LIFE SPAN FOR SOLUTIONS OF THE HEAT EQUATION WITH A NONLINEAR BOUNDARY CONDITION

By

Julián Fernández Bonder and Julio D. Rossi

Abstract. In this note we obtain estimates in terms of the size of the initial data for the blow-up time of positive solutions of the heat equation in \mathbf{R}_+ with a nonlinear boundary condition $-u_x(0, t) = u^p(0, t)$.

Introduction

In this note we obtain estimates for the blow-up time of positive solutions of the following parabolic problem

(1)
$$\begin{cases} u_t = u_{xx} & \text{in } \mathbf{R}_+(0, T_{\lambda}), \\ -u_x(0, t) = u^p(0, t) & \text{in } (0, T_{\lambda}), \\ u(x, 0) = \lambda \phi(x) > 0 & \text{in } \mathbf{R}_+. \end{cases}$$

where p > 1 is fixed and $\lambda > 0$ is a parameter.

Throughout this note we assume that the initial datum ϕ is continuous, positive and bounded.

Existence, uniqueness, regularity and continuous dependence on the initial data for this problem were proved, for instance, in [2].

For problem (1), it is well known that if λ is large enough the solution blows up in finite time T_{λ} (T_{λ} depends on λ) if and only if p > 1, see for example, [1], [3], [4], [8], [10]. This means that there exists a finite time T_{λ} with

$$\lim_{t \nearrow T_{\lambda}} \|u(\cdot,t)\|_{\infty} = +\infty$$

¹⁹⁹¹ Mathematics Subject Classification: 35B40, 35K60, 35B30.

Key words and phrases: Parabolic problems, nonlinear boundary conditions, blow-up time.

Partially supported by Universidad de Buenos Aires under grant TX047 and by ANPCyT PICT No. 03-00000-00137. J. D. Rossi is also partially supported by CONICET and by Fundación Antorchas. Received February 3, 2000.

Revised November 8, 2000.

Here we are interested in the asymptotic behaviour of T_{λ} when λ goes to infinity. We prove the following Theorem,

THEOREM 1. Under the above assumptions on ϕ , the function $\lambda \mapsto T_{\lambda}$ is decreasing and continuous with the following asymptotic behaviour at infinity,

$$\lim_{\lambda\to\infty}\lambda^{2(p-1)}T_{\lambda}=T_0.$$

Here T_0 is the blow-up time of the solution of (1) with initial datum $u(x,0) \equiv \phi(0)$.

Some related papers that deal with the heat equation with a nonlinear source in the entire space are [7] and [9].

Under further assumptions on the initial datum, $u(x,0) = \psi(x)$ (a compatibility condition and $\psi_{xx} \ge 0$, that guarantee $u_t \ge 0$) it was proved in [6] and [8] that the following-blow up rate holds,

(2)
$$c \le (T-t)^{1/2(p-1)} \|u(\cdot,t)\|_{\infty} \le C$$

We observe that the exponent that appears in Theorem 1 is related to the one in the blow-up rate (2). This is a consequence of the natural scaling in the equation (1).

Proof of Theorem 1

The fact that $\lambda \mapsto T_{\lambda}$ is decreasing is an immediate consequence of the maximum principle. To see this, let us call *u* the solution of (1) with initial datum $\lambda \phi$ and *v* the solution of (1) with initial datum $\mu \phi$. If $\lambda \leq \mu$ then, by a comparison argument, $u(x,t) \leq v(x,t)$ for all x > 0 and $0 < t < \min\{T_{\lambda}, T_{\mu}\}$. As T_{λ} is the blow-up time for u, $\lim_{t \neq T_{\lambda}} ||u(\cdot, t)||_{\infty} = +\infty$ and hence *v* can not be defined beyond T_{λ} , proving that $T_{\mu} \leq T_{\lambda}$.

To see that is continuous we can assume that $\lambda \leq \mu$, hence $T_{\lambda} \geq T_{\mu}$. Now, given $\varepsilon > 0$ we have to show that $T_{\lambda} - \varepsilon < T_{\mu}$ if $\mu - \lambda < \delta$, but this follows by the continuous dependence with respect to the initial data (see [2]). In fact,

$$\|u(\cdot, T_{\lambda} - \varepsilon)\|_{\infty} \leq C = C(\varepsilon)$$

If we replace the power by a globally Lipchitz function g(u) that agrees with u^p for every $u \leq 2C$ we deal with a regular problem, and hence there exists $\delta = \delta(\varepsilon)$ such that

$$\|v(\cdot, T_{\lambda} - \varepsilon)\|_{\infty} \le 2C < +\infty, \quad \text{if } \mu - \lambda < \delta.$$

We observe that as long as $v \le 2C$ it is a solution of the problem with u^p as nonlinear flux at x = 0. By uniqueness, we can conclude that v is bounded up to $T_{\lambda} - \varepsilon$. Therefore, $T_{\mu} > T_{\lambda} - \varepsilon$ as we wanted to prove.

Finally, let us study the asymptotic behaviour at infinity. This is the main point of the paper.

Let u be the solution of (1) and inspired by the natural scaling of the problem we define

(3)
$$v_{\lambda}(x,t) = \frac{1}{\lambda} u(\lambda^{1-p} x, \lambda^{2(1-p)} t).$$

As u satisfies (1), v_{λ} verifies

(4)
$$\begin{cases} (v_{\lambda})_{t} = (v_{\lambda})_{xx} & \text{in } \mathbf{R}_{+} \times (0, \tilde{T}_{\lambda}), \\ -(v_{\lambda})_{x}(0, t) = v_{\lambda}^{p}(0, t) & \text{in } (0, \tilde{T}_{\lambda}), \\ v_{\lambda}(x, 0) = \phi(\lambda^{1-p}x) \equiv \phi_{\lambda}(x) & \text{in } \mathbf{R}_{+}. \end{cases}$$

where $\tilde{T}_{\lambda} = \lambda^{2(p-1)} T_{\lambda}$.

We want to compute $\lim_{\lambda\to\infty} \tilde{T}_{\lambda}$. For that purpose, let us define w as the solution of

(5)
$$\begin{cases} w_t = w_{xx} & \text{in } \mathbf{R}_+ \times (0, T_0), \\ -w_x(0, t) = w^p(0, t) & \text{in } (0, T_0), \\ w(x, 0) = \phi(0) & \text{in } \mathbf{R}_+, \end{cases}$$

which is the natural "limit" equation as $\phi_{\lambda} \to \phi(0)$ uniformly over compact sets of $[0, +\infty)$.

As $\phi(0) > 0$, w blows up in finite time, T_0 (see [4]).

The Theorem will follows if we prove that

$$\tilde{T}_{\lambda} \to T_0$$
, as $\lambda \to \infty$.

To prove this claim, let $\varepsilon > 0$ and take $T' = T_0 - \varepsilon$. Let $M = \sup_{0 < t < T'} \|w(\cdot, t)\|_{\infty}$.

As before, we take $g \in Lip(\mathbb{R})$ such that $g(s) = s^p$ for s < 2M. With this g, we define φ the solution of the following problem,

(6)
$$\begin{cases} \varphi_t = \varphi_{xx} & \text{in } \mathbf{R}_+ \times (0, T'), \\ -\varphi_x(0, t) = g(\varphi)(0, t) & \text{in } (0, T'), \\ \varphi(x, 0) = \phi_\lambda(x) & \text{in } \mathbf{R}_+. \end{cases}$$

Observe that $\varphi = v_{\lambda}$ if $v_{\lambda} < 2M$.

Let us see that $|w(0,t) - \varphi(0,t)| < \delta$ if $\lambda > \lambda_0(\delta)$ for all t < T'. For this purpose, let us define $z = w - \varphi$. As $g \in Lip(\mathbb{R})$, z verifies

(7)
$$\begin{cases} z_t = z_{xx} & \text{in } \mathbf{R}_+ \times (0, T'), \\ -z_x(0, t) = g(w)(0, t) - g(\varphi)(0, t) & \text{in } (0, T'), \\ z(x, 0) = \phi(0) - \phi_\lambda(x) & \text{in } \mathbf{R}_+. \end{cases}$$

Then we have

(8)
$$|z_x(0,t)| \le K|z(0,t)|,$$

where K depends only on M.

Let $\Gamma(x,t)$ be the fundamental solution of the heat equation, namely

$$\Gamma(x,t) = \frac{1}{(4\pi t)^{1/2}} \exp\left(-\frac{x^2}{4t}\right).$$

For $x \in \mathbf{R}_+$, by (8) we have (see [5])

(9)
$$z(x,t) = \int_{\mathbf{R}_{+}} \Gamma(x-y,t) z(y,0) \, dy - \int_{0}^{t} \frac{\partial z}{\partial x}(0,\tau) \Gamma(x,t-\tau) \, d\tau + \int_{0}^{t} \frac{\partial \Gamma}{\partial x}(x,t-\tau) z(0,\tau) \, d\tau.$$

Now we observe that Γ satisfies

$$\frac{\partial \Gamma}{\partial x}(0,t-\tau) = 0, \quad \Gamma(0,t-\tau) = \frac{1}{2\sqrt{\pi}(t-\tau)^{1/2}}.$$

Hence, using the initial and boundary conditions we get that

$$|z(0,t)| \leq \int_{\mathbf{R}_{+}} \Gamma(-y,t) |z(y,0)| \, dy + \frac{K}{2\sqrt{\pi}} \int_{0}^{t} \frac{|z(0,\tau)|}{(t-\tau)^{1/2}} \, d\tau.$$

Now we choose $t_0 = t_0(K)$ such that

$$\frac{K}{2\sqrt{\pi}}\int_0^{t_0}\frac{1}{(t_0-\tau)^{1/2}}\,d\tau\leq\frac{1}{2}.$$

Hence, for $t \in [0, t_0]$ we have

$$\max_{[0,t_0]} |z(0,t)| \le 2 \max_{[0,t_0]} \int_{\mathbf{R}_+} \Gamma(-y,t) |z(y,0)| \, dy$$

We observe that for every $\delta_1 > 0$ there exists $\lambda_1 > 0$ such that

$$\begin{split} \int_{\mathcal{R}_{+}} \Gamma(-y,t) |z(y,0)| \, dy &= \int_{0}^{L} \Gamma(-y,t) |z(y,0)| \, dy + \int_{L}^{+\infty} \Gamma(-y,t) |z(y,0)| \, dy \\ &\leq \eta \int_{0}^{L} \Gamma(-y,t) \, dy + C \int_{L}^{+\infty} \Gamma(-y,t) \, dy \\ &\leq \delta_{1} \end{split}$$

 $\text{if } \lambda > \lambda_1. \\$

Now, choose L large so that $\int_{L}^{+\infty} \Gamma(x - y, t) dy$ is small uniformly in $(x, t) \in (0, L/2) \times (0, t_0)$, and take $\lambda_2 > 0$ such that $|z(y, 0)| < \eta$ for $y \in (0, L)$ and η small.

With this bound on |z(0,t)| we can control z(x,t) for $(x,t) \in (0,L/2) \times (0,t_0)$, in fact, from (8) and (9) we have

$$\begin{aligned} |z(x,t)| &\leq \int_{\mathcal{R}_{+}} \Gamma(x-y,t) |z(y,0)| \, dy + K\delta_1 \int_0^t \Gamma(x,t-\tau) \, d\tau + \delta_1 \int_0^t \frac{\partial \Gamma}{\partial x} (x,t-\tau) \, d\tau \\ &\leq \int_0^L \Gamma(x-y,t) |z(y,0)| \, dy + \int_L^{+\infty} \Gamma(x-y,t) |z(y,0)| \, dy + C\delta_1 \\ &\leq \eta \int_0^L \Gamma(x-y,t) \, dy + C \int_L^{+\infty} \Gamma(x-y,t) \, dy + C\delta_1 \leq \delta_2 \end{aligned}$$

if λ is big enough.

Now, as t_0 is independent of λ , we can repeat this procedure beginning with $z(x, t_0)$ as initial datum to find that $|z(x, t)| < \delta_3$ for $(x, t) \in (0, L/4) \times (t_0, 2t_0)$. Therefore, after a finite number of iterations we obtain that, for λ large $(\lambda > \lambda_0(\delta))$

$$|z(0,t)| < \delta \quad \text{for all } t < T',$$

as we wanted to see.

Now, as $w(0, T') \leq M$ and $|w(0, t) - \varphi(0, t)| < \delta$, we have that $\varphi(0, t) < 2M$ in [0, T']. Therefore, by uniqueness, $\varphi = v_{\lambda}$ in [0, T']. Hence $\tilde{T}_{\lambda} \geq T' = T_0 - \varepsilon$.

Now, take ψ a compatible initial datum with compact support and $\psi_{xx} \ge 0$ such that $\psi(x) < \phi(0)$ and $\phi(0) - \psi(x)$ small enough in (0, L). From the previous argument, it follows that the solution w of (1) with ψ as initial datum verifies

$$w(0,T') - \underline{w}(0,T') < \delta.$$

Hence $T(\psi) \ge T'$. By the assumptions on ψ , \underline{w} verifies (2). Then

$$w(0, T') - \delta \le w(0, T') \le ||w(\cdot, T')||_{\infty} \le C(T(\psi) - T')^{-1/2(p-1)}.$$

Therefore it is easy to see that $T(\psi) - T' < \kappa$ if $\varepsilon = T_0 - T'$ is small (depending on κ). Now, choosing λ large enough, we can obtain $\phi_{\lambda}(x) > \psi(x)$, then $\tilde{T}_{\lambda} \leq T(\psi) < T' + \kappa$ and hence as $T_0 - T' = \varepsilon$, we conclude the desired result. \Box

References

- G. Acosta and J. D. Rossi, Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition, Z. Angew Math. Phys., Vol 48 (5) (1997), 711–724.
- H. Amann, Dynamic theory of quasilinear parabolic systems III. Global existence, Math. Z. Vol. 202(2) (1989), 219–254.
- [3] K. Deng, Blow-up rates for parabolic systems, Z. Angew Math. Phys. vol 46. (1995), 110-118.
- [4] K. Deng, M. Fila and H. A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ Comenianae vol LXIII (1994), 169–192.
- [5] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ (1964).
- [6] M. Fila and P. Quitter, The blow-up rate for the heat equation with a nonlinear boundary condition, Math. Meth. Appl. Sci. vol 14. (1991), 197–205.
- [7] C. Gui and X. Wang, Life span of solutions of the Cauchy problem for a semilinear heat equation, Jour. Diff. Eq, 115, 166-172 (1995).
- [8] B. Hu and H. M. Yin, The profile near blow-up time for the solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. vol 346 (1) (1995), 117–135.
- [9] T.-Y. Lee and W.-M. Ni, Global existence, large time behaviour and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), 356–371.
- [10] J. D. Rossi and N. Wolanski, Global Existence and Nonexistence for a Parabolic System with Nonlinear Boundary Conditions, Diff. Int. Eq. Vol. 11(1), (1998), 179–190.

Departamento de Matemática, FCEYN, UBA (1428) Buenos Aires, Argentina.

E-mail address: jfbonder@dm.uba.ar, jrossi@dm.uba.ar