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THE INVERSE SURFACE AND THE OSSERMAN

INEQUALITY*

By

Zuhuan Yu

0. Introduction

In this paper, we shall work with surfaces of constant mean curvature one

in hyper-bolic 3-space. We abbreviate constant mean curvature one by CMC-1.

These surfaces share many properties with minimal surfacesin Euclidean 3-space.

A strikingresultis that these surfaces have a hyperbolic analogue of Weierstrass

representation formula [2].Another important property is that the total curvature

of CMC-1 surfaces is not necessarily an integral multiple of An, and does not

generally satisfy Osserman inequality [4].

Let / : M2 ―>H3(-l) be a CMC-1 immersion. Then there exist a null

holomorphic immersion F : M2 ― SL(2, C), such that / = F ■F*, where M2 is

the universal cover of M2. By taking the inverse of the matrix F, we can

construct a new CMC-1 surface f_x : M2 ―>H3(―l), callit the inverse surface

(or dual surface [5]). Although the inverse surface is defined on the universal

cover M2, its metric ds2_xis well defined on M2. So we have two metrics on M2,

and they have the same completeness [6].Umehara and Yamada have shown that

if the surface / : M2 ―>H3(― 1) is complete and of finitetotal curvature, then the

following inequality holds

J- [
k-XdA^<x(M2)-n, (0.1)

where n is the number of ends of the original CMC-1 surface, the equality holds

if and only if all the ends are regular and embedded [5].

By carefully observing, we may find that the condition of finite total cur-

vature is not necessary. Indeed we have the following theorem
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Theorem. Let f : M2 ―>H3(-l) be a complete CMC-l immersion, then the

Osserman inequality (0.1) holds.

I would like to thank Prof. H. S. Hu and Prof. Y. L. Xin for theirkind

guidance, furthermore also to thank the refereefor his valuable comments and

supplying concise proofs of Proposition 2.1 and Lemma 3.2.

1. The Inversesurface

Let / : M2 ―>H3(-l) be a complete CMC-1 immersion, M2 the universal

cover of M2, which possess a holomorphic liftF : M2 ―>SL(2, C), such that

/ = F ■F* : M2 ―>H3(―1) [2].F satisfiesthe followingequation

F~xdF
＼i -g)

CO
(1.1)

where g and co are meromophic function and holomorphic 1-form defined on M2,

respectively.The pair (g, co) is called the Weierstrass data of the surface /, and

Q = codg is the Hopf differential.By using the Weierstrass data, the firstand

second fundamental form ds2 and $ can be expressed as

ds2 = (1 + ＼g＼2)2coco, (1.2)

d> = -co dg - codg + ds2. (1.3)

From (1.2) and (1.3), we easily know that the holomorphic quadratic differential

Q is well defined on M2. Moreover, the hyperbolic Gauss map can be written as

G : M2 -> CPl, G{z) - [dFx,dF2], (1.4)

here we have used the notation

＼F, Fj
detF = 1.

The pseudometric da2 = ―kds1 can be expressed as

da>= MgT°. (1.5)

(i + kl2)2

By (1.2), (1.5) and the definition of Q, we also have

da2 ■ds2 = AQ ■Q. (1.6)

In what following, we give the definition of the inverse surface (see [5] and

[6])-
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Definition 1.1. The inverse surface f_x : M2 -> H3(-l) of the CMC-1

surface / : M2 ―>H3(―1) is defined by

u = (F-i).(F-r,

where F is the holomorphic liftof/, and F"1 is itsinverse matrix.

Note that the inverse surface is defined on the universal cover M2, generally,

which can not be defined on M2. About this problem Umehara and Yamada

showed that it can be defined on M2 if and only if the second Gauss map g is

single-value on M2 [5].

Now we demonstrate some important relations between the inverse surface

and the original surface, their proofs can be found in related papers, so we omit

them here.

Proposition 1.2 [6]. f_x is complete if and only if f is complete.

In [5] the completeness of the inverse surface is also shown under the

hypothesis that all ends are regular. Another relation is

Proposition 1.3 [5]. The hyperbolic Gauss map, Weierstrass data and Hopf

differentialof the inverse surface can be represented as

G-x 9, 9-1 = G, CD-i

By (1.7)one can give the inverse metric

ds＼

dG
G-i = -Q

= (l + ＼g.l＼2)2w-l-w.l=(＼ + ＼G＼2)2
dG

Q_

' dG

(1.7)

(1.8)

Because G, Q are both defined on M2, ds2_lis also well defined on it. Hence we

may compute total curvature of the inverse metric on M2. Set do2_x ――k-＼ds2_x,

which is the pseudometric of ds2_xinduced via G : M2 ―>･CPl

do2_x
4 dG ■dG

(l + ＼G＼2)2

Note that g-i = m-i dg~＼= ―Q. Combining (1.8) and (1.9)we get

(1.9)

(1.10)
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2. Monodromy conditions

Let / : M2 ―>//3(-l) be a complete CMC-1 immersion. We have known

that the inverse metric ds2_Yis well defined on M2. So one can compute total

curvature ＼Mlk-＼dA-＼, where k-＼is the Gauss curvature of/_l5 and dA-＼ is the

volume element of f_x. If JM2 k-＼dA-＼ is finite,then M2 is conformal equivalent

to a compact surface M with finite points {p＼,-･･,Pn} removed, i.e.

M2 = M ＼{p＼,.
■■
,pn}. The point /?･(7 = !,...,≪) corresponds to an end of/

At this time we immediately see that the hyperbolic Gauss map

morphically extended across all the ends {px, ...,/>,}.Consequently

curvatureis an integralmultiple of An.

is mero-

the total

Notice that the Hopf differentialQ-i = ―Q is also defined on M2. Like

proposition 5 in [2],we have the followingresult

Proposition 2.1. If the inverse metric ds2_l is of finite total curvature on M2

then the Hopf differential Q-＼ can be meromorphically extended to M .

Proof. We firstnote a fact which is contained in the proof of Theorem 9.3

in [3].

Fact 1. Let A* = A＼{0} be a punctured unit disk on C and /, g holo-

morphic functions on A* such that

dS2:=(l + ＼g＼2)2＼f＼2＼dz＼2

is positive definiteon A* and complete at the origin z = 0.If g is meromorphic at

z = 0, so is /.

Since da2_l = G*da＼ [da＼ is the Fubini-Study metric on CPl = CU{oo}) is

of finitearea, the hyperbolic Gauss map G must have at most pole, by the Great

Picard Theorem. Since ds2_xis complete by Proposition 1.2,the above fact yields

that co-i has at most pole at the end. So the Hopf differentialQ-＼ = co-＼dG has

the same property. □

In order to prove the main result, we should well understand the holo-

morphic representation around the end. Take a coordinate neighborhood of the

end pj, A* = {z e C ＼0 < ＼z＼< £,z(pj) = 0} such that

g-i = G = z", n>＼,

co-＼― zvcoq(z)dz, coq(0) # 0,
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where n and v are integers, coq{z)is a holomorphic function on Ae = A* U {0}

The holomorphic representation F : A * ―>SL(2, C) satisfies

V 1 -9-1/

(2.1)

By a direct calculation,one easily get the following result,for details one can

refer to [4].

i% F4 satisfy the equation

CO-i

F＼, F2 satisfy the equation

Y"

where ' = d/dz. Notice that

(ox

CO

l)

1

V

z
+
COq

(#-l≪-l)'

91l<t>-l

Y'-g'^to-iY

{gliCOiY _ n + v
i ― r

= 0

^,
<?>_!=/IZ^COo

9-＼G>-l Z 0)0

(E.2)

Hence, the coefficientsof (E.I) and (E.2) are all meromorphic functions on Ae.

Since we already assume that ds2_x has finitetotal curvature on M2, by prop-

osition 2.1, then the Hopf differential2-1 is meromorphic on Ae. Now assume

that the Order of Q-＼ satisfiesOrdoQ-＼ > -2. Thus equations (E.I) and (E.2)

have regular singularity at the point z = 0. If write

Q-i =qdz2 =

(
00
£

y=-2

qj

A

dz2

by local theory of the ordinary differentialequation [1], we obtain the indicial

equations of (E.I) and (E.2) as follows

t2-(v+l)t-q_2 = Q, (e.l)

t2-{2n + v+l)t-q-2 = 0- (e.2)

Let kj and kj ―mj are solutions of the indicialequations (e,-,j = 1,2). Then the

fundamental system of the solutions {A^A^} of (E.I) and {Y＼, Y2} of (E.2) can

he written as
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Xi =zAl^(2), X2=z^-m^2(z)+klXllogz

Yx =zhr]x(z), Y2=z^m2rj2{z)+k2Yl＼ogz

(2

(2

2)

3)

where £,-(())= 1, 77,-(0)= 1, (i = 1,2), k＼ and ki are constant.

Lemma 2.2. Let f : A * ― H3(―1) &e a CMC-1 immersion, which is complete

at z = 0, arcJ ?/?efo?a/ curvature of ds2_{ on A* w yz/t/fe.T/zew /:i= ki = 0.

Proof. If mi is not an integral number, then the fundamental system of

(E.I) must be in terms of

JT, =zAl£,(z), X2 = z^m^2(z).

So /ci=0 [1]. The same result will be hold for equation (E.2).

If mi is an integral number, without loss generality,assume mi > 0, and set

Ft, = buX] + b＼jXj, Fa = bj＼X＼+bi~>X').

We calculate

|F3|2 + |F4|2

= |6iiz(l*1+Ml)/2fi(*)+bn(z{v+l-m)/2Uz) +Mz(v+1+Wl^1(z)lnz)|2

+ ＼blxz^x+m^2^) +b22^v+]-mi)/2Z2(z) +k^v+l+m^2^(z)＼nz)＼2,

= |ftii^(lH-1+mi)/2^i(^)+ ^i2(z(v+1-Ml)/2^2(z))|2+ ＼bnhz^+l+m^2Uz)^z＼2

+

+

bnz^+l+m^2^{z)+bn(z{v+l-mi)/2^))}bnklz(v+l+^

/

Hx{z)＼nz

buZ(v+i+mi)/2£JZ) + bl2(z(v+1-^/2^ 2(z))}bnklZ(v+l+mi)/2Zi(z)lnz

Ill

+ ＼b2lz^+l+m^2^(z)+b22(z^+l-m^2(z))＼2 + b22k^v+1+m^2il(z)lnz＼2

IV

+ .2lZ(H-l+≪i)/2^i(z)+fe22(z(v+l-
,)/2^(z))]fe22^lZ(v+l+≪I)/2^1(z)lnz

V

+ &2lZ(v+l+'≪i)/2f1(z)+Z,22(z(v+l-^i) <^))]622Mv+1+Wl)/2£i(z)lnz

VI

Fix z = re'(e+2kn＼here k― ±1,±2, For convenience, assume 6 = 0. The

part,which is relativewith the number k, of the sum is
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I + II + III + IV+V+VI

where

= (|fei2|2+ |*22|2)|fci|2|^v+1+Wl^1(z)|2|lnz|2

+ (a + b)lnz+ (a + b)＼nz,

a = (bnz{v+l+mi)/2£i{z)+ bnz{v+l-m)/2)bi2klz(v+i+m^ Uz)

581

(2.4)

b = (b2iz{v+l+mi)/2^{z) +b22Z{v+l-mi)/2)b22kiz(v+[+^y2^{z). (2.5)

Since IF3I + ＼F4＼is single-valued on A*, then it is constant when k varies, we get

(i^i2|2 + |^22t2)l^i|2k(v+1+Wl)/2^i(^)!2(2^7r)2 + (a+^)(-2^Tr/) + (^T^)(2^7z:0 = 0.

Thus

(＼bn＼2+ M2)N Vv+1+Wl)/2£i(z)|2 = 0, JaTbj + (a + b) = 0. (2.6)

If k＼= 0, then the first equality of (2.6) holds, and (2.4) (2.5) yield the second

equality of (2.6). If k＼ # 0, fix z = re2kni, and r is much small. Since

|z(v+l+≪.)/2£1(z)|29fe0j

then

|^i2|2 + |^22|2 = 0, i.e. bl2 = b22 = 0.

It means that Ft, and F4 are linear dependent. Therefore g = ―dF^/dF^ is

constant, and hence / is flat. So we have that G is a constant. This contradicts

with G ― zn, n>＼, so k＼ = 0, similarly k2 ― 0. We complete the proof of the

lemma 2.2. □

Lemma 2.3. Let f : A* -≫H2(-l) be a CMC-l immersion, complete at

z = 0, ds^ of finite total curvature on A*. Then m＼, m2 must be integers or non-

inteqral real numbers, simultaneously.

Proof. We firstlyshow that if mi is an integer, then m2 is also an integer

and vice versa. By G = dFi/dFi, setting

Fi=anY＼+ an Y2, F2 = alx Yx + a22 Y2,

we obtain

,
=
(anz{2n+v+m2+l)/2rn(z) + fli2^2"+v-w≫+1)/2iy2(z))/



582 Zuhuan Yu

Since n and v are all integral numbers, from (2.7) we easily see that m＼ and mi

must be integral numbers simultaneously.

Secondly, we prove that when m＼ and mi are not integral numbers, they

should be real numbers. Using the representation

we obtain

LF3I2+ IF4I2 = ＼z*＼2＼bnt＼{z)+ bnz-m^2{z)＼2 + |zA'|W,(z) + bnz^Uz)?.

Put Xi =
2 h-m＼ =

(v+ 1) +4#_2 into the equation above, then

2

m2 + ＼F4＼2

= (＼bn＼2+ ＼bn＼2)＼Uz)＼2＼ziv+mi+l)/2＼2

+ (＼bn＼2+ ＼b22＼2)Mz)＼2＼z{v-mi+l)/2＼2

+ bnbl2^2Z(v+mi^)/2z{v-m^/2 + bnbntiZ2Z{v+mi=l)/2z{v-mi+l)/2

mi

+ b2lb22^2z{v+mi+l)/2z{v-mi+l)/2 + ^1622li^(v+Wl+1)/2^(v"l"I+1)/2- (2-8)

Fix z ― re'(e+2kn)5 r is much small, and k = ± 1, +2, For convenience, assume

# = 0. Furthermore

|z(v+wi +l)/2|2 _ e(2{v+l)+mi+mi)/2lnr+(mi-nn)kni

I (v―mi+l)/2|2 (2(v+l)―wj―nt＼)/2＼nr+(―m＼+rh＼)kni

z(v+ffn+l)/2z(v-wi+l)/2 _ e(2(v+l)+nn-mi)/2lnr+(mi+mi)km

z(v-An,+l)/2z(v-wi+l)/2 _ e(2(v+＼)+ml-ml)/2＼nr-{m]+mx)kni

Now, we set m＼ ― a + bi, and

h = (|^2i|2 + ＼bn＼2m＼＼ h = (＼bn＼2+ ＼b22＼2)＼Zi＼＼I = (*n^ + fcifc^ifc

＼F3＼2 + ＼F4＼2 = hxrv+a+le-2kbn + h2rv-a+le2kbn

+ lrv+le(blnr+2kan)i _i_Jrv+le-(b＼nr+2kan)i
(2.9)
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If b # 0, of course h＼ and h2 do not all vanish, the last two terms in (2.9) are

bounded, when k tends to oo, right side of (2.9) will be infinite.However,

1-^31+ |^41 has to be constant when k varies. This is a contradiction. So b = 0, it

means that m＼ = a + bi = a is a real number. Similarly mi is also a real number.

Lemma 2.3 is proved. □

Since b = 0, the terms containing k in (2.9) is the following

rv+1(/(cos 2kan + i sin2kan) + 7(cos 2kan ―i sin2kan))

= rv+l((/ + /)cos 2kan + {li - Ji)sin2kan)

― rv+l(2/icos 2&a7r ―2h sin2fca7z:)

where

= 2rv+1 sjl＼ + l＼ sin(0 + 2A:a;r)

l = h + ik, sin6 = , cos 0 = 2

If / # 0, as ＼Fs| + IF4I is not relevant with k, so a has to be an integral number,

this contradicts the hypothesis, thus / = 0.

Corollary 2.4. If m＼, ni2 are not integral numbers, then coefficients of

Fi (/= 1,2,3,4) satisfy

b＼＼b＼2+ b2＼t)22= 0, andi2 + ^21^22 = 0.

Lemma 2.5. If mi, m2 are not integral numbers, then following equations hold

m＼=m2 ― m, n = ―(v + 1),

ai＼{m - v - 1) ― bn(m + v+ 1), a2＼(m - v - 1) = b2＼{m + v + 1),

an(m + v + 1) = bn(m ― v ― 1), fl22(w + v + 1) = &22(w ― v ― 1).

Proof. By using G = dF＼IdF^ we have

, _ [anz^2n+v+l+m^＼{z) + al2z{2n+v+1-m2)/2rj2{z)}'

[bnz(v+l+m^2^{z) + bnz(v+l-miV2Z2(z)]r
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A directcomputation shows that

flll

f 2n + v+l+m2

where

bu

2

(

ni+^[)

v+l+mi

2

m＼ ―

Zuhuan Yu

z 2/2+ an

(
In + v + 1 - m2

Zl+zZ'1＼zm^2+bn
c

-

(v+ l)2+4#_2 >0, m2

2

+ 1-/M1

2

ni + zn'-A

£2+z<^z―/2

z-w2/2

(2n + v+l)2+4q_2 > 0.

Since m＼ and mi are not integralnumbers, then

v+l+mi v+1―wi 2n + v+l+ni2 2n + v+l― mi
2 2 2 2

(2.10)

do not vanish.

1). If an = 0, then bn =0. Otherwise bn #0, when z tends to 0, the left

hand side of the equation (2.10) converges to 0, and the right hand side is

divergent. This is a contradiction. In this case m＼ = mi must hold and hence

n = ―(v+ 1). Moreover applying rj2(0)= 1 and <M0) = 1 we get

fill
In 4- v + 1 + mi

2
= bn
v + 1 + m＼

2

2). If an # 0, then b＼i# 0. Assume mi>m＼. We multiply the equation

(2.10) by zm/1. When z tends to 0, the right side of the equation (2.10) tends to a

constant, and the leftside divergent, we get a repugnance, similarlym＼ > mi does

not hold.

Thus m＼ = mi and hence n = ―(v+ 1). Now put m＼ ―mi = m into the

equation (2.10)

an I
In + v + 1 + m

= bu

2

(

Take z ―>･0, we get

ril+zri[＼zm+ an(

v+ 1 +m

ani

2

2n + v 4- 1 ― m

Zl+zZ[＼zm + bl2

In + v + 1 ― m

2

)

= bl2(

(

2

v + 1 ―m
2

v + I ― m

2

)

r}2 + zri'2j

6+*k)

On the other hand, the coefficientsof zm on two side should be equal to each

other. If not, zm ―ho/h＼,ho and h＼are holomorphic functions. zm is a multiple-
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valued holomorphic function.This is a contradiction.So

an
In + v + 1 + m

= bn
v+ 1 +m

2

585

From zn ― dFi/dF^, the other equations can be verified.Lemma 2.5 is proved.

n

Next we prove the main resultin thissection.

Theorem 2.6. Let f : M2 ―>If3(-1) be a complete CMC-l immersion. In

the following three conditions any two conditions imply the another,

i) lMlk-idA-＼ is finite,

ii) jM2 k dA is finite,

iii) Ordp.Q> -2, C/=l,2,...,/i).

Proof. In [2] Bryant has shown that i) is equivalent to iii) under the

condition ii). So we only need to prove that i) and iii)imply ii). It is sufficient to

prove that JA, kdA is finite, A* is a coordinate neighborhood near the end

Pj (j = 1,2,... ,n). By Lemma 2.3, m＼ mj are integral numbers or both are not

simultaneously.

1). m＼ and mj are integral numbers. The second Gauss map a is

9
h2llxz-1^ + &2,£i+ b22{Xl - mi)z-m*-lZ2 + b22z-m^

(2.11)
bnhz-^i + bl2Z[ + bn(h - /ih)z-"i-^2 + bl2z-m^'2

From (2.11) we know that g is a meromorphic function on A£. Moreover

- ＼^kdA is the area of the image of g : A* ― CPl, so JA. kd is finite.

2). mi and W2 are not integral numbers. By lemma 2.5 m＼ = mi = m > 0 and

n = -(v + 1), using corollary 2.4 we can prove that JA, fa/ is finite in three cases

as follows.

Case 1. If b＼＼# 0, 6i? = 0. Then ^?i = 0, ^22 ^ 0. The second Gauss map is

Q = -

Take A* very small such that

1

bniti + zti)

z">bu(Zi+zZ[)
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for all z e A*. Consider a conformal

w(z) ■
(

It is obviously that

w'=
( *22(fr+*&

So w'(0) # 0. Thus on

map is

It is clear that

)

transformation w : A£―>A

bnfa + zti)

M£l+2tf)

1/w

＼bn(Zi+OJ

the new coordinate

/

e

I/ml '

neighborhood A' the second Gauss

l_

f
i ^

f 4m2＼w＼2{m~l) dw
■
dw

kdA = ― =―=

is finite.

Case 2. If b2X # 0, bn = 0. Then b2X # 0, b22 = 0. That is similar with

case 1.

Case 3. If bn ± 0, bn * 0. Then b2＼# 0, b22 # 0. We compute the second

Gauss map

and

9

(b2lZlZm + b22Z2) +

"fibu

b2xzm + b2xzm+l?;[+b22z£2- bn^i

&m + b12{2)+ jbnzm + bnzm+lZ[ + bl2ztr2- %bl2t2

0(0)
v±lfr22_|fr22 bji

^12-^12 bl2
#0.

By ds2 ―(1 4-＼q＼2)2(ocowe get Ordnds2 = Ordnco. On the other hand

(o = Fx dF3 - F3 dFx

z l m(v+l){anbni2ri2 + anbn^r}lz2m + zm(anbn^ri2 + anbi2^r}i)

+ (■■■)}dz

Ord0 ds2 -m- 1 (2.12)

zm+l

When z ―>0, the value of (･･･) is finite,so we get Ordoco = ―m ―1, hence
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By hypothesis Ord0g = Ord0fi-i > -2, when g_2 = 0, mi, m2 are integral

numbers, thus Ordo(? = -2. Note that

Ord0 ds1 + Ord0 da2 = Ord0g = -2. (2.13)

In conjunction with (2.12) and (2.13) we get Oid^da2 = m - 1, m > 0. Thus

JA,kdA = ―JA≫da2 is finite.

Up to now we have proved that total curvature around all the ends is finite,

so ii)holds. Theorem 2.6 is proved.

3. Qsserman Inequality

In thissectionwe prove the main result

□

Theorem 3.1. Let f : M2 ―>H3(―1) be a complete CMC-l immersion, then

the Osserman inequality

Ik
k-＼dA-＼ <x(M2)-n (3.1)

holds, where n is the boundary number of the surface f

In order to prove Theorem 3.1, we need to establish a lemma as follows.

Lemma 3.2. Let ds^ be of finite total curvature on M2. Then the inequality

OrdPjda2_x > OrdPjQ-! + 1 (3.2)

holds, where Pj corresponding to an end of f.

Proof. We apply the following fact to prove the lemma.

Fact 2 [5, Lemma 3]. Let ds2_xis of finitetotal curvature on M2. Then the

following inequality holds

OrdPjda2_x > Ordp.Q+＼.

Suppose that OTdPjda2_l < Or&PjQ-＼ + 1. Since OidPj da2_x > ―1, we have

Ord^g-i > -2.

Since we assume that do2_x is of finite total curvature at z = pj, so is ds2 by

Theorem 2.6. Thus we get a contradiction by the above fact 2. Lemma 3.2 is

proved. □
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We have the following corollary

Corollary 3.3. OrdPjds2_x < - 2.

Proof of Theorem 3.1. If ds^ has infinite total curvature, the result is

obviously. If ds2_lis of finite total curvature, by Corollary 3.3 and using the

method in [4], the Theorem 3.1 can be proved. □

Now let ds2_x be of finite total curvature, and the equality in (3.1) holds.

This means Ord^. = ―2 at every end pj, (j ― 1,2,...,≪).Because OrdPj da2_l =

n ― 1 > 0, and Ord^.^-i = OrdPjda2_l + OrdPy.ds2_x,then the inequality

Ord^Q-i > -2, y = l,2,...,n

holds. By this fact and applying Theorem 2.6 we have that the total curvature of

ds2 is finite.Then we obtain

Corollary 3.5 [5]. If the inverse metric ds2il is of finite total curvature, then

the equality in (3.1) holds if and only if all the ends of f are regular and embedded.
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