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1. Introduction

In the present paper, we study neutral hyperkahler structures on four-di-

mensional manifolds, which draw attention recently in differentialgeometry and

especially in mathematical physics (cf. Hull [14], Ooguri-Vafa [20]). A neutral

hyperkahler structure on a pseudo-Riemannian four-manifold M of metric sig-

nature (2, 2) consists of a neutral metric g and three endomorphisms (/,'/,'K) on

the taneent bundle TM of M such that

(1) I2 = -Id, 72 = 'K2 = Id and I'J = -7/ = '*;

(2) 0(Ki, V2)=g(IVuIV2) = -g{'JVu'JV2) = -g(fKVu'KV2)

for arbitrary vector fields V＼,F2 on M, and that these structures enjoy some

desired properties similar to the Kahler condition. We shall calla triple(/,'/,'K)

satisfying(1) a split-quaternion structure(or a paraquaternionic structurein some

literature (cf. Blazic [4], Garcia-Rio et al. [10])), g satisfying (2) a compatible

metric with (/,'J,'K), and (g,I, 'J,'K) a neutral almost hyperhermitian structure.

For a four-manifold M endowed with such a structure (g,I, 'J,'K), the invariance

of g by / and the skew-invariance by 'J and 'K allow us to define three

nondegenerate 2-forms Q/,Q>j,Q/K, called the fundamental forms, as follows:

n/(F,, V2) :=g(IVu V2),n,j(Vu V2) ■= g('JVu V2),Q:K(VUV2) := g('KVu F2),

where V＼.V~>are vector fieldson M.

Definition. A neutral almost hyperhermitian four-manifold (M, g,I, 'J,'K)
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is called a neutral hyperkahler surface if /,'/,'K are integrable and if Q/,Q>j,Q>k

are closed.

Here, '/ (resp. 'K) is said to be integrable if the tangential distributions

corresponding to the ( + l)-eigenspaces of 'J (resp. 'K) are integrable, and a

neutral almost hyperhermitian four-manifold with integrable split-quaternion

structure is called a neutral hyperhermitian surface. The fundamental 2-forms

on a neutral hyperkaher surface define three symplectic structures,with certain

algebraic identities,which is called a hypersymplectic structure in Hitchin [13].

For the Riemannian analogue, it is known that a compact hyperkahler

surface is biholomorphic and isometric to either a complex torus with the flat

metric or a Ki surface with the Ricci-flat Calabi-Yau metric. Taking account

of the Euler characteristics and the Hirzebruch signatures, we see that any

hyperkahler metric on a torus (resp. a Ki surface) must be flat(resp. nonflat),

since it is Ricci-flatand anti-self-dual(cf. Besse [3]).

We will focus our attention on the indefinite case, i.e.,neutral hyperkahler

structures on compact four-manifolds. Any complex torus has a flat neutral

hyperkahler structure associated with the standard one on the complex plane.

Moreover, we will observe in §2 that any neutral hyperkahler surface must be

biholomorphic to either a complex torus or a primary Kodaira surface. We are

then interested in seeking a compact complex surface with nonflat neutral

hyperkahler structure,like a Ki surface in the Riemannian case.

Concerning the issue, we see that neutral hyperkahler structures on compact

four-manifolds exhibit quite differentproperties to those of hyperkahler structures

in the Riemannian case. We will give a characterization of neutral hyperkahler

structures,in terms of a partial differentialequation for the Kahler potentials,

and show that any primary Kodaira surface admits neutral hyperkahler struc-

tures, whose compatible neutral metrics can be chosen to be flat or nonflat,

according as some particular functions are constant or not. Our main results will

be stated in Theorems 1 and 2.

It should be pointed out that J. Petean [21] has independently studied in-

definiteRicci-flatKahler metrics on compact complex surfaces. Furthermore, he

has successfully obtained a classificationof compact complex surfaces which

admit indefinite Ricci-flat Kahler metrics.

2. Neutral Hyperkahler Structures

Let fi/,Q//,Q/tf be the fundamental forms of a neutral almost hyperhermitian

four-manifold (M,q,I,'J,'K). Then, aO/ : AlT*M -> a3T*M are isomor-
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phisms, and hence there exist three kinds of Lee forms Pi,pijiP>K such that dQ-i =

#aQ/ (/6{/,'/,'*}).

For the later convenience, we must recognize the following (see [16], cf.

Rover f61V

Proposition 1. /,'/ and 'K are integrable if and only if /?7= fi,j= fi,K

(=: 8).

For a neutral hyperhermitian surface (M,g,I, 'J,'K), we call /? the Lee form.

If p is exact (resp. closed), then the surface is globally (resp. locally), conformally

neutral hyperkahler.

Recall that, given a neutral hyperkahler surface (M,g,I,'J,'K), the 2-forai

Q.ij + >/―'IQ-'kis not only a nonvanishing holomorphic 2-form on (M, I) but also

a parallel section of the canonical bundle K(Mj)- Then the Ricci curvature of

(M,g) is identically zero, and therefore the first Chern class c＼(M,I) vanishes.

On the other hand, any neutral hyperhermitian metric is (conformally) self-dual

(cf. Akivis and Goldberg [1], [14], [16]). Summarizing these, we have the fol-

lowing:

Proposition 2. Any neutral hyperkahler surface is Ricci-flat and self-dual.

Remark that any scalar-flatneutral Kahler metric is self-dual(cf.[17],for the

Riemannian analogue, see Derzinski [7],Itoh [15]).

We now recall that the fundamental 2-forms Q/,fi//,Q>£ of a neutral

hyperkahler surface (M, a,/, 7, 'K) satisfythe following: dQi = 0 and

(3)
-n] = al = n}K, nlAQm = o, (/ # m- /,m e {/,7, ^≫

In particular, we note that Q/ is compatible with the opposite orientation and

that (Q,ij,£l>K)is a conformal symplectic couple on M in the sense of Geiges [11].

By making use of analogous arguments in Geiges-Gonzalo [12] and Geiges

[11] (see [161), we can obtain the following:

Proposition 3. If a four-manifold M admits three nondegenerate 2-forms

Qi,Q2;^3 satisfying the same relations as (3), then there exists a unique neutral

almost hyperhermitian structure (g,I/J,'K) on M such that Q＼ =Q/,Q2 = £l'j,

Q3 =Q'k- If these 2-forms Q＼,Q.2,^3 are closed, then (g,I,'/, 'K) defines a neutral

hvnprhnhlpr xtrurturp
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By Proposition 1, the closedness of Qi,Q.2,&3 leads the integrability of

/,'/,'K.

In the rest of this section, we discuss compact neutral hyperkahler surfaces.

According to the Enriques-Kodaira classificationof compact complex surfaces (cf.

Barth et al. [2]), we see that for any compact neutral hyperkahler surface

(M,g,/, 'J,'K), the underlying complex surface (M,I) must be biholomorphic to

one of the following possibilities:

(a) a complex torus, (b) a K3 surface, (c) a primary Kodaira surface,

since Q>j + y/^lCl'K defines a nonvanishing holomorphic 2-form on (M,I).

Among these candidates, it is already noted that a complex torus has the

standard flat neutral hyperkahler structure.

For the second candidate, Matsushita [19] showed that K3 surfaces admit

many neutral metrics (see also Bonome et al.[5]).However, Draghici [8] recently

showed that K3 surfaces admit no symplectic structures compatible with the

opposite orientation. Noting that one of the fundamental forms of a neutral

hyperkahler surface defines a symplectic structure compatible with the opposite

orientation, we see that K3 surfaces admit no neutral (hyper)kahler structures.

Therefore, we must consider the other candidates.

3. Primary Kodaira Surfaces

In thissection, we devote ourselves to a primary Kodaira surface X, which is

a compact complex surface, with b＼(X) = 3, c＼{X) = 0, ci(X) = 0, obtained as

the total space of an ellipticfibre bundle over an ellipticcurve. Moreover the

other numerical characters of X are given as follows:

hx＼X) = ＼i q{X)=2, pg(X) = l, b+(X)=b^(X) = 2,

where we denote respectively by hl'°(X),q{X) and pg{X) the complex dimension

of the space of holomorphic 1-forms, the irregularityand the geometric genus of

X (see Barth et al.[2]).Any primary Kodaira surface cannot be Kahler, since its

firstBetti number is three. Fernandez et al. [9] constructed examples of (flat)

neutral Kahler structures on primary Kodaira surfaces of particular type.

It is well-known that every primary Kodaira surface X is covered by the

complex plane C2 and its fundamental group n＼(X) can be represented injectively

into Affine(C2), the complex affine transformation group on C2:

p:n＼{X) -^Afline(C2), p{y)(zuz2) = {z＼+<xy,z2 + ^zi +0y),

where (z＼,z-i)is the standard complex coordinates of C2 and ay,/L are constants
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in C depending only on y.If we put G := p(n＼(X)), then we can identify X with

C2/G, as complex surface (see Kodaira [18]).

At this stage, we can state our main result:

Theorem 1. Let X = C2 /G be a primary Kodaira surface. Then the following

2-forms Qi,Q2,Q3 define a neutral hyperkdhler structure on X:

(4) il＼―lTa(dw＼Adwj,) + ＼/^＼Rq(w＼)dw＼/＼dW＼+ (-＼/―T/2)dd(p,

O2 = KQ{e"/~ledw＼a dw2), O3 = Im(e^0dwi a dw2),

where (w＼,W2) is the standard complex coordinate system of C2, 6 is a real

constant and (p is a solution to the equation:

(5) 4yf^＼(lm(dw＼ a dw~2)+ V^A Re(wi) dw＼a dw~＼)a dd(p= dd(pa dd<p.

In particular,any primary Kodaira surface admits neutral hyperkdhler structures.

Conversely, under suitable complex coordinates (h>i,W2) of C2, the fundamental

forms of any neutral hyperkdhler structure on X can be expressed as (4).

Proof. Let *F : X ―> A be an elliptic fibre bundle structure over the base

elliptic curve A. Then we can verify the following commutative diagram:

C2 ^^ x

A- -X-

C > A
m

where T is the projection from C2 to the first factor C, and m, m are the covering

maps. In this picture, if we denote by (zx.zj) the standard complex coordinate

system of C2, then </>:= dz＼ is a nonvanishing holomorphic 1-form on X, which

generates the cohomology group H°(X,Qlx) = H-'°(X), and moreover, o-0'1:=

dzi-zxdzi is a ^-closed (0, l)-form on X. Hence Hl(X,Qx) ^ ^''(1), the

Dolbeault cohomology group, is generated by the <3-cohomology classes of (ftand

a0'1. Since da0'1 = ―dz＼AdzJ, a real 1-form a := a0'1 +CT0'1 is a ^/-closed 1-form

on X. Furthermore, we see that the cohomology classes of </>,(j>,(Tgenerate

H＼X,C).

Note that ＼J/:= dz＼a (dz2 - z＼dz＼)gives a nonvanishing holomorphic 2-form

on X.

We now define real </-closed 2-forms 02,^3,^2,^3" respectively by

Q.2 + V―1^3 := dz＼adz2, O.T + V―^^3 '■=V―ldzi a {dzi ― z＼dz＼).
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Then the cohomology classes of £^2,^3 (resp. O^", O^) in H2(X,R) generate the

cohomology group H+(X,R) (resp. H2(X,R)). Moreover it is easy to see that

(Q2,H2,Q3) and (0^,02,03) give neutral hyperkahler structures on X, re-

spectively.

We next consider arbitrary neutral hyperkahler structures on X. Suppose that

three symplectic structures Oi,^2,^3 define a neutral hyperkahler structure. Then

Qi is a real (1, l)-form on X and defines an element in H2(X,R). Thus there

exists a real 1-form 27 and real constants a, b such that Q.＼ = aQ^ + bQ.J + dr＼.It

then follows from Q.2 = (Or)2 = (O3")2 that

{a2 + b2-l)Q2 = d{rj a (2(aQ.2 + b^) + drj)).

By integrating the equation above, we obtain a2 + b2 = l, so we may put

a = cos 6, b = sin 0, where 6 is a real constant.

Recalling the decomposition rj = rjl>°+ rj°'l(rj0'1― z/1'0), we see that t/0'1 is en-

closed, since Q!i,Q^,Q^ are real (1, 1)-forms, and hence that

rj0^ = kf+ /ff0'1 + dfi, dtj = (I- l)dzXAdz^ + dd(fi - /Z),

where k, I are constants and /i is a complex-valued function on X. Setting

＼/^lc :=J ― l(c e R) and V―l(p-=2(ju ― p), we then see that

Qi = cos0ilj + sin$03" + V^lcdzi Adz＼ + {V^-[/2)dd(p.

By making use of the coordinates(h>i,h>2)

Qi,02,03 as

:= [es^ez＼+c,Z2), we can express

Qi = O0 + {＼/^l/2)dd<p(=: Qv), Q2 + V^Tn3 = e/~ledw＼adw2,

where Ho is given by

Qo := (y/―l/2)(dwi adwj ―dw＼adwl + (wj + w＼)dw＼a JvvT).

Therefore we see that (Qi,Q2,Q3) defines a neutral hyperkahler structure on Xif

and only if g> satisfiesthe following equation:

4＼/―TOo a dd<p= dd(pa ddq*.

This concludes the proof. □

We note that the corresponding metric g = g9 is explicitly given by

9q>―(w＼ + W＼)＼dwi＼2―(dw＼d＼V2+ dW＼dwj) + D2(p,
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where D^ denotes the complex Hessian of q>.Clearly, the pullback of an arbitrary

function on the base torus A is a solution to (5).

4. Flat Neutral Hyperkahler Structure on Primary Kodaira Surfaces

In this section, we shall prove the following:

Theorem 2. Let gv be the neutral hyperkdhler metric on a primary Kodaira

surface X defined by (4). Then qw is fiatif and only if w is constant.

This shows that each nonconstant function(p on the base torus of any

primary Kodaira surface defines a nonflat neutral hyperkahler metric g^ (cf.

Petean [211).

Proof. We first recall some preliminaries for a neutral Kahler surface

(X,g,I). Let (h>i,W2) be local holomorphic coordinates on X. For simplicity, we

set

<9a:= d/dwXi 3^ := d/dWa and g^ := 2g(da, dp)

(a,/? =1,2). Let V be the Levi-Civita connection of {X,g) and {cog} the

connection form of V with respect to {dA} (A,B = 1,2,1,2). Then cop = ≪| = 0,

since V/ = 0. Moreover co? (resp. co*-)is a local (l,0)-(resp. (0,1)-) form, since V

is torsion-free. Hence the components of {to^}, except for {cOfj(d7)} and {ofAdy)},

must vanish. Since V preserves the metric a, we have

(6) cof

where gaP is given by YL£9 9^ = T^s9^EQe5.―^f- The curvature form {Rg} of V

is given as follows:

(7)
R} = dcol Rj = da>*:

Therefore we see that g is flat(i.e.,R = 0) if and only if co^ is a local holo-

morphic 1-form on X.

Let X = C2/G be a primary Kodaira surface, g a neutral hyperkahler metric

on X and Qi,Q2,Q3 the fundamental forms. By making use of complex

coordinates (m>i,W2) satisfying Q.2 + V--1^3 = e^edw＼ ai/w2 (6*is a real con-

stant),the condition -Q? = O^ = H? can be written as follows:

(8)
011022 ~ 012021 = -

1
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Thus the components gaP satisfy

in 022, 9
12 _

912

The connection form {cof＼is given by

(9)
col = -922d9n +9i＼d9＼2

co＼= gx-2dgxi - g＼sp9n

92' = 921 8° = -9,1

≪2 = -922d9H + 9Xd922i

G>2 = 9＼2d92＼- ^11^22-

In particular,it follows from (8) that

(10) m＼+(o22 = 0

Recall that the fundamental form Qi may be written as

Qj = (y/~Z＼/2)(―dw＼a dwj. ―d＼V2a dw＼ + (w＼+ w＼)dw＼a dw[ + dd<p),

where <pis a smooth function on X. The components ga^ are given explicitlyin

the following fashion:

d2(p . d2(p
gl=Wx + Wx+ g 2 =

_1+
T=z(=9l＼)

dw＼dw＼ ow＼OW2

From (9) and (7), if q> is constant, then g is flat.

For any y e G, we define py : C2 ―>･C2 by

A,(w>i,iv2) = (wi + a^, w2 + o^wi + j9 )

It then follows that

(11)

(12)

p* (dw＼ )=dwi, p* (dw2) = dw2 + otydwi,

P7*(di) = di+c^d2, pr{d2) = d2.

Then we can verify the following relations:

(13)
9ll°Py 011 ~ay9l2-ayd2l + K|2022

012 °Py = 912 ~ a7#22

922 =

d2<p

dW2dW2 '

92＼oPy=92＼ -ayd22, #22° Py 022

By making use of the relationsabove, we can also verify the following

(14) p; { ― txYco＼, Py(o＼ = co＼, PyCoj = coj + 2aya>11 ― ay2(≫2COj = (Ox
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r＼x := co＼ + w＼co＼, rj2 '■= co＼, r}3 := <d＼ ― 2w＼(o＼ ― W＼2(d＼
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then rjl,rj2,rj3may be regarded as 1-forms on X = C2/G.

In what follows, we suppose that g is flat.Then rj2is a holomorphic 1-form

on X. Since hl'°(X)= 1, we can write rj2 as

rj2= Adw＼,

where A is a constant. In particular,

dr＼2= drj2= drj2= 0.

Lemma. rj2
0

Proof. From the flatness of g and (10), we have

0 = drj2 = dco＼ = ―(a>l a co＼+ (n＼a coj) = ―2co＼a w＼.

Thus we also have

tjlA rj2= (tt)J+ W＼Co＼)Aft}] =0.

If A ^ 0, then 77!a dw＼ = 0. Since ^ is a (1,0)-form on X, we can find a function

F on X such that

rjl=Fdw＼, i.e., ct>|= (F ―Aw＼)dw＼.

By the flatness of g again, we obtain

0 = da>l = (dF ― Adwl) a t/wj.

Namely, we see that dF = Adw＼, and hence that 8dF = 0. From the mean value

property for the operator dd, we conclude that F must be constant. Thus

AdW＼ =dF = 0, i.e.,A ― 0. This contradicts the assumption A # 0. □

From the lemma above and (14), rjl= co＼is a holomorphic 1-form on X.

Hence there exists a constant B such that

rfi= Bdw＼.

It is easy to see that

(15) drj3 = 2Bdw＼ a dw＼, drj3 = 2Bdw＼ a ?/3
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We may assume that rj3is expressed as

Tf3= fxdw＼ + f2(dw2 - w[dw＼)

for smooth functions f＼,f2 on X. It then follows from (15) that

(16) aC/1 - wif2) + 2BdW[ = 0, df2 = 0.

In particular,f2 is a holomorphic function on X. Namely, f2 must be a constant,

say C. It follows from (16) that

ddfi =d({-2B+C)dwi) =0.

From the mean value property for dd again, we see that fx is also constant, say

K. It is easy to see from (15) that

2Bdw＼ adw[ = drj3= d(Kdw＼ + C(dw2 ― W＼dw＼))= Cdw＼ adw＼,

2BCdw＼ /＼dw2= dn? = d(Kdw＼ + C(dw2 ― w[dw＼)) = 0,

and hence B c 0. Thus we obtain

rjl=rj2 = 0, f]2= Kdw＼.

Using (8) and (9), we have the following:

8g , = -dg2* = 0, dgl2 = -Kg-^dwi

In particular, g21-is a constant, since dg12 =

dwidm on each fibre T of *F : X ―> A, we

dQ＼＼
-Kg2＼dw

dg2l = 0. By integrating gn

obtain

f
A A-

[ d2(P

g22 dw2 Adw2= -z―t=
Jt jTdw2dw2

dW2 A d＼＼>2 = 0,

= dV

i.e.,#22 = 0- Then q>is depending only on the variable w＼,so (p may be regarded

as a function on A. In particular,#12 = 021 = ~ 1- On the other hand, we note

that gx＼―{w＼+ wi) can be regarded as a function on X, and moreover that

dd(g{i ―(w＼+ wi)) = ―d{dgxi ―dw＼)= ―d(K ―1) dw＼ = 0.

Then g^ ―(wi + wi) must be constant, say L. Integrating L = d2(p/dw＼dW＼ on

A, we also have L = 0. Therefore 9?is constant. Namely, g must coincide with

9o- □

We finallyremark on neutral hyperkahler structures on complex tori. By

using arguments similar to those in §§3-4,we can obtain an analogous result for
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flatneutral hyperkahler structures on complex tori.We thus see that complex tori

of particular type (e.g., the product of ellipticcurves) admit nonflat neutral

hyperkahler structures. Such an example was given in Petean [21]. We are then

led to the question whether all of complex toriadmit nonflat neutral hyperkaher

structures.This will be the future problem.
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