4

[l/2^-2/5]-l
.

Y" !―
U (2/ +1)4

1

(2/+I)4
{4er/?+4^2 + 2?^}
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+ kC{t)d5hnd.

In terms of the expansion given above, by using the implicit function theorem

one may find small I = {I1J2) e T such thaty=yf(t) = {(s'i(t),q'i(i)i9'i(t))l=i}eN2

is a criticalpoint of Yang-Mills functional, i.e.ft(y) = 0. Therefore, for suf-

ficientlylarge even integer k, one may find a non-minimal solution, A(y), to the

Yang-Mills equations on M with the same degree as the background connection

Aq. The proof is complete.

Remark that as a direct consequence of the above theorem, one can construct

an infinite number of non-minimal irreducible connections over S2 x S2 and

Sl x S3, for details,refer to [27]. For the base manifold Sl x S3, the existence

of non-minimal solutions to the Yang-Mills equations has already been

established by T. Parker [12] via different methods. His basic technique is to

consider with a symmetric group action that reduces the dimensionality of

Yang-Mills equations, and to use the min-max argument.

5. Some Remarks

We have established a method for finding the non-minimal solutions to the

Yang-Mills equations on the generic 4-manifolds. In our construction, the key

step is to find an isolated non-minimal Yang-Mills connection as a background

connection. In fact, for a generic 4-manifold M, it is possible that there are no

reducible self-dual or the anti-self-dualconnections over M. D. Freed and K.

Uhlenbeck pointed out in [10] that if the intersection matrix of a 4-manifold is

indefinite, then for an open dense set of metrics on the manifold, there are no
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line bundle solutions to the self-dual or anti-self-dualequations. Of course, there

are stillsolutions to the Yang-Mills equations in thiscase by the Hodge theory,

so the indefinite case provides an example where the topological lower bound of

Yang-Mills functional is not attained and there exist the non-minimal, reducible

SU(2) Yang-Mills connections which are isolated or become a compact

manifold.

But, in general, the condition that c!＼P+Fa＼= 0 along a closed geodesic can

not be satisfied.For the general cases, we have only partial answer. If one knew

that ＼Fa＼never vanished on M, then one could conformally change the metric to

make ＼FA＼constant, and find the Yang-Mills fieldsfor this new metric; since the

Yang-Mills equations are conformally invariant these would be the Yang-Mills

fields for the original metric.

There is an obstruction to having ＼Fa＼never vanish on M. A theorem of

Hirzebrach and Hopf (Math. Ann. 136 (1958), 156-172) shows that there is

no non-vanishing section of A2T*M unless 3t + 2/ and 3t ―2/ lie in

O = {I(W, W)＼W e H2(M), W=W2 + K,Ke 2H2(M)} where t and x are the

signature and Euler class of M, Wi is an integral lift of the second Stiefel-

Whitney class, and /(,) is the intersection form on the 4-manifold M. If this

condition is not true then Fa eT(A2T*M) must vanish somewhere.

It is a long-standing question whether there exist the Yang-Mills fieldsover

S4 which are neither self-dual nor anti-self-dual.Until recently, the only known

the finite-energy solutions to the Yang-Mills equations on the round 4-sphere

were the self-dual and anti-self-dualsolutions [1],[2].Now, L. & R. Sibner and

K. Uhlenbeck [20]; T. Parker [12]; L. Sadun and J. Segert [16],[17] and G. Bor

[6] have found the non-minimal solutions over S4 via the reduction of

dimensionality. In particular, Sadun and Segert [16], [17] considered the

quadrapole bundles which are a family of 517 (2)-equivariant quaternionic line

bundles over S4 that originally arose in quantum mechanics. They used the

explicit O.D.E. computations to show the most of these bundles admit no self-

dual or anti-self-dualYang-Mills fields(Similarly, one can get same results by

the equivariant Morse theory [13].).More precisely, they proved the following

results:

For any C2 # +1, there exists at least one non-minimal solution to the

Yang-Mills equations on the round 4-sphere S4.

It is worth remarking here that we do not know whether any exists for

C2= ±1.

We guess that our theorem can be applied to the construction of Sadun and

Segert. If one choose Sadun and Segert's equivariant connections as the
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background connections, then the better existences may hold. It is stated below:

For any C2 ^ +1, there exists in infinite number of non-minimal SU{2)-

Yang-Mills connections over the round 4-sphere S4.

We would like to point out that in order to use our construction, one

reauires the following technical lemma.

Lemma 5.1. The moduli space of non-minimal SU{2)-Yang-Mills connec-

tionsover SA given by Sadun and Segert should become the isolatedmanifolds

which depend only on the conformal dijfeomorphictransformationgroup of SA.

There are a number of possible approaches for proving the lemma given

above. We have not yet been able to push any of these through to fruition. We

shall review one fairly convincing approach briefly.

The most convincing approach so far is the direct method of the calculus

of variations. What one has to do is studying the null spaces of the Hessian of

Yang-Mills functional at these background connections by the separation of

variables (cf. [26], [27]).

First, we brieflyrecall the main features of Sadun and Segert's construction

[17]. Sadun and Segert consider the connections that are equivariant with

respect to a symmetric group SU(2), that acts on S4 c Ms via the unique

irreducible representation. The principal orbits are three-dimensional, reducing

the Yang-Mills equations and the self-dual equations to the systems of ordinary

differentialequations on an interval with certain singularitiesat the endpoints.

They firstprove the existence theorem for the systems reduced from the Yang-

Mills equations. Then they are able to exclude the self-dual solutions out of list

of equivariant solutions.

Now let us return to Lemma 5.1. According to Sadun and Segert's con-

struction, the principal orbits are three-dimensional, and there are two excep-

tional orbits of dimension two; meanwhile there existsa closed geodesic segment

of length n/3 that intersects each St/(2)-orbit exactly once [17]. Hence, Sadun

and Segert's non-minimal Yang-Mills connections may be viewed as the SU(2)-

equivariant solutions of Dirichlet boundary value problems for the Yang-Mills

connections over a compact 4-manifold with the smooth boundaries, the

equations in the interior are the fullYang-Mills equations [11]. We should study

the eigenvalues of Dirichlet problems on the compact 4-manifold with the

smooth boundaries. In particular, we are interested in the null spaces. Our basic

method is stillto use the direct calculation by the separation of variables [26].

Usuallv. it is more comolicated.
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On the other hand, we note that the Yang-Mills equations are invariant

under the action of the confomial diffeomorphic transformation group of the

base manifold. Thus the orbit of non-minimal Yang-Mills connection under the

action of the conformal diffeomorphic transformation group of the base

manifold is a family of non-minimal Yang-Mills connections. Since Sadun

and Segert's connections are the 5'(7(2)-equivariant connections over S4. The

symmetric group SU{2) is an isotropy subgroup of the conformal diffeomorphic

transformation group of S4. Hence Sadun and Segert's connections are of at

least twelve-dimensional parameters [18].

Finally, we make some remarks before ending this article.In order to use

our construction, the key ingredient is that the background connections are

isolated points or isolated finitedimensional smooth manifolds. In principle a

good understanding of the parameter spaces for the non-minimal solutions to

the Yang-Mills equations would enable one to use the Morse theory for finding

the higher criticalpoints of Yang-Mills functional, or at least to get qualitative

information about them.

Question. Are the moduli spaces of non-minimal solutions of Yang-Mills

equations isolated points or isolated finitedimensional manifolds which depend

only on the conformal diffeomophic transformation group of the base manifold?

The progress in understanding these spaces has been made recently be Freed

and Uhlenbeck [10], Wang [26], [27], and Sadun and Segert [18].It seems very

likely that the answer to Question is affirmative, at least for cases S2 x S2 and

Sl x S3 [26],[27]. Also, Sadun [15] used the numerical method to discover that,

after the gauge fixing, each component of the non-self-dual moduli spaces

constructed by Sadun and Segert appears to consist only of the conformal

copies of a single solution.
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