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NORMAL FORMS FOR DERIVATIONS IN ARAPS Alr

By

Kazuma IKEDA

Abstract. In this paper, we shall consider normal forms for deri-
vations in Al7, where Al is a system introduced by Arai (cf. [4])
and its consistency implies the consistency of Feferman’s ID; (cf. [6].
We shall give two normal form theorems for derivations in Al;. One
(Theorem 1) implies the consistency of Al;. The other {Theorem 2)
implies the w-consistency of Al;.

0. Introduction

In this paper, we shall consider normal forms for derivations in Al;, where
Al; is a system introduced by Arai (cf. [4]) and its consistency implies the
consistency of Feferman’s IDg (cf. [6]).

Normal forms for derivations in LK have been studied by several authors (for
example, Gentzen [7], Mints [10], Arai and Mints [5]). Gentzen’s cut elimination
theorem (cf. [7], [11]) is one of the most famous normal form theorems for
derivations in LK. In [10], Mints gave an extended form of Gentzen’s theorem.
Moreover, extended forms of Mints’ theorem were given by Arai and Mints (cf.
[5D-

And also, normal forms for derivations in arithmetic formalized in the
sequent style have been studied by several authors (for instance, Hinata [8], the
author [9]). Hinata’s theorem (cf. [8]) is considered as an analogue of Gentzen’s
theorem and implies the consistency of arithmetic. In [9], the author gave an
extended form of Hinata’s theorem, which is also considered as an analogue of
Mints’ theorem and implies the w-consistency of arithmetic.

In this paper, we shall give some normal form theorems for derivations in
Al;. To prove these theorems, Takeuti’s system of ordinal diagrams O( + 1,2)
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(cf. [11]) will be used. O(¢ +1,2) is the structure consisting of the set of objects
called ordinal diagrams and the well-orderings <; (ieI) over the ordinal dia-
grams, where [ is the well-ordering set (¢ + 1)U {c0}, whose ordering is that of
&+ 1 with the largest element co.

In [1] and [4], Arai showed that the consistency of Al; can be proved by
transfinite induction along <o up to the ordinal diagram (&,1,0) but can not be
proved by transfinite induction along <, up to any a, where « <; (&,1,0).

So, we want to give a normal form theorem for derivations in Al;, which
implies the fact that the consistency of Al; can be proved by transfinite induction
along <o up to the ordinal diagram (&,1,0). Theorem 1 given in Section 2 below
is just such a theorem. Moreover, it is considered as an analogue of Hinata’s
theorem (cf. [8]). Furthermore, we shall give another normal form theorem
(Theorem 2) for derivations in Al; in Section 2 below. It implies the w-con-
sistency of Al; and is proved by transfinite induction along < up to the ordinal
diagram (&, 1, 0%0). Moreover, it is considered as an analogue of author’s theorem
(cf. [9)).

1. The system Al

The system considered here is obtained from Arai’s original Al; (cf. [3], [4])
by some modifications. In this section, we explain the system Al; in detail.

DerINITION 1.1, The language % is the first order language whose non-
logical symbols consist of the following symbols:

1. Individual constant: 0;

2. Function constant: ’ (successor) and f for each primitive recursive function

E

3. Predicate constant: =.

The language £+ {Yy, Y1,c0,c1} is the language obtained from % by
adding a unary predicate variable Y, and a binary predicate variable Y; and
individual constants ¢y and ¢;.

Let ¢ be a fixed ordinal and let < be a primitive recursive well-ordering on a
primitive recursive subset of the set of natural numbers and Ax-x® 1 a primitive
recursive successor function with respect to <. We assume that the order type of
< is {41 and the least element of < is the natural number 0. Moreover, we
assume the same properties with respect to < and @ as ones assumed in [4]. We
denote the largest element of < by £. Furthermore, “&” is also used to denote the
numeral corresponding to the largest element with respect to <. Let f be the
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characteristic function of <. Then, to denote the formula “f (s, 1) = 07, we use
the expression “s < ¢”.

Let ¢ be a closed term in %. Then v(¢) is used to denote the value of z under
the standard interpretation.

DeFNITION 1.2, A formula B(Y, Y1,¢0,¢1) in & + { Yo, Y1,¢c0,c1} is said to
be an arithmetical form if it includes no free individual variables.

DeriniTioN 1.3. The language % is the language obtained from £ by
adding unary predicate variables X;(i € w) and adding binary predicate constants
0% and termary predicate constants Q® for each arithmetical form B in
L +{Yy, Y1,c0,c1}. We write Qs for QButs.

DEFINITION 1.4. Al is a system formalized in the language ¥’ and consists
of the following initial sequents and inference rules:

1. Initial sequents

(a) Logical initial sequents:

D — D, where D is an arbitrary atomic formula.

(b) Mathematical initial sequents:
The sequents which consist of atomic formulas in % and are true under the
standard interpretation.

2. Inference rules

(a) Inference rules of LK without inference rules for o.

(b) Cut:

'—-AD DA-1II
LA AT

D is called the cut formula of this inference. This inference is said to be inessential
if its cut formulas are of the form Q%ts and include at least one free individual
variable.

(c) Inference rules for o:

> left o :right

A4 BT A AT—A . T—AB
A>BL = A ToAA-B ¢ TSAA4ASB




308 Kazuma IKEDA

(d) Term-replacement:
I'(s) = A(s
() - A®®)
s and 7 are closed terms such that v(s) = v(¢)

This inference is considered as a structural inference.
(e) Equality rule:
F'—-At=s T >AF(t) F(s),T = A
'—-A

t and s are arbitrary terms

t=s, F(t) and F(s) are called the auxiliary formulas and also F(f) and F(s) are

called the equality formulas. This inference is said to be inessential if t =s

includes at least one free individual variable and F(¢) is not identical with F(s).
(f) Induction rule:

I'— A ,4(0) A(a),T — A A(@) A@),T — A
T—-A

a does not occur in the lower sequent and ¢ is an arbitrary term

A(0), A(a), A(d') and A(r) are called the auxiliary formulas and also A(a) is
called the induction formula. a and ¢ are said to be the eigenvariable and the
induction term, respectively. This inference is said to be constant normal if its
induction formula contains at least one occurrence of its eigenvariable and its
induction term contains at least one free individual variable.

(g) Inference rules for Q®:

0% : left

F-At=<¢ fB(V,QSEt,t,s),F—»A
0315, T — A

V is an arbitrary unary abstract and ¢, s are arbitrary terms
03 : right

F—At<¢ T —ABX,0%,1s5)
I — A, OBt

X does not occur in the lower sequent and ¢z, s are arbitrary terms
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In O : left, t < £ and B(V, 0%, 1,5) are called the auxiliary formulas and Q®1s is
called the principal formula. In Q® : right, ¢ < ¢ and B(X, 0%, 1,s) are called the
auxiliary formulas, Q%ts is called the principal formula and X is called the
eigenvariable of this inference.

(h) Infernece rules for 0%:

0% :left Q% : right
t<u, T —A an 0815, T — A F—>At<u T —A Q%s
02ts,T — A 03,5, T — A T — A Q8 ts
s, t and u are arbitrary terms s, t and u are arbitrary terms

t < u and Qs are called the auxiliary formulas and Q% ts is called the principal
formula.
2. Normal form theorems and their applications

In this section, we explain our normal form theorems and their applications.
First of all, we give definitions necessary to state our theorems.

DermniTioN 2.1, Let I’ be a sequence Ai,...,A4, of formulas. Let
{i1,iz,...,ixy be a sequence of natural numbers such that 1 <ii < <---<
ir < n. Then, the sequence 4;,,...,4,, is called a part of I'. I'* is used to denote a

part of I'. Let A — Il be a sequent. Then A* — IT* is called a part of A — II.

DEFINITION 2.2. Let 7 be a derivation with the end sequent S in Al;. And
let S* be a part of S and C a formula in #. Then C is said to be (S*)-implicit if a
descendant (cf. [11]) of C satisfies one of the following conditions:

1. It is a cut formula.

2. It is an auxiliary formula of an equality or an induction.

3. It is in S™.

4. It is an atomic formula.
Otherwise C is said to be (S*)-expliciz. And also C is said to be implicit if a
descendant of C satisfies one of the above conditions 1,2. Otherwise C is said to
be explicit.

Let 7 be an inference in n. Then I is called (S*)-implicit or (S*)-explicit
according as its principal formula is (S*)-implicit or (S*)-explicit. And also 7 is
called implicit or explicit according as its principal formula is implicit or explicit.
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DEeFINITION 2.3.  Let 7 be a derivation and let v be a free individual variable
or a unary predicate variable in 7. Then v is said to be redundant in = if it occurs
in an upper sequent of an inference I and does not occur in the lower sequent of 7
and is not used as the eigenvariable of I.

DEFINITION 2.4. Let T be a subtheory of Al; and let 7 be a derivation in
Al . Then a logical inference I in 7 is said to be reducible with respect to T if one
of the auxiliary formulas of I is derivable (refutable) in T provided that it belongs
to the antecedent (succedent) of the sequent in which it occurs.

DeFiNITION 2.5, Let 7 be a derivation with the end sequent S in Al;. Then
m is said to be normal if it satisfies the following conditions:

1. It includes no cuts except inessential ones.

2. It includes no redundant variables.

3. It includes no inductions except constant normal ones.

4. It includes no equalities except inessential ones.
Let S* be a part of S. Then 7 is said to be (S*)-strongly normal if it is normal
and satisfies the following condition:

5. It includes no (S*)-explicit inferences which are reducible with respect to

Al

Especially, we say that n is strongly normal if it is (—)-strongly normal.

REMARK. Let 7 be a derivation with the end sequent S in Al;. Then, 7 is
(S)-strongly normal if it is normal.

Then we have the following theorems.

THEOREM 1. We can transform any derivation in Al into a normal one with
the same end sequent.

THEOREM 2. We can transform any derivation in Al into a strongly normal
one with the same end sequent.

In Section 4, Theorem 1 will be proved by transfinite induction along <o up
to (¢,1,0) and Theorem 2 will be proved by transfinite induction along < up to
(&,1,0%0), where (£,1,0) and (&,1,0%0) are ordinal diagrams and < is a well-
ordering over the ordinal diagrams in Takeuti’s system of ordinal diagrams
O(&+1,2) (cf. [11]).
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Theorem 1 implies the following corollary. Thus, by transfinite induction
along <o up to (£,1,0) we can show that AL is consistent.

CoroLLARY 1. AI; is consistent.
Proor. Similar to corollary 2 below. [ ]

Theorem 2 implies the following corollary. Thus, by transfinite induction
along <o up to (&,1,040) we can show that Al; is w-consistent.

COROLLARY 2. AI{ is w-consistent.

ProoF. Let A(a) be an arbitrary formula which includes no free individual
variable other then a and — A(7i) is derivable in Al for all numeral 7. Then it
suffices to show that Vx4(x) — is not derivable in Al;. Now, we suppose that
VxA(x) — is derivable in Al;. Then there exists a strongly normal derivation 7z of
VxA(x) —. Assume that = includes at least one non-structural inference. Note
that the end-place of n includes no free individual variables and hence it includes
no cuts. If an inference is an induction or an equality or an inference for Q® or
an inference for Qf, then it does not belong to the boundary of n. Thus every
boundary inference is a V: left whose auxiliary formula is of the form A(z) where
t is a closed term. But it is impossible, because 7 is strongly normal and — A(¢) is
derivable in AI; by our assumption. Thus n does not include non-structural
inferences. But it is clear that there does not exist such a derivation. So Al is
w-consistent. =

3. Preliminaries

In order to prove our theorems, we shall consider the system AI, obtained
from Al; by adding the following inference rule, called substitution rule,

r'Xx)— A(X)
(V) — A(V),

where X does not occur in the lower sequent and I'(¥) — A(V) is the sequent
obtained from I'(X) — A(X) by substituting a unary abstract ¥ for X. Then X is
called the eigenvariable of this inference and V is called the substituted abstract of
this inference. This inference is considered as a structural inference.
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DerFINITION 3.1.  The grade of a formula 4, denoted by g(A), is defined as
follows:

1. g(4) =0, if 4 is an atomic formula which is not of the form Q% ts.

2. g(Q%,ts) = 1, where s, t and u are arbitrary terms.

3. g(BAC) =g(Bv C) =g(B> C)=max{g(B),g(C)} + 1.

4. g(—B) = g(VxB) = g(3xB) = g(B) + 1.

DerFINITION 3.2.  The grade of an inference 7, denoted by g(I), is defined as
follows:

max{g(4)|A4 is an auxiliary formula of I} if I is non-structural,
g(I) = { the grade of a cut formula of 7 if Iis a cut,

0 otherwise.

DEeFINITION 3.3. Let # be a derivation in Al; and S a sequent in z. For any
natural number p, the height based on p of S in 7, denoted by A,(S;x) or simply
hy(S), is defined as follows:

1. h,(S) =p, if S is the end sequent of =.

2. Let S be one of the upper sequents of an inference 7 in 7 and S’ the lower
sequent of 1. Assume that £,(S’) is defined. Then

0 if I is a substitution,
h,,(S) =

max{h,(S’),g(I)} otherwise.

DerINITION 3.4.  The degree of a formula A4, denoted by dg(A), is defined as
follows:

1. dg(t = s) = dg(Xt) =0, where s and ¢ are arbitrary terms and X is an
arbitrary unary predicate variable.

2. dg(0®ts) = {v(t) @1 if O%sis closed and v(z) < &,

otherwise.
3 dg(0%t5) {v(u) if 0% ts is closed and v(u) < &,
& otherwise.

4. dg(—B) = dg(B).

5. dg(BAC) =dg(Bv C) =dg(B> C)=max<{dg(B),dg(C)}, where max.
is used to denote the maximum with respect to <.

6. dg(VxB) = dg(3xB) = dy(B).
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Let z be a derivation in AI,. Then the degree of a formula F in n, denoted by
d(F;m) or simply d(F), is defined as follows:

dg(F) if F is implicit in 7,
d(F):{ g(F) p

0 otherwise.

DEFINITION 3.5. Let 7 be a derivation in Al;. We say that a sequent S'in
belongs to the end-place of n if no non-structural inferences occur below S in 7.
And we say that an inference I in n belongs to the boundary of © or is a boundary
inference of = if the lower sequent of I belongs to the end-place of 7 and the
upper sequents of I do not belong to the end-place of 7.

DEFINITION 3.6. Let 7 be a derivation with the end sequent S in Al; and let
S* be a part of S. Let d be a mapping from the set of substitutions in 7z to the set
of ordinals less than £. For each substitution J in 7, d(J) is used to denote the
value of the mapping d at J and is read “degree of J.” Then the triple {(m;d;S*)
is called a derivation with degree if it satisfies the following conditions for each
substitution J in n and each formula B in the upper sequent of J:

1. The upper sequent of J belongs to the end-place of .

2. If B is (S*)-explicit, then it includes no eigenvariables of J.

3. If B is (S*)-implicit, then so is its successor.

4. d(B) = d(J) holds.

DerINITION 3.7. Let {m;d; S*) be a derivation with degree. Then {z;d;S*)
is said to be normal if it satisfies the conditions 1 ~ 4 in Definition 2.5. And also
{(m;d;S*) is said to be (S*)-strongly normal if it satisfies the conditions 1 ~ 5 in
Definition 2.5.

Since we shall use Takeuti’s system of ordinal diagrams O(¢ + 1,2) to prove
our theorems, we shall give some related definitions and propositions.

DermNiTION 3.8. Let i be an ordinal less than & Then we shall define the
order «; on ordinal diagrams. Let « and § be ordinal diagrams. Then

ax;feoa<;fforalli Xj=<.

39

a<; B is used to denote the statement “o «; f or a=p.
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NOTATION. Let a be an ordinal diagram and let { be an ordinal less than or
equal to £ and » a natural number. Then an ordinal diagram {(n,0, «) is defined
as follows:

£(0,0,0) := a, {(n+1,0,0) := (£,0,¢(n,0,a)).

ProposITION 1. Let a, f and y be ordinal diagrams and let i < ¢ < ¢ and
new. Then,
1. a«g afp.
o< (6,0,a) forj <.
. (i,O, O() K1 (57075)
o, f «;(£,0,7) = a#f «;({,0,y).
If o «; B, then (£,0,0) «<;(£,0,8).
(£,0,)#((, 0, 8) <o (,0,a%p).
If 0«;(1,0), then {(n,0,a) «;((,1,0)

N ws WL

PROPOSITION 2. Let j = & and let y and 6 be ordinal diagrams for which there
exists two finite sequences of ordinal diagrams 6 =0y,...,0m and y=y,,..., Y,
which satisfies the following conditions:

1. Each y; is of the form (k,a,y, #n) for some j <k <¢ 0<a<1 and 9.

2. Each 6; is of the form (k,a,di1%n) for some n'<<;n if y; is (k,a,y,,,¥n).

3. Om <V
Then 6 «;y.

DEFINITION 3.9. Let 7 be a derivation with the end sequent S in Al,. Let S*
be a part of S and let d be a mapping from the set of substitutions in # to the
set of ordinals less than &£. Let p be a natural number. To each sequent S in =«
and each inference 7 in 7n, we assign ordinal diagrams O,(S;=;d; S*) and
O,(I;m;d;S*), or simply 0,(S) and O,(1), respectively, as follows:

1. If S is an initial sequent, then

0,(S) = 0.

2. Let §; (1 <i<n) be the upper sequents of I. Assume that O,(S;) are
defined for each 1 <i<n.
(2.1) If I is a weak inference or a term-replacement, then

Oy(I) = 0,(S).
(2.2) If Iis a cut, then
O,(I) = 0p(51)40,(S2).
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(2.3) IfI'is an (S’*)-explicit logical inference, then
0 0,(S1)#(¢,1,0) I has one upper sequent,
P 0,(S1)#0,(S2)#(&,1,0) T has two upper sequents.
(2.4) If Iis an ($*)-implicit logical inference or a Q®: right or an inference for

Qf, then

0,(85,)%0 I has one upper sequent,

o) = { 0,(S1)%0,(S2) I has two upper sequents.
(2.5) If Iis a Q%: left, then

O,(I) = 0,(51)%0,(52)#(¢,0,0).
(2.6) If I is an equality, then

0,(1) = 0,(51)40,(52)30,(S5).
(2.7) If I is an induction, then

O,(I) = O,(S1)#(£,0,0,(2))40,(S3).

(2.8) If I is a substitution, then
Op(I) = (f, 0, OP(SI))'

3. Let S be the lower sequent of I
(3.1) If I is a substitution, then

0,(8) = (d(1),0,0,(1)).
(3.2) If I is not a substitution, then
OP(S) = f(h,,(S]) - h,,(S),O, Op(]))-
Finally, we define the ordinal diagram O,(m;d;S*) by (£,0,0,(S)).
Then we have a proposition similar to one given by Arai (cf. [2]).
ProrosITION 3. Let (m;d; S*) be a derivation with degree and S’ a sequent in
n. And let p and o be natural numbers. If o < p, then

04(8") <9 £(1p(S') = 1o(S7), 0, 0,(S")).-

4. Proofs of our theorems

Let « be an ordinal diagram such that o <, (£,1,0%#0). Then we shall show
the following lemma by transfinite induction along <¢ up to a.
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LeMMA 1. For any derivation with degree {(m;d;S*> such that Oy(m;d;8*) <
o, we can transform {m;d;S* into an (S*)-strongly normal derivation in Al; with
the same end sequent.

This lemma implies Theorem 1 and 2 as follows.

PrOOF OF THEOREM 1. Let 7 be a derivation with the end sequent S in AL .
Note that 7 includes no substitutions. So, {r;¢;S) is a derivation with degree.
Note that Oy(7; ¢; S) <o (£,1,0). So, set o = (&,1,0). Then, by Lemma 1 and its
proof, we can transform {7; ¢; S) to a normal derivation by transfinite induction
along <o up to (£,1,0). |

PROOF OF THEOREM 2. Let 7 be a derivation in Al,. Note that 7 includes
no substitutions. So, {(m;¢;—) is a derivation with degree. Note that
Oo(m; ¢; —) <o (£,1,040). So, set a = (&,1,040). Then, by Lemma 1 and its
proof, we can transform {z;¢; —) to a strongly normal derivation by transfinite
induction along <¢ up to (&, 1,0%0). |

To prove Lemma 1, we need the following lemma.

LemMa 2. Let {n;d;S*) be an (S*)-strongly normal derivation with degree.
Then we can transform {m;d;S*) into an (S*)-strongly normal derivation in AI;
with the same end sequent.

Proor. By induction on the number of substitutions in . [
The rest of this section is devoted to proving Lemma 1.

ProoF oF LEMMA 1. We shall prove this lemma by transfinite induction
along <o up to a.

Suppose that <(m;d;S$*> be a derivation with degree such that
Oo(n;d; S*) <o a. If (m;d;$*> is (S*)-strongly normal, we can transform
{m;d;$*> into an ($*)-strongly normal derivation in Al; with the same end
sequent by Lemma 2. So, we assume that {z;d;S*) is not (S*)-strongly normal.

We suppose that S is of the form I’ — A and S* is of the form I'* — A*. We
can suppose that 7 includes no redundant variables, because dg(F(¢)) < dg(F(a))
for any formula F and any term ¢. And also we can suppose that if there exists a
weakening I in the end-place of n then every inference below I is a weakening or
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an exchange, because if n does not satisfy the above condition then we can
transform <{z;d;$*) to a derivation with degree {n’;d’; $*) such that n’ satisfies
the above condition and every substitution in #n’ has same degree as the cor-
responding one in 7 and Op(n';d’;S*) <« Oo(m;d;S*) by the usual method.

We shall divide our proof into some cases. When we shall consider a case, we
assume that the proceeding case(s) do not hold.

In this proof, the letter “S” in the expression “A 5, 11" is used to denote
the sequent “A — IT” itself. And also we shall omit the superscript 8 in Q® or
Q% if there is no danger of confusion.

(1) The case where 7 includes at least one logical initial sequent S in the end-
place.
(1.1) The case where a descendant of a formula in S is a cut formula.
Assume that = is of the form:
p=p
' :
ALnp oD
A,

b

where D' (D) in S, is a descendant of D in the antecedent (succedent) of S.

Note that D" is (S*)-implicit. Because, if D” is atomic, it is clear that D" is
(S$*)-implicit. So, we assume that D" contains at least one logical symbol. Since D
is atomic, D" is obtained from D by at least one substitution. Since {n;d; S*yisa
derivation with degree, D” in =z is (S*)-implicit.

Let ho(S1;m) =p and ho(S;n) =0 and let A* — I1*,D’ be the sequent
obtained from S; by deleting the (S*)-explicit formulas. Then we reduce = to the
derivation n':

m
Si ’
A—TLD
term-replacements
A1, D

Here, note that D” is also (S*)-implicit in #’. Let &’ be the mapping from the set
of substitutions in 7’ to the ordinals less than ¢ such that, for each substitution J’
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in 7', d'(J') = d(J), where J is the corresponding one in z. The letter “d’” is also
used to denote the restriction of d' to the set of substitutions in z;. Then
(a';d'; $*) is a derivation with degree. Next we shall prove Oy(S;7’;d’;$*) «¢
0o(S;m;d; S*). Note that ho(S;;n’) = a. Since

O0o(S1;7';d'; §*) = 0,(S1;m;d'; A* — IT*, D)
<o&(p—0,0,0,(S1;m;d'; AT — I1*, D))
= &(p — 6,0, 00(Sy; m; d; S*)),
we have
0o(S;7';d'; 8*) = Oo(S; 7 d'; S*)

<0 &(p — 0,0, 00(S1;7;d; §%))

<0 &(p — 9,0, 00(S1; 7;d; S*)400(S2; 73 d; S¥))

= OO(S;n;d;S*).

Thus, Op(7';d'; S*) <o (Oo(n;d; S*) by proposition 2. Hence we can transform 7’
to an (S*)-strongly normal derivation with the same end sequent, by induction
hypothesis.

(1.2) The other case.

Since the proceeding case does not hold, there exists a formula 4 (B) which
is a descendant of the antecedent (succedent) formula of S and occurs in S.

If 4 is atomic, then B is also atomic and hence it is clear that we can obtain
a desired derivation.

So, we assume that 4 contains at least one logical symbol. Then both 4 and
B are in $*, because both 4 and B are obtained from the formulas in § by at
least one substitution. Thus it is clear that we can obtain a desired derivation.

(2) The case where 7 includes no boundary inferences.
Then n includes no logical initial sequents. Thus we can obtain a desired
derivation, since the mathematical initial sequents are closed under cuts.

(3) The case where 7 includes at least one (S*)-explicit inference which is
reducible with respect to Al.

Let 7 be such an inference. Since the other cases are treated similarly, we
shall consider the case where 7 is a A: left.
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Assume that n is of the form:

77.'15
A4 1
ArB AT

Let hy(S1;7) = p and ho(S; ) = o and let A* — 1" be the sequent obtained from
S by deleting the (S*)-explicit formulas. By our assumption, — A is derivable in
Al . So, let # be a derivation of — 4. Note that 7 contains no substitutions.
Then we reduce 7 to the derivation z’:

4

4 AN
A—-T1

AABA T

A
$
—

Let d' by the mapping from the set of substitutions in 7’ to the ordinals less than
& such that, for each substitution J' of in #/, d'(J') =d(J), where J is the
corresponding one in 7. The letter “d"”” is also used to denote the restriction of d'
to the set of substitutions in m;. Since m; and # include no substitutions,
(';d';8*) is a derivation with degree. Then we shall prove Oo(S;';d 1 8*) <o
0o(S;m;d; S*). At first, we have

Oo(Sy; 5 d'; 8*) = 0p(Si;m1;d'; 4, A" — IT7)
X0 0,(Si;my;d s A* — IT7)
= O¢(S1;m;d; S™).
Next we shall note that every logical inference in # is ($*)-implicit in #’. Thus,
0o($; s d'; §*) <0 (&,1,0). So
Oo(S;7';d'; 8*) = E(p — 0,0, 0o(S;7/;d'; $*) 400 (S1; ' d'; S$*))
<g&(p —a,0,(&,1,0)400(S1;7; d; S*))
= 0y(S;m;d; S*).
So, O(7;d'; $*) <o Oo(m; d; S*) by proposition 2. Hence we can transform 7 to

an (S*)-strongly normal derivation with the same end sequent, by induction
hypothesis.
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(4) The case where 7z includes at least one equality which belongs to the
boundary of x.
Assume that 7 is of the form:

AN t=s AZILFG) Fs),A-n
A

r—-A
Let ho(S1;7) = p and hy(S;7) = o and let A* — IT* be the sequent obtained from
S by deleting the (S*)-explicit formulas in 7.

(4.1) The case where ¢ = s has no free individual variables.

(4.1.1) The case where ¢ =s is true under the standard interpretation.
We reduce 7 to the following derivation n':

F(s),A =11
AZILF() F@),A I

AT

Let d' be the mapping from the set of substitutions in 7’ to the ordinals less than
¢ such that, for each substitution J' in #/, d'(J') = d(J), where J is the cor-
responding one in 7. Then (7’;d’; S*) is a derivation with degree. Next we shall
show that Og(S;n';d’;S*) <o Oo(S;7;d; §*).
O(S;';d'; 8*) = E(p — 0,0, 00(Sy; ' d'; )40y (Sa; s d'; §*))
«0&(p — 0,0, 00(S1; 7; d; S*)400(S; 7; d; §*) 400 (Ss; m; d; 7))
= 0y(S;m;d; S*).
Thus, Oy(n';d’; S*) < Oo(n; d; S*) by proposition 2. Hence we can transform «’

to an (S*)-strongly normal derivation with the same end sequent, by induction
hypothesis.

(4.1.2) The case where ¢ =y is false under the standard interpretation.
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Then the sequent ¢ = s — is a mathematical initial sequent. So, we reduce =
to the following derivation 7'

A—-Ilt=s t=5—
AT

Let d' be the mapping from the set of substitutions in 7' to the ordinals less than
& such that, for each substitution J' in o/, d'(J') = d(J), where J is the cor-
responding one in 7. Then {(7;d’;S*) is a derivation with degree. We can show
that Oy(S;7’;d’; S*) <o 00(S;m;d; S*). Thus, Op(n';d'; 8*) «o Oo(m;d; S*) by
proposition 2. Hence we can transform n' to an (S*)-strongly normal derivation
with the same end sequent, by induction hypothesis.

(4.2) The case where F(¢) is identical with F(s).
Similar to the case (4.1.1).

(4.3) The case where [ is inessential.
Then we construct the following derivations 7y, 7, and 73 from .

m %) 3

A-TIt=s A—TILF(t) F(s),A > 11
A—t=sTI A— F@),II AF(s) — 11

IF-t=sA I — F'(z),A I, F'(s) — A,

where F'(t) and F'(s) are formulas obtained from F(f) and F(s) by some
substitutions, respectively. Let d; be the mapping from the set of substitutions in
n; to the ordinals less than ¢ such that, for each substitution J' in =, di(J') =
d(J), where J is the corresponding one in 7. Then (my;d;; I —t=s5,A%),
{my;dy; T — F'(t),A*) and (m3;ds; T*, F'(s) — A*) are derivations with degree.
Because ¢t = s, F'(t) and F'(s) are explicit in 7y, 7 and =3, respectively. We can
prove the following facts:

Oo(my;di;T* — t = 5,A*) <o Oo(m; d; S*).
Oo(my; dy; T* — F'(1),A*) <o Oo(m; d; S¥).

Oo(m3;d3; T*  F'(s) — A*) <o Oo(m; d; S*).
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By induction hypothesis, we can transform 7, to a derivation n] whose end
sequent is I’ — ¢t =5, A and which is (I"* — # = s, A*)-strongly normal, and 7, to
a derivation 7 whose end sequent is I' — F'(r), A and which is (I'* — F'(¢), A*)-
strongly normal, and 73 to a derivation n whose end sequent is T, F'(s) — A and
which is (I'*, F'(s) — A*)-strongly normal. We define the derivation 7’ as follows:

" ) :
F'—st=5A T->F(@),A TI,F(s)—A
IF'oAt=s T-oAF(@) F(s),l-A
r—A .
Then 7’ is (S*)-strongly normal, because the free individual variables in ¢ or s
occur in T or A.

(5) The case where n includes at least one induction which belongs to the
boundary of =.
Similar to the case (4) (cf. [9]).

(6) The case where n includes at least one explicit logical inference which
belongs to the boundary of =.

Let I be such an inference. Since the other cases are treated similarly, we
shall consider the case where I is a V:left.

Assume that =z is of the form:

A(t),A — A

VA, A A L

r—A
(6.1) The case where I is (S*)-explicit.
We shall note that I' includes the formula which is a descendant of VxA(x)
and is of the form VxA'(x), where 4'(x) is a formula obtained from A4(x) by
some term-replacements. We reduce = to the following derivation «':

A(t),A — A
VxA(x), A, A(t) — A

IA4(t) - A ,
where 4'(t) is the formula obtained from A4’(x) by substituting ¢ for x. Note that
A(t) and its descendants in #’ contain no eigenvariables of substitutions in 7,
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since VxA(x) is ($*)-explicit in 7. Let 4’ be the mapping from the set of
substitutions in 7’ to the ordinals less than & such that, for each substitution J' in
o, d'(J') = d(J), where J is the corresponding one in z. Then, {(';d’;T* — A
is a derivation with degree. We can show that Oy(r;d’; T — A") «¢ Oo(m; d; S*).
Thus, we can transform 7’ to a derivation # whose end sequent is ', 4'(r) — A
and which is (['* — A*)-strongly normal, by induction hypothesis. Then we shall
define the derivation # as follows:

~

i
r,A4'(f)— A
A' (1), T - A

VxA'(x),I - A
T T—-A

Then 7 is (S*)-strongly normal, because the free individual variables in ¢ occur in
[ or A and — 4'(¢) is not derivable in AI; by our assumption.

(6.2) The case where I is (S*)-implicit.

At first, note that ' includes the formula which is a descendant of VxA(x)
and of the form VxA'(x), where 4'(x) is a formula obtained from A(x) by some
substitutions and some term-replacements. We reduce = to a derivation " similar
to 7' in the case (6.1). Let d’ be the mapping from the set of substitutions in z” to
the ordinals less than & such that, for each substitution J' in 7", d'(J') = d(J),
where J is the corresponding one in 7. Then <{#";d';T"*, 4'(f) — A*) is a deriva-
tion with degree. We can show that Op(n";d’; T, A'(t) = A*) <o Op(m;d; S*).
So, we can transform 7’ to a derivation # whose end sequent is I', A'(¢) — A
and which is (I'*, 4'(f) — A*)-strongly normal, by induction hypothesis. From 7,
we shall construct a derivation #' similar to 7 in the case (6.1). Then @' is (S*)-
strongly normal.

(7) The case where n includes at least one explicit inference for 0% or Qf,
which belongs to the boundary of =.

Let 7 be such an inference. Since the other cases are treated similarly, we
shall consider the case where I is a Q®:left.

Assume that = is of the form:

A-TLt<¢&E BWV,Q«xts),A—TT

Ots, A — 11 I

r—-A



324 Kazuma IKEDA

We shall note that I' includes the formula which is a descendant of Qrs and is
of the form Qt's’, where Qt's’ are a formula obtained from Qts by some term-
replacements. We reduce n to the following derivations m; and my:

5 (%)

A—-TILt<¢ B(V, 0« t,5),A— 10
Ots, A -t < £ 11 Qts, AaB(Va Q<1 t, S) —II

r—> Z,~<5,A F;%(V,) Q%t’vtlys’) _>A ]

where B(V',Q.y,t,s') is a formula obtained from B(V,Q,t,5) by some
substitutions and some term-replacements. Let d; be the mapping from the set of
substitutions in 7; to the ordinals less than & such that, for each substitution J’ in
n;, di(J') =d(J), where J is the corresponding one in zn. Note that, in 7,
B(V,Qx,t,5) and its descendants are (I'*,B(V’, Oy, ?',s') — A*)-implicit and
explicit. Thus (zy;d;; I — ¢ <& A*Y and (mp;do; T, B(V!, Q<n, 2, 8') — A*)
are derivations with degree. We can prove the following facts:

Oo(nl;dl;r* -t < ¢, A*) g 00(7'[; d; S*)
Oo(mp;do; T*, BV, Qv 1, 5") — A*) <0 O(m; d; S*).

By induction hypothesis, we can transform 7z; to a derivation =} whose end
sequent is I' —» ¢/ < ¢, A and which is (I'* — ¢ < & A*)-strongly normal. And
also we can transform 7, to a derivation n, whose end sequent is T,
B(V',Q«r,t',s") — A and which is (T'*, B(V’, Oy, t',s") — A*)-strongly normal.
Then we shall define the derivation #n’ as follows:
v )
r-¢<¢A IL,B(V,Qx,t,8)— A
r-AvY<¢&éE BV,Qu,t,s), T = A
ot's', T — A
r—-A

Then 7’ is (S*)-strongly normal, because the free individual variables in ¥, ¢ or
s' occur in T" or A,
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(8) The case where all the inferences which belong to the boundary of n are
implicit inferences.

Then there is at least one suitable cut. Let I be a suitable cut. We shall
consider the cases where the cut formula of 7 is of the form QOts or Q.yts.

(8.1) The case where the cut formula of I is of the form QOts.

Assume that n is of the form:

: : 71215
s, s;
A =TI, h <& Ay = T,B(X, O, t,51) Ay DT, tp <& BV, 0y 12,9), A2 =1

Ay i I, 0t, 51 On52, Ay i’ 10)
S3 Sa
A3 — 1, QZS QIS,A4 — Il
I

A3, Ag 5, 1, Ty

AT

I

r—A
Let j = d(B(X, Q<1 t,5)) and let S be the j-resolvent of Ss, i.e. the upper sequent
of the uppermost substitution /o under Ss whose degree is not greater than j, if
such exists; otherwise, the end sequent of z. Assume that ho(Sy;7) = p, and

ho(S2; ) = p,. And also assume that the sequent A; — I3, # < { is the sequent
obtained from Sy by deleting the (S*)-explicit formulas in 7.

(8.1.1) The case where Qts is not closed.
We reduce 7 to the following derivations #; and 7:

yal 2

As = 105, Qs Qrs, As =5 Ty
Az, Ag 2, 15, Ty, Ty Az, Ag, Qts 21, 1,

T — Qts, A I,0ts— A
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Let d; be the mapping from the set of substitutions in z; to the ordinals less than
¢ such that, for each substitution J' in m;, d;(J') = d(J), where J is the cor-
responding one in 7. Then {(7;di;T* — Q1s,A*> and {(my;dy;T*, Qts — A*) are
derivations with degree. We shall prove Oy(Ss;m;di;T* — Qts,A*) <
Oo(Ss; m;d; S*).

Oo(Ss; m;dy; T — Qts,A™) = Og(Ss;my;dy; T — Qts, A*)
= Oo(S3;m;d; §*)
<0 Oy(Ss3;m; d; S*)#OO(S4;7z; d; S’*)
= Oo(S5;m;d; S*)

So, we can transform 7 into a derivation #{ whose end sequent is I' — Qts, A
and which is (I'" — Qts, A*)-strongly normal by induction hypothesis. Similarly,
we have Oy(Ss;m2;dp; T*, Qts — A*) <o Oo(Ss;7; d; S*). Hence, we can transform
my into a derivation 7n), whose end sequent is I, Qts —» A and which is
(I'*, Qts — A*)-strongly normal. We shall define 7’ as follows:

: e
Ty Ty

I'->0ts,A T,0ts— A

F—A Qs QOis,T - A
'I'—AA
r—-A

Then o' is (S*)-strongly normal, because the free individual variables in ¢ or s
occur in T or A,

(8.1.2) The case where Qts is closed.

(8.1.2.1) The case where ¢ < ¢ is true under the standard interpretation.
We reduce n to the derivation n':
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Al - Hla%(Xa Q<217 tlysl)
Al - %(X, Q<t17t1)sl)7nl) Qtlsl

Az — %(Xv Q-<t’ t,S),H3, QtS QtS,A4 — Tl
A37A4 g %(X, Q%tytvs)vn37n4

A — B(X,0,1,5), 11 : 5

A —TL,B(X,0xts) 7o B(V, 0, 12,9),A — 11,

A—TLBV,Qx,t,9) B(V,Q«1,5),Ar — I
A Ay - ILID

SI
Otr52, A2, A —5 T1, 11,

As —+H3,Qts QtS,A4,A—)H,H4
A31A4)A - H3H37H4

AA-ILIT

s
A—+HIO

r—-A

Let d' be the mapping from the set of substitutions in 7’ to the ordinals less than
¢ such that, for each substitution J' in @’ except Jy, d'(J') = d(J), where J is the
corresponding one in n and d(Jo) =j. We shall note the following facts:

1. d(B(X, Q<1 t,5) =j <j® 1 =d(Qts) = d(Qt152) = d(Qt252).

2. For each formula 4 in A or I, d(4) <j by the definition of I.

By the above facts, we can show that {(z’;d’;S*) is a derivation with degree.
Next we shall prove Oy(Io;7';d’; 8*) <o Oo(Io; m; d; S*). Since

00(S2;7;d; 8*) = E(py — Py, 0, Oo(Sa; m; d; S*)) $00(Sar; m; d; S)#(¢, 0,0))

and

Ou(Sy; 75 d'; 8%) = E(py — p2,0, (7,0, Oo(Jo; ' d'; $*))400(Sar; 5 d'; S)),
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0o(Sy; ';d'; S*) <j+1 09(S2;m;d; S*). Hence Oo(Io; '; d'; 8*) <41 Oo(Io; m; d; S*).
We shall note that Oy(Jp;n'; d’; S‘*) is the only one j-section (cf. [11]) which occurs
in Og(Iy;n';d'; S*) and does not occur in Oo(Iy;m;d; 8*) and every k-section
(k <j) in Op(lp;n';d'; S*) occurs in Oy(Iy; 7; d; S*). So, in order to show that
Oo(Ip; ';d'; S*) <o Op(lo; m;d; 8*), it suffices to show that Oo(Jo; ';d’; S*) <
Oo(Ip; m; d; S*). But it is clear, because Og(Jo;7';d’; $*) «q Oo(Io; m; d; S*). Hence
we have Oo(Ip;n';d'; S*) <o Oo(Ip;m;d; S*). Thus, we have Oo(n';d'; 8*) <o
Oo(m;d; S*) by proposition 2. Hence we can transform 7' to an (S*)-strongly
normal derivation with the same end sequent, by induction hypothesis.

(8.1.2.2) The case where ¢ < ¢ is false under the standard interpretation.
We reduce n to the derivation =’

-

Az-sﬂ>n2,t2-<f <&
Ay =1

15, Ay =5 T,

Let 4’ be the mapping from the set of substitutions in 7’ to the ordinals less than
¢ such that, for each substitution J' in 7/, d'(J') = d(J), where J is the cor-
responding one in 7. Then (x';d’;$*) is a derivation with degree. The letter “d’”
is also used to denote the restriction of d’ to the set of substitutions in 7. We
shall show that Oy (Sy;7;d’;S*) <o Op(Sy;m;d; S*). Then, note that
ho(Sa; ') = p,.

Oo(Sai; 7' d'; 8*) = Oy, (Saps map; d's Ay — 103,12 < &)
Z0&(py — 2,0, 0,,(Su; o d's A — T, 15 < &)
= &(py — p2,0, Oo(Su; m; d; $*)).
Thus,
Oo(Sa;7';d'; 8*) = Oo(Sa; 5 d'; §*)40
<0 &(par — p2,0, O0(Su; m;d; S*))#0
<0 &(payr — P2, 0, Oo(Sas; m; d; S*)#00(Sar; m; d; S*)#(£,0,0))

= 0o(Sy;m;d; S*).
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So, Oy(n';d’; 8*) <o Og(m;d; S*) by proposition 2. Hence we can transform 7’ to
an (S*)-strongly normal derivation with the same end sequent, by induction
hypothesis.

(8.2) The case where the cut formulas of I are of the form Q.,ts.
Assume that =z is of the form:

Ay Su, Mt <w Ay S, Iy, Q159 Otr50, Ay — Iy
S S
Ay =5 Ty, Qw181 Qnt2s2, Ay — T,
53 . . Sa
A3 I ]-—I3a Q<utS Q.<utS,A4 — H4I
As,Ag = T3, T4
- I
AT
r—-A ,

where S denotes the uppermost sequent below I whose height based on 0 is less
than that of the upper sequents of 7. Assume that ho(S3;7) = p and ho(S;n) = o.
Then note that o < p by our choice of Iy.

(8.2.1) The case where Q,ts is not closed.
We reduce n to the derivation #":

S .
Ay — Iy, Oty Otr5, Ay — I,
Sy tasa, Ay, Otz — T1
A S5 onsy, T, O 181 O, 1282, A2, Obrsy 2

Az — Qts, 113, Qs O uts, Ay — Iy Ay =TI, Quuts Quuts,Ag, Ots — Ty

S S,
Az, Ay — Qts, 115,114 Az, As, Qts — T3, T4
;I’ ____E___IN
5 G
A oo, TT A, Qts 251
A — 11, QOts Qts,A - 11

A A — LTI
AT
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Let d’ be the mapping from the set of substitutions in 7’ to the ordinals less than
¢ such that, for each substitution J' in #/, d'(J') = d(J), where J is the cor-
responding one in 7. We shall note the following facts:

1. d(Qts) < & = d(Q<uts).

2. There exist no substitutions between S; and S’

3. There exist no substitutions between S7 and S”.
By the above facts, it is clear that (z;d’;$*) is a derivation with degree. We
shall prove O(S;n;d'; S*) <o Oo(S;7;d; $*). Since we have Oo(Sy;n';d'; 8*) <o
0o(S1;7;d; S*), we have 00(1’;1t';d’;.§'*) <0 Oo(I;m;d; S*). Similarly, we have
Oo(I";7';d'; S*) <o Oo(I;m;d; S*). Note that hy(S';7') = ho(S";7') = 6. Thus,

Oo(S; s d's8%) = &(p — 0,0, Og(I'; ' d'; §7))8¢(p — 5,0, 0o (I'; ' d'; §))
«o&(p —06,0,00(I;m;d; S*)) (becausesa < p)
= Oy(S;n;d; S*).

So, Og(n';d"; S*) «o Oy(n;d; S*) by proposition 2. Hence we can transform 7’ to
an (S*)-strongly normal derivation with the same end sequent, by induction
hypothesis.

(8.2.2) The case where Q.,ts is closed.

(8.2.2.1) The case where ¢ < u is true under the standard interpretation.
Similar to the case (8.2.1).

(8.2.2.2) The case where ¢ < u is false under the standard interpretation.
We reduce n to the derivation =’

A1 — Hl,tl =< Uy

S1
Ay — 1y <u, I, Qi

Az -t <u 3, Outs  Outs, Ay — Ty
A3:A4 — 1< u1H3’H4

: r
A—t<ull
A-TLt<u t<u—

ASn




Normal forms for derivations 331

Let d' be the mapping from the set of substitutions in 7’ to the ordinals less than
& such that, for each substitution J' in 7', d'(J') = d(J), where J is the cor-
responding one in 7. Note that d(z < u) = 0. Then it is clear that (z';d’;S*) is a
derivation with degree. Next, we shall prove Oy(S;n’;d";S*) <o Oo(S;; d; S*).
Since we have Oy(S);7’;d’;S*) <o Op(S1;7;d;S*), we have Oo(I';7';d’; S*) <o
Oo(I;m;d; 8*). Thus,
0y(S;7';d'; 8*) = E(p — 6,0, 00(I', 7; d'; §*)) 40

«o&(p — 0,0, 00(I;m;d; S*)) (because g < p)

= 0o(S;n;d; S*).
Thus, Oy(n';d’ ;S‘*) <o Og(m; d; S’*) by proposition 2. Hence we can transform =’
to an (S*)-strongly normal derivation with the same end sequent, by induction
hypothesis.

This completes a proof of Lemma. |
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