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A ZERO DENSITY ESTIMATE FOR DEDEKIND ZETA

FUNCTIONS OF PURE EXTENSION FIELDS

By

Koichi Kawada

§1. Introduction

We firstintroduce some notation which is utilizedthroughout this article.Let

k > 2 be a fixed integer, s = a + it be a complex variable with real a and t, C(s)

be the Riemann zeta function, £(s,n) be the Dedekind zeta function of the field

Q(nllk) where Q denotes the rational number field,and define

*{s,n)=

(1)
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Jk

C(s,n)

CM

By Uchida [10] or van der Waall [11], we see that £(s,ri)is an entire function for

every integer n.

The letter p always stands for primes, p(n,p) denotes the number of solutions

m(modp) to the congruence

mk ― n = 0 (mod/?),

and A(n,m) denotes the completely multiplicative function of m defined by

X(n,p) = p(n,p) - 1

for all primes p.

Let
<fk
be the set of allintegers n such that xk ― n is irreducible in Q[x＼. One

may show that xk ― n is reducible if, and only if, n is a p-th. power of an integer

for some p＼k, namely,

where Z is the integer ring, and Zp denotes the set of allp-th.powers of

integers.
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In this articlewe are concerned with the number Jf{n; a, 7") of zeros of £(s,n)

in the region a > a, ＼t＼< T;

jV(n-a, 7") = %{s = a + it; <^(j,n)= 0, a > a, ＼t＼< T}.

Bv Lemma 3 of [31, the author announced that

(2)
Y,^{ri-l-n1T)≪{NT)l-r>

n<NneJk

for T < NA with fixed A > 0, and for some t＼> 0. (The detailed proof for [3] is

contained in the unpublished manuscript [4] which forms a part of author's

thesis.)The zero density estimate (2) was prepared for the application to a

problem on the representation of numbers as the sum of a prime and a k-th

power which shall be discussed below.

The main result of this articleis a refinement of (2).

(3)

Theorem. Let k>2 be an integer,0 <S < l/k, A > 1, and let

n = (WOQJcAy^.

Then, for N > 1, and for

(4)

we have

N(i/2)+s<H<Nj 1<7<^, qeZ, 0<＼q＼<NA,

E

N<n<N+H
nqeJk

^{nq-l-r1,T)≪(HT)l-≫

where the implicit constant is effective,and depends only on k, A and S.

When k = 2, the function £(s,n) is a Dirichlet L function with a certain real

Dirichlet character, and the Theorem is weaker than known results on the zero

density for L functions (see Ch. 12 of Montgomery [7],for instance). Our interest

is in the case k > 3.

Our Theorem is closely related to Theorem 1 of Nair and Perelli[8] which

ctntpe that

(5)

N<n<N+H M<p<2M

≪HM (logM)~A
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for M > 2, under the assumptions in the statement of our Theorem, where the

implicit constant contained in the Vinogradov symbol is ineffective,and depends

on k, A and 5, and where v(n) denotes the number of irreducible factors appearing

in the factorization of the polynomial xk ―n in Q[x]. Note that v(n) = 1 if, and

only if, n e J^.

The result (5) can be applied to two problems in which our Theorem can

work as a substitute for (5), as we see later.Accordingly our Theorem can get rid

of ineffective constants in the applications.

Nair and Perelli divided their proof of (5) into two cases according to

M < exp(log7V(loglogiVr)2) or not, and the latter case seems more difficultto

treat than the former case. For larger M, they required to apply the Siegel-Brauer

theorem (see Lemmata 3 and 4 of [8]),so that the ineffectiveconstant occurs in

(5). For smaller M, however, they proved (5) by using a high-moment large sieve

inequality (Lemma 1 of [8]),and the proof gives essentiallyan improvement of

Lemma 2 of [3] which was one of the foundations of the proof of (2). By virtue

of thisimprovement (see Lemma 1 below), our Theorem is shown by the same

way as the proof of (2),and no ineffectiveconstant occurs in our argument as we

are not concerned with too large M.

As the proof shows, the exponent 1 - rj of HT in the conclusion of our

Theorem can be reduced to 1 ― Ctj with larger C, but it does not matter, at least,

about our applications of the Theorem.

We then observe the applications. We put

m<MTK '

X(n,m)

where /i(m)and q>{m)denote the Mobius functionand Euler'stotientfunction,

respectively,and define

p ^

p{n,p) - 1

p-＼

)- n(-

p x

p{*,p)

p

)

-
p)

for neJk- The convergence of the infiniteproduct is shown by the prime ideal

theorem. And, by the known upper estimate for the residue of £(･$■,n) at s = 1

with (31)―(33) of Perelli and Zaccagnini [9], we have S{n) ≫ (loglwl)"*"1 for

neJk, ＼n＼> 1. On the asymptotic behaviour of the number R(n), say, of the

representations of n as the sum of a prime and a fc-thpower, it is expected that

R(n) ~ S(n)
n1/*

(as n ―≫oo,≪ e c/jt)-

logn
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In order to show that this expected asymptotic formula is valid for almost every

n, roughly speaking, it is required to prove that S(n) is satisfactorilyapproxi-

mated by S(n,M) with a suitable parameter M for almost every n.

This problem on S{ri) was cleared by Miech [6]in 1968 when k = 2, by using

Bombieri's zero density theorem for L functions. And when k > 3, the estimate

(2) works in place of the zero density theorem for L functions, as is announced

in [3].

On the other hand, Perelli and Zaccagnini [9] discussed several problems

concerning the sum of a prime and a k-th power. In particular,applying (5), they

proved in [9] that

S(n,M)=S(n) + O({logN)-A),

for all but O(H(logN)-A) values of n e [N,N + H] provided H > N^2^, with

any fixed A, 5 > 0, where M is an appropriate parameter, say, M = N1^^, and

where the implicit constants are ineffectiveand depend on k, A and S (see (27),

(28), (35), (37) of [9]).This consequence on S(n) is stronger than that contained

in [3] with respect to the length of the interval for n. Using this,they established

in [9] that the foregoing expected asymptotic formula for R(n) is valid for almost

every ne[N,N + H] provided H > #1-0/*)+^ e > q.

We may give a similar result on S(n) without ineffective constants by

applying out Theorem instead of (5).

Corollary 1. Let ＼<M <H, n = d/(＼OOOk)and assume the same con-

ditionson k, 8, N and H as in the Theorem. Then we have

S(n,M)=S{n) + O(M-'l/3),

for allbut O^M^I2) valuesof n in [N,N + H], where theimplicitconstantsare

effective,and depend only on k and 5.

Nair and Perelli[8] applied their result (5), that is, Theorem 1 of [8] to

another interesting problem on the distribution of the primes represented by an

irreducible polynomial, which is concerned with the work of Friedlander and

Granville [1]. Theorem 2 of [1] was established under the assumption of the

generalized Riemann hypothesis for Dedekind zeta functions, but Nair and Perelli

obtained, by applying (5), the same conclusion as Theorem 2 of [1] uncondi-

tionally,via their modification of the argument of Maier [5'](see [8],Theorem 2).

In the proof, the result(5) was utilizedto show that there is a set 5^o satisfying

#^0 = N + O(N(logN)~2) and
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J2 S(nq)=N + O(N(logN)-1),

N<n<2N

where the implicit constants are again ineffective(see (34) and (36) of [8], and

note that, on putting q――Q and n = d, the number Q = C/d in [8] coincides

with S(nq) in our notation). And our zero density theorem can work for thispart

too. For further details on the matter, we refer to [8] as well as [1].

Corollary 2. Let

<7(q) = {ne[N,N + H]; ^(nq;l - n,^2) = 0, nqeJk}.

Then, under the same assumptions as in the Theorem, we have %Sf{q) ―

H + 0{H1-^2), and

J2 S{nq)=H+O{Hl-≫"),

where the implicit constants are effective, and depend only on k, A and S.

We shall prove the Theorem in §4, and Corollaries in the final section.

Besides the notation introduced above, we arrange the following convention. In

the sequel, we regard k, A, 5 and tj as being fixed with the conditions in the

statement of the Theorem, or the implicit constants may depend on k, A and S.

We assume that N is sufficientlylarge in terms of k, A and 3. The lettere denotes

any sufficientlysmall positivereal number as usual, and is not necesarily the same

at each occurrence. In the statements involving s, the implicit constants may

depend on e as well.

Acknowledgement. The author would like to take this opportunity to

express his hearty gratitude to Professor Saburo Uchiyama, who retired officially

in 1993, and to Dr. Hiroshi Mikawa for their kind, continual support, whilst the

author was a graduate student at Tsukuba University.

§2. Fundamental lemma

The next lemma is the foundation of our argument.

Lemma 1.

numbers. Then

Let 1 < M < NlokA, and {am} he any sequence of complex

on (3) and (4), we have
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amdm)Mnq,m) ≪ HMl~lQri max ＼am＼

M<m<2M

Indeed thisis a variant of the result(5) of Nair and Perelli(see [8],§2, case

I), and we only remark on the proof briefly.

Let ^m be the set of all the primitive Dirichlet characters /, modulo m, such

that yf is the principal character. In particular,we arrange that ^＼ consists of the

principal character of modulo 1. Then one can easily confirm that X(nq,p) =

T,xe%pX(nq), thus

(6)

for all square-free

otherwise, we have

k{nq,m)=JZ/M,

m's. Putting b(j) = amfi(m)x(q) for / e %m, and b(j) = 0

for any integer / > 1,

I ＼/rJ~~~Z-i＼4t~l ＼ I M<m<2M

sinceWm ≪ nf. Therefore our Lemma 1 is proved by the argument of Nair and

Perelliin [8],pp. 5-7 (especially,see (12),(13) and (16) of [8],p. 7).

Lemma 2. Let 1 < M < NmkA, {am} be any sequence of complex numbers,

Sn{t) = ^2 am^{m)X{nq, m)rri＼

M<m<2M

and, for each n, let 3~n be a finite set of real numbers in the interval [―T, T] such

that ＼t- f＼> 1 for all distinct t, t e ^n. Then, on (3) and (4), we have

E

N<n<N+H
J2＼SM≪HTM^ u^mM

Since Lemma 1.2 of [7] gives

rT+l

E i5≪wi<<:

Is*-. J-T-l

15.(01 + J,Sn(t) )*,

Lemma 2 is proved at once by lemma 1.

§3. Mean value estimate

This section begins with some basic resultsconcerning £(s,n)for n e ･/&. We

firstintroduce the function
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U^n) = H(l-l(n,p)p-srl

p

E

m=l

X(n,m)m 5,
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for a > 1, and define the numbers an(p,f) by the Euler product for the Dedekind

zeta function C(s,n);

p /=i

It is known in algebraic number theory that 0 < an{p,f) < k, and that if pjfkn

and ≪e/jt then

an(p,＼)=p(n,p).

By the last fact and the Euler products for (($) and t,{s,n),we have

(7) U^n) = ^(s,n)F(S,n),

for a > 1, n e Jk, where

F(s,n) = 11(1 - k{n,p)p-)-X<＼-p-sfM ■11(1 -p-s)a^l)-pM

p p＼kn

nnc

P f=2

TiW-p-T**"

It follows from 0 <p(n,p) < min(k,p ― 1) and p(n,2) ― 1 that ＼A(n,p)＼<

min(k - ＼,p ― 2), and that ＼X(n,p)p~s＼< 1 when

=
log(fc-l)

° log(*+l)'

For our tj, we see log(A: - l)/log(fc + 1) < 1 - 1000?? by (3). Thus, we may

immediately deduce that F(s,n) is regular and

(8) F(s,n)≪＼n＼£,

in the half plane a>＼ ― 100^. Now the equation (7) provides the analytic

continuation of £o(s,n) in the half plane a > 1 - 100?/, which is regular there.

We next show a bound for |^o(-s,≪)|near the line a=＼. Let Dn be the

discriminant of Q(nl^k), and let r＼and 2ri, respectively, be the number of real

and complex conjugate fields of Q{nllk)/Q, so that r＼+ 2^2 = k. By the func-

tional equations of C,(s) and C,{s,ri),we have
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£(*,≫)= (2-"n-^-^2y/＼D^＼)l-2'(
r((i-*)/2)

r(5/2)

) n-i

(r ferT≪>->

Accordingly, when a = ―tj,Stirling's formula gives

t(s,n) ≪ |Dw|(1+2")/2(|r|+ l)(*-D(i+2≫)/2,

since £(s,ri)≪ 1 for a = 1 + r＼.As we know Dn＼D'n, where D'n = (― ＼)k~lk^nk~lis

the discriminant of the polynomial xk ― n, we see ＼Dn＼≪ Iwl*"1. Then, through a

well-known argument based on the Phragmen-Lindelof theorem, with (7) and (8),

we conclude that

(9) £oM)<<(M(kl + i))6(*~1>?

for a > 1 ― 10?/ and n e J^-

The purpose of this section is to obtain the following mean value estimate for

o(s,n).

Lemma 3. For each n, let 3~n he a finiteset of real numbers in the interval

[-T, T] such that ＼t-t*＼>＼for all distinctt, f e STn. Then, on (3) and (4), and

for a > 1 ― 8w, we have

E

N<n<N+H
nqeJk

£|{o(ff+fr,iqr)|≪#r.

te$~n

Let Mo = N9kA, and write

for a-> 1 ― 8*7,＼t＼< T and nqe
</&.
By shifting the line of integration, and by

using (9) with the well-known estimate for the gamma function, we have

2ni

(2+ioo

2-foo

Edw 0(s,nq) +
2ni

(-2t]+ioo

-2w―ioo

Edw = U^nq) + O{N-1)

On the other hand, by a Mellin transform (see Ivic [2],(A.7)), the above integral

turns into

1

2%i

(2+/oo

2―joo

adw =

00
£

m=＼

k{nq,m)rrrse-mlMo

ni2<y/M＼

k(nq,

+ 0(N~l)

m＼<M＼

/i(mif X{nq,nn )mf VWim2/M°
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since every number m is uniquely written in the form m = m＼m＼ with fi(m＼)# 0,

and where Mi is the power of 2 satisfying M＼/2 < Mo(logN)2 < M＼. Con-

sequently, it follows that

(10) Us,nq)≪ E m22a+E

m2<＼fMl

^2 fi{mi)2Kn9^mi)mi'e

m＼<M＼

Since Mi < NWkA, Lemma 2 yields

E E

N<n<N+Hte$-n

J2 [*{mi)2X(nq

M<mx<2M

≪HTMl-9r<-a ≪ HTM~n

for 1 < M < Mi, and we have by (10)

as required.

T＼l＼fHylMq

mi)m7ff~JVmiW2/Mo

V y2＼U°+it,nq)＼≪HT V m?** ≪HT,
N<n<N+Htern
nqeSrk

m2<T/M＼

+ N~l.

§4. Zero density estimate

In this section we shall prove the Theorem. Let

h=(logN)2.

One can show

JT{nq; 0, t + 1) - Jf{nq; 0, t) ≪ log tf,

uniformly in n e [N,N + H], ＼t＼< T (see Landau [5], Satz 181). So, for each n

satisfying nq e J^, there is a set Mn having the following three properties:

(i) The set 3kn consists of zeros p ― P + iy of £(s,nq) with real fi and y satisfying

fi > 1 - 7, |y| < T.

(ii) For all distinct p ― P + iy and p' ― P' + ?'/ in ^n, we have ＼y― y'＼> 3h.

(iii) As for the cardinality %0tn, we have

jr(nq;l - n,T) ≪%<Mn ■{logN)3.

We then put

m<HTh

ju(m)A(nq,m)m s
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W = ^0(P + w, nq)Gn{p + w)(HT)wT(w),

for peMn,nqeJk, and for w = u 4- w with real w and v, where ^0 is *he function

defined in the preceding section. We note that *＼is regular in the half plane u >

I ―%tj―p because £o(p,nq) = 0 by (7), and that

m>HTh

for a > 1. Therefore, putting c ― 1 ― 8*7, we obtain

1 i-c-fi+ioo 1 p2+ico

271?jc^B-ioo Znl J2-/00

e-(HTyl +

m>HTh

l + O{(HT)-1)

d＼m

d<HTh

X{nq,m)m-pe-m(HT)~X ^ ^d)

d＼m
d<HTh

The integralon the leftmost side also becomes

1

2^

r-P+ih

-fi-ih

since T(w) ≪e K Thus we have

Wdw + O(N-1),

(c-p+Ui

＼W＼dw ≪ (HT)-7t>max |£0(c+ i(y + ≫),≪^)Gw(c + i(y + ≫))|

Hence we may take a real number tp such that ＼tp-y＼<h and

(HT)-7T>＼Uc + itp,nq)Gn(c+ itp)＼≫ 1,

for each p e Mn, which gives

Y, mn≪(HTyW)≫ v V|^0(c + ^,^)^(c + ig|1/2

N<n<N+H
nqefk

N<n<N+HpeRn
nqeJk

≪ (HT)-{1/2)≪

X
I

J2 ^2Mc + itPinq)＼

N<n<N+Hpe@n
nqeJk

y; Y,＼GH(C+itp)＼
^n<N+HpeRn

)"'

r
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The double sums in the parentheses are both O(HT) by Lemmata 3 and 2, as

we see that ＼tp- tp>＼> h for all distinct p, p' e ffln, by the property (ii). So we

have

E

N<n<N+H
nqeJk

## ≪ (HT)l~(1/2)ri

which proves our Theorem in view of the property (iii)of the set &,.

§5. Applications

Lemma 4. Let n e Jk, ＼n＼< H4A and assume that Jf{n＼1 - rj,H^l1) = 0 with

(3). Then we have

(11) S(n,H)=S(n) + O(H-^3).

As this lemma is proved by fairly familiar arguments, we state the proof

somewhat concisely.

Now, set 2T = Hnl2. By the assumption and (7), the function £o(s,ri)has no

zeros in the region <7>l―ij, ＼t＼< 2T, because F(s,n) # 0 in that region. Then,

applying Hadamard's three circle theorem to log q(s,ji),we can show

(12) Z0(s,n)-l≪HE,

for a > 1 - jy/2, ＼t＼< T (see the proof of Theorem 1.12 of Me [2]).We next

define

^fi(m)X(n,m)

for <7> 1. Handling the Euler product for Zn(s), we have

^M-^-nO-fr.ffA,-.)
)

which provides the analytic continuation of Zn(s). Particularly,in the region a >

1 - tj/2,＼t＼< T, it follows that Zn(s) is regular, and that

(13) Zn(s)≪HE,

by (12).
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We utilizePerron's formula (see (A. 10) of Me [2]),and obtain

S(n,H) =
j en/7+iT

2ni
＼np_iT Zn(s+1)― ds+Oilf^T-1)

i3

= S(n) + ― (/, +12 + h) + O(IT*'3)

since S(n) = Zn(l), where

J-ri/2-iT its
Zn{s+l)―ds,

ri/l-iT S

w/7+iT its
h=＼ Zn(s+l)―ds.

J-ri/2+iT S

r-tl/2+iT tjs
h=＼ Zn(s+l)―ds,

J-tl/2-iT s

The bound (13) yields Ij≪H^+'T'1 ≪H~^3 for 7 = 1,3, and I2≪

H-n/2+eiogT≪H-i/3, thus the lemma follows from (14).

Finally, we prove the Corollaries. Our Theorem gives

N<n<N+H
nqeJk

on (3) and (4), and we may readily observe by (1) that the number of n's in

[N,N + H] with nq $ Jk is O(H/＼/N). Therefore, as to the cardinality of the set

£f(q) which is defined in the statement of Corollary 2, we obtain

(15) %5f(q)=H+O{Hl-r>l2).

Then, using Lemma 4, (15) and the estimate S(nq,H) ≪ He which holds even if

n & Sf(a). we have

(16)

By (6), we see

E s("i)= E
neST(q) neSTlq)

S{nq,H) + O(H1-^)

E

N<n<N+H

S{nq,H) + O(H1-t'/3)

*(≫*.">= i+ E
gE*w
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N<n<N+H
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S(nq,H)=H+O{＼)+ V
H{m)
]C xM J2 x^

2<m<H^m^ x^m N<n<N+H

= if+O(^1/2)+£)

369

by the Polya-Vinogradov inequality.Now we complete the proof of Corollary2

by (16) and the last formula.

We turn to Corollary 1. We then put q = A ―1. Lemma 4 statesthat(11)

holds for every ≪e^(l), while lemma 1 gives

Y, ＼S(n,H) - 5(≪,M) ＼≪ HM'9ri

N<n<N+H

for 1 < M < H. From thesethingswith (15),Corollary 1 may be deduced easily.
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