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LIFE

HEAT

SPAN FOR SOLUTIONS OF THE

EQUATION WITH A NONLINEAR

BOUNDARY CONDITION

By

Julian Fernandez Bonder and JulioD. Rossi

Abstract. In this note we obtain estimates in terms of the size of

the initialdata for the blow-up time of positive solutions of the heat

equation in R+ with a nonlinear boundary condition ―ux(0,t)=

uP(Oj).

Introduction

In this note we obtain estimates for the blow-up time of positive solutions of

the following parabolic problem

(1)

{
ut = uxx

ux(O,t) = up(O,t)

u(x, 0) = A^(jc) > 0

in J?+(Q,7A)

in (0, Tx),

in R+.

where p > 1 is fixed and X > 0 is a parameter.

Throughout this note we assume that the initial datum </>is continuous,

positive and bounded.

Existence, uniqueness, regularity and continuous dependence on the initial

data for this problem were proved, for instance, in [2].

For problem (1),itis well known that if X islarge enough the solution blows

up in finitetime Tx {Tx depends on X) if and only if p > 1, see for example, [1],

[3],[4],[8],[10]. This means that there exists a finite time Tx with
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Here we are interestedin the asymptotic behaviour of Ti when X goes to

infinity.We prove the followingTheorem,

Theorem 1. Under the above assumptions on </>,the function X h-> Tx is

decreasing and continuous with the following asymptotic behaviour at infinity,

＼imX2{p-x)Tk = To.

A―too

Here Tq is the blow-up time of the solution of (I) with initial datum u(x, 0) = ^(0).

Some related papers that deal with the heat equation with a nonlinear source

in the entire space are [7] and [9].

Under further assumptions on the initialdatum, u(x, 0) = ＼l/(x)(a compat-

ibilitycondition and ij/xx> 0, that guarantee ut > 0) it was proved in [6] and [8]

that the following-blow up rate holds,

(2) c<(T-t)l/2ip-l)＼＼u(;t)＼＼^<C

We observe that the exponent that appears in Theorem 1 is related to the

one in the blow-up rate (2). This is a consequence of the natural scaling in the

equation (1).

Proof of Theorem 1

The fact that X i―>Tx is decreasing is an immediate consequence of the

maximum principle.To see this,let us callu the solution of (1) with initialdatum

X(f>and v the solution of (1) with initialdatum [i(f>.If X < pi then, by a compar-

ison argument, u(x, t) < v(x,t) for all x > 0 and 0 < t < minjl^, T^}. As Tx is

the blow-up time for u, lim?/r/1||M(-,t)＼＼x= +oo and hence v can not be denned

beyond Tx, proving that 7), < T＼.

To see that is continuous we can assume that X < fi,hence Tx> TM. Now,

given e > 0 we have to show that Tx - s < TM if //―A < S, but thisfollows by the

continuous dependence with respect to the initial data (see [2]).In fact,

＼＼u(;Tx-s)＼＼o0<C=C(s)

If we replace the power by a globally Lipchitz function g(u) that agrees with

up for every u <2C we deal with a regular problem, and hence there exists S ―

S(e) such that

||y(-,7A-e)|L <2C< +oo, ifpi-X<d.
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We observe that as long as v < 2C It is a solution of the problem with up

as nonlinear flux at x = 0. By uniqueness, we can conclude that v is bounded up

to T-A―s. Therefore, T^ > T^ ―s as we wanted to prove.

Finally, let us study the asymptotic behaviour at infinity.This is the main

point of the paper.

Let u be the solution of (1) and inspired by the natural scaling of the problem

(3)

(4)

As u satisfies (1), vx verifies

(v*)t= Mxx

u(Al-px,X2{l~ph)

in R+ x (0, Tk)

in (0,f;J,

vx{x,O)=t(Xl-i'x)=fa(x) in R+

where tk = )}[p~X)Tk.

We want to compute Ximx^^t'K- For that purpose, let us define w as the

snintinnnf

(5)

{

Wt = Wxx

w(x, 0) = ^(0)

in R+ x (0, 7b)

in (0,7b),

in R+,

which is the natural "limit" equation as (j>k―>^(0) uniformly over compact sets

of [0,+oo).

As ^(0) > 0, w blows up in finite time, To (see [4]).

The Theorem will follows if we prove that

Ta ―> Tq, as X ―> oo.

To prove this claim, let e > 0 and take T' = To ― e. Let M = supo<a<r/||H>(-, /)11
^.

As before, we take g e Lip(R) such that g(s) = sp for s < 2M. With this g, we

define w the solution of the following oroblem.

(6)

Vt

-^(0,0

p(x,0)

<Pxx

= hi*)

Observe that a> = v; if v: < 2M.

in

in

in

R+ x (0, 7")

(o,n,
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Let us see

purpose, let us

(7)

Then we have

(8)

{
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that ＼w(O,t)-(p{O,t)＼<Sif X > X0{S) for all t<T'. For this

define z = w ―(p.As g e Lip(R), z verifies

zx(O,t)

z(x,O)

― %xx in R+ x (0, T)

= g(w)(O,t)-g{(p)(O,t) in (0,T')

Mo.oi <*k(o, 01

where K depends only on M.

Let Fix, t) be the fundamental solution

r(*,0 =
1

For x e R+, by (8) we have (see [5])

(9) z{x, t)

of the heat equation, namely

( xl＼

= [ r(x-y,t)z{y,O)dy-＼'^

jr+ hcJx

(' dT
+ ―(X,t-T)z(O,T)dT.

Jo vx

Now we observe that T satisfies

(Ojf_T) = O, r(O,r-t)

(O,T)T(x,t-T)dT

1

2J^(t-x)l/2

Hence, using the initialand boundary conditionswe get that

I*(0,OI<
f

n-y,t)＼z(y,O)＼dy + -^=

Now we choose tn = to(K) such that

K

20^

Hence, for te [0, to] we have

f'° 1

dx <

1

2

I
/

z(O,t)|

o(r-r)1/

max|z(0,OI <2max
[

r(-y,t)＼z(y,O)＼dy

-2dr
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We observe that for every 3＼> 0 there exists X＼> 0 such that

f
r(-y,t)＼z(y,O)＼dy=＼ n-y,t)＼z(y,O)＼dy+i+Kn-y,t)＼z(y,O)＼dy

JR+ JO JL

<fj

<<Si

n-y,t)dy
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if A> A＼.

Now, choose L large so that J^00 T(x ―y, t)dy is small uniformly in (x, t)

(0,L/2) x (0,r0), and take A2 > 0 such that |z(j,0)|<// for je(O,L) and r＼

small.

With this bound on |z(0,f)| we can control z(x,t) for (x, t)e (0,L/2) x

(0, to),in fact, from (8) and (9) we have

K*,OI <

<

f
T{x-y,t)＼z{yMdy + K8x

[Y(x,
t - r)dz + Sl

f^

JR+ JO JO OX

<f]

-y,t)＼z(y,O)＼dy +

f r(x-y,t)dy+C
r

JL

(x, t ― t) dx

)+oo
T(x-y,t)＼z(y,O)＼dy + Cdl

L

T(x - y, t)dy + C8＼< 82

if X is big enough.

Now, as to is independent of X, we can repeat this procedure beginning

with z(x,to) as initial datum to find that ＼z(x,t)＼<d3 for (x, i) e (0,L/4) x

(?o,2?o). Therefore, after a finite number of iterations we obtain that, for X

large (X > X0{S))

＼z(0,t)＼<3 for all t<T',

as we wanted to see.

Now, as w(0, T') < M and |w(0, t) - tp(O,t)＼<5, we have that <p(0,t) < 2M

in [0, T'＼. Therefore, by uniqueness, (p ― v^ in [0, T'＼. Hence Ti>T'=Tq ―s.

Now, take ＼j/a compatible initial datum with compact support and i//xx> 0

such that i^(jc) < ^(0) and ^(0) ―i)/(x) small enough in (0, L). From the previous

argument, it follows that the solution vv of (1) with ＼j/as initial datum verifies

w(0, T') - vv(O, T') <S.
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Hence T(if/)> T'. By the assumptions on s/f,w verifies(2). Then

w(o,T')-d< w(o, t') < ＼＼w{-,roiL < c(t{i//) - T'yl/2{p-l).

Therefore it is easy to see that T{＼j/)- T' < k if e = To - T' is small (depending

on k). Now, choosing X large enough, we can obtain </>^(x)> il/{x),then f＼<

T(＼jj)< T' + k and hence as Tq ―T' = s, we conclude the desired result. □
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