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A CLASS OF REAL-ANALYTIC SURFACES
IN THE 3-EUCLIDEAN SPACE

By

Naoya ANDO

Abstract. A smooth surface S in R® is called parallel curved if
there exists a plane in R® such that at each point of S, there exists
a principal direction parallel to the plane. For example, a plane, a
cylinder and a round sphere are parallel curved. More generally, a
surface of revolution is also parallel curved. The purposes of this
paper are to study the behavior of the principal distributions on a
real-analytic, parallel curved surface and to classify the connected,
complete, real-analytic, embedded, parallel curved surfaces.

1. Introduction

Let S be a smooth surface in R® and Umb(S) the set of the umbilical
points of S. If S\Umb(S) # (J, then there exists a one-dimensional continuous
distribution on S\Umb(S) which gives a principal direction at each points of
S\Umb(S). Such a distribution is called a principal distribution on S. Let p, be
an isolated umbilical point of S. Then the indices of py with respect to two
principal distributions coincide with each other. The common number is called
the index of py on S and denoted by ind, (S). Let (x, y) be local coordinates
around py such that py corresponds to (0,0) and ry a positive number such
that po is the only umbilical point on {x?+ y? <rj}, and let ¢g , denote a
continuous function on (0,r9) x R such that for any (r,0) € (0,ry) X R, a tan-
gent vector cos ., (r,0)0/0x + sin ¢g. , (r,0)d/dy is in a principal direction at
(rcos 0, rsin 0). Then the index ind, (S) is represented as follows:

ind (5) = P20~ o 00) N
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Let 2% be the set of the homogeneous polynomials in two variables of degree
k=2 and 9;)" the set of the elements of 2% such that on each of their graphs, the
origin o := (0,0,0) of R? is an isolated umbilical point. For ¢ € 2% and for 0 € R,
set g(0) := g(cos 0,sin ). In [1], we studied the behavior of the principal distri-
butions around o on the graph G, of g € %k . Then we divided the study into two
cases: dj/d0 =0 and dg/d0 # 0. If g € 2F satisfies dg/d0 = 0, then the “position
vector field” xd/0x + yd/0dy is in a principal direction at each point of G,, and
from this together with formula (1), ind,(G,) = 1 follows. For g € 2* satisfying
dg/dé # 0, we mainly paid attention to the relation between the behavior of the
principal distributions and the behavior of the position vector field around a point
at which the position vector field is in a principal direction, and we presented a
way of computing ind,(G,) and proved ind,(G,) € {1 — k/2 + i}yi/ozl. In [2], we
have further studied the behavior of the principal distributions in relation to the
existence of other umbilical points than o, around a point at which the position
vector field is in a principal direction. We may find such a point, because Euler’s
identity holds for any homogeneous polynomial. In order to study the behavior of
the principal distributions around an isolated umbilical point on a general surface
by a similar method, we need some other vector field than the position vector
field.

For a smooth function f of two variables x, y, we set

of LU P A

=L = rpi=m s, Spi= tr =2
Py ox’ ar oy’ 1 ox2’ 5 0xoy’ 4 0y?’

pr 1 —qyr reo sy
grad, := < ), grady := < ), Hess, := ( )
! 4qr ! pr / Sy Iy

Let <, be the scalar product in R? and set
wr = (Hessy gradf,grad_/%)

In Section 2, we shall prove the following:

ProposITION 1.1. Let f be a smooth function of two variables and Gy the
graph of f. Then at a point of Gy, the gradient vector field of f is in a principal
direction if and only if wy =0 holds.

For g e 2%, we see by Euler’s identity (k — 1) grad, = Hess,'(x, y) that

(k — 1)w, = det(Hess,) % (6) (2)
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holds at (cos 0,sin 0) for any 0e R. Therefore w, =0 holds if and only if
det(Hess,) = 0 or dj/df =0 holds. If g € 2" satisfies det(Hess,) = 0, then there
exists a vector («, f) € R? satisfying g = (ox + ﬂy)k, which implies g ¢ 2*. There-
fore we see that for g € 2%, w, = 0 (resp. #0) is equivalent to dg/d0 = 0 (resp.
#0) and this leads us to study the behavior of the principal distributions in
relation to the behavior of the gradient vector field. In [2], we have carried out
this on G, for g e 2~

Let .«/®) be the set of the real-analytic functions defined on a connected
neighborhood of (0,0) in R? such that for each Fe.Z?, F(0,0) = pr(0,0) =
qr(0,0) = 0 hold, and 7> the set of the elements of /(> such that on each of
their graphs, o is an isolated umbilical point. One of the purposes of this paper is
to study the behavior of the principal distributions around o on the graph Gp of
F e /% satisfying wr =0 and the index ind,(Gr) of o for Fe .o/ satisfying
wr = 0. In Section 5, we shall prove the following:

THEOREM 1.2. Let F be an element of &/02 satisfying wr = 0. Then Gr is part
of a surface of revolution such that o lies on the axis of rotation; at any point of
Gr, the position vector field is in a principal direction and ind,(Gr) =1 holds.

THEOREM 1.3. Let F be an element of &{;2)\&/02 satisfying wr = 0. Then one
of the following holds:
(1) GF is part of a plane or a round sphere;
(2) There exist a neighborhood U, of (0,0) in R* and a real-analytic curve C,
in U, satisfying the following:
(a) Co={(x,7) € Upi F(x, ) =0},
(b) Co =Umb(Gp, ) or Umb(Gp, ) = & holds,
(c) For any point q € Cy and for the plane PqJ- in R normal to Cy at q, the
set CqL = PqJ- N GF‘U() is a real-analytic curve such that at each point of
CqL, a tangent vector to CqL is in a principal direction of Gp.

REMARK. For an integer / > 3, let .7\ be the subset of .«/'> such that for
any Fe &/0(1) and for non-negative integers m,n = 0 satisfying 0 <m+n </,
(0™ F /dx™dy")(0,0) =0 holds. For each F e .o/’

0

there exists an element
fre yij” satisfying Umb(Gr_y, ) = Gr_y,, and there exists a homogeneous poly-
nomial g of degree kp satisfying fr —gr € @{(fkf+1). Let ;zifo be the subset of
/7 such that each F e .o/2 satisfies gr € 2/7. In [3], we have mainly studied the
behavior of the principal distributions around o on Gy for F ezsz/ozo satisfying
wr #0 and proved ind,(G,,) < ind,(Gr) £ 1 for F e /2.
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The gradient vector field of a smooth function f is in a principal direction at
a point of Gy if and only if there exists a principal direction at the same point
parallel to the xy-plane. A smooth surface S in R® is called parallel curved if
there exists a plane P in R® such that at each point of S, there exists a principal
direction parallel to P; if S is parallel curved, then such a plane as P is called a
base plane of S and the set of the base planes of S is denoted by %s. A plane,
a cylinder and a round sphere are examples of parallel curved surfaces. More
generally, a surface of revolution is also parallel curved. We see by Proposition
1.1 that a smooth function f satisfies cy = 0 if and only if Gy is a parallel curved
surface such that the xy-plane is an element of %g,. A surface does not have to
be entirely represented as the graph of a function so that the surface is parallel
curved. The other of the purposes of this paper is to classify the connected, com-
plete, real-analytic, embedded, parallel curved surfaces.

Let C;, C, be real-analytic, simple curves in R? with the unique intersection
P(c,.c,) and contained in planes Pj, Py, respectively. Then a pair (Cp, C,) is called
generating if we may choose as F, the plane normal to Cy at p(c, c,); if (Cy, Cy)
is generating, then C, and C, are called the base curve and the generating curve
of (Cy, Cy), respectively. In Section 4, we shall prove the following:

ProposITION 1.4.  Let (Cy, Cy) be a generating pair of which C, (resp. Cy)
is the base (resp. generating) curve. Then there exists a connected, real—analytic,
parallel curved surface Sy which conlams a nezghborhood of pc,c,) in CyUC,
and satisfies Py € Bs,. In addition, if S and S are such surfaces as Sy, then
Sé ) ﬂS(<)> is also such a surface.

For a generating pair (G, C,), the maximum of such surfaces as Sy in
Proposition 1.4 is denoted by S(c, ¢,)- In Section 6, we shall prove the following:

THEOREM 1.5. Let S be a connected, complete, real-analytic, embedded, par-
allel curved surface. Then S is homeomorphic to a sphere, a plane, a cylinder, or to
a torus. In addition,

(1) if' S is homeomorphic to a sphere, then S is a surface of revolution which

crosses its axis of rotation at just two points;

(2) if S is homeomorphic to a plane, then one of the following holds:

(a) S is a surface of revolution which crosses its axis of rotation at just
one point,

(b) S =S, holds, where (Cy, Cy) is a generating pair each element
of which is tsometrlc to R;
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(3) if' S is homeomorphic to a cylinder, then S = Sc, c,) holds, where (Cy, Cy)
is a generating pair such that one of Cy and C, is isometric to R and the
other a simple closed curve;

(4) if S is homeomorphic to a torus, then S = S(c, c,) holds, where (Cy, Cy) is
a generating pair each element of which is isometric to a simple closed
curve.
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2. Preliminaries

Let f be a smooth function of two variables x, y, and G, the graph of f.
We set

Ep=1+pf, Fy = pray, Gy = 1445,

L= Moo= Ny
T a1y T ety T Jdet(ty)

where det(ly) := E,Gy — Ff2 The Weingarten map of Gy is a tensor field Wy on
Gy of type (1,1) satistfying

e )

E FN'(L M
Wy = .
o Gy My Ny
A principal direction of Gy at (xo,)9) is a one-dimensional eigenspace of

Wy (xo.)- Let PDy be a symmetric tensor field on Gy of type (0,2) represented
in terms of the coordinates (x,y) as

where

PD; := {4y dx* + 2B, dxdy + Cy dy*},

1
det(Iy)

where
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Ay = EfMy — Fyly, 2By :=EfNy— Grly, Cyp:=FyNy — Gy My,

1

dx* == dx ® dx, dxdy = 5

(dx @ dy + dy ® dx), dy*:=dy @ dy.

For vector fields Vi, V> on Gy, the following holds:

PD
% Z V:'/\Wf(V_}')M(j/\;).
{i.j}=11,2} det(I;) \ox dy

Therefore we obtain

PROPOSITION 2.1. A tangent vector vy to Gy at (xo,yo) is in a principal
direction if and only if PDy (v y,)(v0,v0) = 0 holds.

Let Dy, Ny be symmetric tensor fields on Gy of type (0,2) represented in
terms of the coordinates (x,y) as
Dy = sy dx? + (ty — 17) dxdy — 57 dy?,
Ny = (50} — prasry) dx* + (4rpj — rpqy) dxdy + (prdyty — spqp) dy*.
Then we obtain det(I;)PD; = Dy + N;. For a vector field V on Gy, we set
Dy (V) :=Dr(V, V), Ny(¥):=N;(V. V),
PDy(V) = PD; (V. V).

For ¢ € R, we set

cos ¢ 0 . 0
Up = (sin¢>’ U, :=cos ¢a+sm¢5.

Then we obtain
LemMmA 2.2. For any ¢ € R, the following hold:
Df(Ulf)) = <HCSSf Uy, u¢+n/2>a
N/ (Uy) = <grad,,us»{grad;, Hess; u).
We set
0 0 | 0 0
Grady :=py ooty 5, Grady == —gy ooty 50

We shall prove
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PROPOSITION 2.3. At each point of Gy, the following conditions are mutually
equivalent:

(1) @ =0;

(2) 4r + G =0;

(3) Grady is in a principal direction of Gy;

4) Grad/% is in a principal direction of Gp;

(5) there exists a principal direction parallel to the xy-plane.

Proor. The following holds:
@y = (Ar + Cp)y/det(ly).
Therefore we see that (1) is equivalent to (2). By Lemma 2.2, we obtain
@, = PD;(Grady) = —det(I;)PDy (Grad; ).

Therefore we see by Proposition 2.1 that (1), (3) and (4) are mutually equivalent.
It is easily seen that (4) is equivalent to (5). O

From Proposition 2.3, we obtain Proposition 1.1.

3. Parallel Curved Surfaces

Let S be a connected, real-analytic, embedded, parallel curved surface and
for P e %s, let Eg p be the subset of S such that for any g € Eg p, the tangent
plane 7,(S) to S at ¢ is not parallel to P. We see that Zg p is an open set of S.
If there exists an element Py of %s satisfying Eg p, = &, then we see that S is
part of a plane in R>. In the following, suppose Es,p # & for any P e %s.

For Pye #s and for geZg p, let Pﬁo’q be the plane in R*® through g¢

perpendicular to Py and to T,(S), and Cp

7,4 the connected component of

PPLOA’ 41 Es,p, containing ¢g. We shall prove
PROPOSITION 3.1, The plane Py, , is perpendicular to T,(S) for each p € Cy, .

Proor. For each ¢ e Eg p,, there exist orthogonal coordinates (&,v,{) on
R® satisfying the following:

(1) the point ¢ corresponds to (0,0,0);

(2) the &(-plane P: is parallel to Po;

(3) the v{-plane Py is equal to Py .
Then we see that the v-plane Pe, is not perpendicular to 7, (Es, p,). Therefore there
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exist two positive numbers &;, vo > 0 and a real-analytic function F* defined on a
neighborhood Uk, ,, := (=&, &) X (—vo,v0) of ¢ in Pg such that the graph
Gy of Ft is a neighborhood of ¢ in Egp. The function Ft satisfies
F1(0,0) = (0F+/0£)(0,0) = 0. We see that at each point of Gp., the tangent
vector 0/0¢ is in a principal direction. Therefore by Proposition 2.1, we obtain

Cre [ (P _ort okt ot )
0&dv 0¢ 0 v ot

i
on Ug ,,. We may represent F— as

Fr(&v) = i o &l

i,j=0

where o; € R and where ooy = o190 = 0. Then at (0,v) € Ug

0 0 2
( (+ 1)0‘1j+117j> x |1+ (Z OCljUj>
Jj=0 j=0
= 2<i “UUJ) X (i(] + 1)“0j+lvj> x (i 06210-’). (4)
j=0 =0 =

J

o, WE may rewrite (3)

into

Since a9 = 0, we obtain «;; = 0. Generally, we see by (4) that if each element of
{oqk},](‘;(lJ for je N is equal to zero, then uy; is also equal to zero. Therefore we
obtain aj; = 0 for any j € NU{0}. Then for any v € (—uvo,v9), (0F*/0&)(0,v) =0
holds. This implies that T(o ,)(Gp:) is perpendicular to Py. Noticing P = Ppim -
we obtain Proposition 3.1. O

COROLLARY 3.2. The following hold.

(1) C}%M is a real-analytic curve;

(2) A principal direction of S at each point of Cﬁm g parallel to Py is per-
pendicular to Py, ;

(3) A nonzero tangent vector to C,%O_’q at each point of C,%M is in a principal

direction of S and not parallel to P,.
We shall prove

ProposITION 3.3.  Let F be an element of 42/1)(2> satisfying wp = 0. Then one
of the following holds:
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(1) Gp is part of a surface of revolution such that o lies on an axis of rotation;
(2) There exist a neighborhood V, of o in the xy-plane Py, and a positive
number ¢ >0 and a real-analytic curve y, in V, for each e (—&,é&)
satisfying the following:
(@) Vo= Uge(,govgo) Ves
(b) for any &€ (—eo, ) and for any (x,y)€vy,, |F(x,y)| =g holds,
(c) if a line I* in Py, is normal to y, at a point of 1Ny, for some
e € (—eo, &), then for any &' € (—eo, ), I+ is normal to v, at any
point of I+ Ny,

To prove Proposition 3.3, we need lemmas.

For any ¢eR, we set uy(x,y):=(cos@)x+(sin¢)y. For an element
F e eszio(z), it is said that F is of one-variable if there exist a number ¢, € R and
a real-analytic function fr; defined on a neighborhood of 0 in R satisfying
F = fr.10ug, around (0,0), and it is said that F is radial if there exists a real-
analytic function fr , defined on a neighborhood of 0 in R satisfying F = fr , o r?
around (0,0), where r(x, y) := y/x% + y2. We shall prove

LEMMA 3.4. Let g be an element of 2*. Then wy = 0 holds if and only if g is
of one-variable or radial.

Proor. We see from equation (2) that w, =0 holds if and only if
det(Hess,) = 0 or dg/d0 =0 holds.

If dg/d0 =0, then g is radial (see [l]). Suppose det(Hess,) =0 and
dg/df # 0, and let § attain a nonzero extremum at 6y € R. If we represent g
as

k
Zau(?() X, y u(770+7z/2(x7 y)la
i=0

then by (dg/d0)(0y) =0, we obtain a; = 0. In addition, by det(Hess,) =0, we
obtain ¢; =0 for each i€ {2,...,k}. Therefore we see that g is of one-variable.
If g is of one-variable (resp. radial), then by direct computation, we obtain
det(Hess,) = 0 (resp. dg/dé = 0).
Hence we have proved Lemma 3.4. O

For integers ki, ks, k3 = 2, let g1, 42,93 be elements of 2K, 2% 2% respec-
tively. We set
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o 1
Ly, 9095 = <Hessy, gradgz,gradg3>,
Ty,,9,9: = tgjlvgjzagj3'

{72, 731={1,2,3}

We shall prove

Lemma 3.5. Suppose ks = ky = ki and that g, and g, are radial. Then g3 is
also radial if and only if Ty, 4,4, =0 holds.

Proor. If g; and g, are radial, then k; and k, are even. If we set g; = rki
for j=1,2, then we obtain

Ly gm0 = —kika(kj, — DR (xqy, — ypgy),
Loy 95,0, = k1k27k1+k2_4(x‘1.qs — VPygs):
lgs,05. 9, = kika (ks — l)rkﬁkr“(x‘lgs — WPgs);
where {ji, o} = {1,2}. Therefore we obtain
Ty gn0n = kika(2ks — ky — ko + 2)r" 174 (xq,, — ypy, ).

Since k3 = ky 2 ki, we see that T, 4, 4, =0 is equivalent to xg, = yp,. In
addition, noticing that xg,, = yp,, is equivalent to dg;/d0 =0, we see that
T4,.9,.9 = 0 holds if and only if g3 is radial. Hence we have proved Lemma
3.5. O

PROOF OF PROPOSITION 3.3. We may represent F e o/\>) as F =3, F,
where F() ¢ 2/, We suppose F # 0 and set

Ir = {io e N;F™) 3£ 0},  mp :=min Ip.

Then we may represent wwp as

WF = E LRt pln), FUa)s
Jisj2 3 €lr

and we obtain w}gmﬁ“) — @y . Therefore by Lemma 3.4, we see that if F e .o/®)

satisfies wy = 0, then F(") is of one-variable or radial. If Ip = {mr}, then we
obtain Proposition 3.3.

Suppose Ir # {mp} and that Ir is a finite set. Then set n:=#lr and let
it,..., I, be the integers satisfying iy < --- <i, and Ir = {i;}/,. If Fi o F@)
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are radial for je{l,...,n— 1}, then we see by Lemma 3.5 that FU+) is also
radial. Therefore we see that if F("r) is radial, then F is also radial. If I is an
infinite set, then we obtain the same result. Hence we see that if F"r) is radial,
then Gp is part of a surfece of revolution such that o lies on an axis of rotation.

Suppose Iy # {my} and that F"r) is of one-variable. Then we may suppose
Fmr) = xme For each g € Gr, let TI; be the set of the planes in R’ through ¢
such that each P+ e Hj is perpendicular to Py, and to 7,(Gr) for any point p of
the connected component of PN Gy containing ¢. By Proposition 3.1, we obtain
ﬁl'[j =1 for any g € Eg, p,. In addition, we shall prove

LemMma 3.6. If F is not of one-variable, then the following hold:
(1) For each q e Gp, ]inl =1 holds;
(2) the xz-plane Py, is the only one element of Tl .

ProoF. By wp =0, we obtain ¢p»(x,0) =0 for any xe R and for any
i € Ir. Therefore we obtain Py, € I'Ij and P.. = Pﬁw p for any g € P NEg, p,. We
easily see that for any ¢ € (—n/2,7/2)\{0}, the plane perpendicular to P, and
determined by uy is not an element of Hj. Therefore we see that for each ¢ € Gp,
jjl'[j =1 or =2 holds and that if ljl'[ql =2, then the two elements of HqL are
perpendicular to each other. Suppose that there exists a point ¢y € Gp satisfy-
ing ﬁH;} =2. Then we see that for any ¢e€ Gp, an element of HqL is par-
allel or perpendicular to Py.. Therefore by Proposition 2.3 and by Corollary 3.2,
we see that each of d/dx and 0/dy is in a principal direction at each point of
Gr and that F is of one-variable. Therefore we obtain jil'lqL =1 for any ¢ € Gp.
Particularly, Hj = {P,.} holds and we have proved Lemma 3.6. O

Suppose that F"#) is of one-variable and that F is not of one-variable. Then
for each ¢ € Gr, we denote by qu the only one element of H;. Then we may
find a positive number yo > 0 and an open line segment /, in Py, through (0, y)
for each y e (—yo, yo) satisfying the following:

(1) Iy = Py, po,,) holds for any y e (=yo, yo);

2) V,:= Uye(fyo,yo) I, is a neighborhood of o in~ P,

In addition, we may find a real-analytic vector field on ¥, nonzero and tangent to /,
for some y € (—yo, yo) at each point of V,. Therefore we may find a neighborhood
V; of o in Py, and a positive number ¢ > 0 and a real-analytic curve y, in V, for
each ¢e (—¢,&) satisfying (a)~(c) of (2) of Proposition 3.3. If F is of one-
variable, then we may easily obtain the same result. Hence we have proved
Proposition 3.3. U
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4. Generating Pairs

Let P be a plane in R® and I'» the set of the real-analytic, simple curves in
P, and for C € I'p and for a point p € C, let Lj be the line in P normal to C at
p. Then for C,C eI'p, we write C ~ C if and only if there exists a continuous
bijective map o, » from C onto C satisfying ch.c(p) = L‘j for any pe C. It is
seen that ~ is an equivalence relation in I',. We denote by I'c the equivalence
class of CeIp, and by X(C) the connected component of the set UC’EFC c’
containing C. We immediately obtain

Lemma 4.1. For CeTp and for each p € C, there exists a neighborhood O,
of p in C such that £(0,) is a domain of P.

For each plane P in R, we denote by Proj, the map from R® onto P such
that if a line L is perpendicular to P, then Projp(L) consists of the only one
point of PN L. Then by Corollary 3.2 and by Proposition 3.3, we obtain

PropoSITION 4.2. Let S be a connected, real-analytic, embedded, parallel
curved surface and Py an element of %Bs. Then for any qe€ S, just one of the
following holds:

(1) S is part of a surface of revolution such that the line through q per-

pendicular to Py is an axis of rotation of S,

(2) There exists a neighborhood U, of q in S such that if P, and P, are
base planes of S parallel to Py and satisfying PN U, # & for i=1,2,
then each connected component C; of Projp (PiNU,) is an element of Tp,
satisfying Cy ~ C,.

COROLLARY 4.3. Let S be a real-analytic, embedded, parallel curved surface
and Py an element of %Bs and q a point of S for which (2) of Proposition 4.2
holds. Then there exists a generating pair (Cp, Cy) of which Cj (resp. Cg) is the
base (resp. generating) curve and which satisfies q = p(c, c,)> C», Cy = S and that
Py, is parallel to Py.

Proor oF ProposiTioN 1.4. Let (Cp, C,) be a generating pair and Py, F,
planes satisfying C, = P, C; = F; and that F; is normal to Cp at p(c,,c,), and
P* the plane through p(c, ¢,) perpendicular to P, and to P,. If C, = Py, then
we see that a connected, real-analytic, parallel curved surface Sy which contains
a neighborhood of P(Cy,Cy) in C,UC, and satisfies Py € #s, is part of Py. In
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the following, suppose C, £ Pp. Then by Lemma 4.1, we see that there exist
neighborhoods Oy, Oy of p(c, ¢,y in Cy, Cy, respectively satisfying Projp, (0,) =
%(0p) and the condition that Projp. embeds each connected component of
0,\{p(c,,c,)} into P*. For Oy, O,, there exists a real-analytic surface S satisfying
Oy, 0, = S and the condition that if P is a plane parallel to P, and satisfying
PN O, # &, then each connected component of Projp, (PN S) is an element of
I'p,. The minimum of such surfaces as S is denoted by Sp, o, Then we see that
Py is not parallel to 7,(So,.0,) for any g € So, 0,\Os. For each q e So, 0,\Os,
let (¢,v,{) be orthogonal coordinates on R® satisfying the following:

(1) the point ¢ corresponds to (0,0,0);

(2) Pg is parallel to Pp;

(3) Py is perpendicular to P, and to T,(So,.0,)-
Then there exist two positive numbers &),vp > 0 and a real-analytic function F*
defined on a neighborhood U, ,, := (=&, &) X (—vo, v9) of ¢ in Pe, such that the
graph Gp. of F* is a neighborhood of ¢ in Sy, o,\Os. Then we obtain

L 2L
&0 =21
0¢ 0&ov

(0,v) =0

for any v € (—vg,v9). Therefore by Proposition 2.1, we see that each of 0/0& and
0/0v is in a principal direction at (0,v, F+(0,v)) for any v e (—vg, vo). Since 0/0&
is parallel to Py, we see that Sp, 0,\O, is a parallel curved surface satisfying
Py € Bs,, o,\0,- Then we see that a tangent vector to O, at each point of O is
in a principal direction of So, o,. Therefore Sy := So, 0, is a parallel curved
surface which contains a neighborhood O,U O, of p(c, c,) in C,UC, and sat-
isfies Py € #s,. It is clear that if Sé]) and S(()2> are parallel curved surfaces which
contain a neighborhood of p(c, c,) in G,UC, and satisfy Py € %y for i=1,2,
then S(()1> N S(()z) is also such a surface as S(()i). Hence we have prové]d Proposition
1.4. (]

5. Proof of Theorem 1.2 and Theorem 1.3

Suppose that F e 42%0(2> satisfies wr =0 and (1) of Proposition 3.3. Then F
is radial. Then the following hold:

dfF’zor2<X)7
y

dp
dfF,Z 2 1 0 dzfp,z 2 x2 Xy
HeSSF:2d—por 01 +4 ) or w 2

gradp, =2
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Therefore by Lemma 2.2, we obtain

det(1r)PDg(Uy)

d*fr > dfr > .
= {_ dpz 072"’2{@ 072] uy(x, y)ug(—y, x).

This implies that the position vector field xd/0x + yd/dy is in a principal direc-
tion at any (x,y) e Gp. If d*fra/dp® # 2(dfr.2/dp)’, then we obtain F e .o/?
and by formula (1), we obtain ind,(Gr) =1. If d>fr,/dp* = 2(dfr,/dp)’,
then fr> =0 holds or there exists a positive number ar > 0 satistying fr, =
Var —\Jag —p or = —\/ar + \/ar — p. Therefore we see that Gy is part of a
plane or a round sphere.

Suppose that F e %(2) satisfies wr = 0 and (2) of Proposition 3.3. Then we
see that there exist a neighborhood V;, of o in Py, and a real-analytic curve y,
in V, satisfying y, = {(x, ») € V,; F(x, ) = 0}. For each Fy e /) and for each
qo := (X0, ¥0) € Y9, We set fr, 4 (X, ¥) := Fo(x — X0,y — yo). The function fg, 4, is
defined on a neighborhood of gy in Py,. We shall prove

LemMA 5.1. For each qo € yy, there exists an element Fy, of 424(2) satisfying
400 © Gr and Mg, = Mp.
Proor. There exist positive numbers uy, vy > 0 and a real-analytic map @
from U, .y, 1= (—uo,up) X (—vo,v9) into ¥, satisfying the following:
(1) The Jacobian of ® is nonsingular at each point of U, ;
(2) for any u’ € (—up,up), @ maps the open line segment {u =u'} in U,
into y, for some ¢ e (—e&y,&);
(3) for any v’ € (—vo, vy), @ maps the open line segment {v =0’} in U,
into /, for some y e (—yo, yo).
Then the function Fo® on U, , is of one-variable. This implies Lemma

5.1. O

Suppose mp = 2. Then Umb(Gr) Ny, = & holds. Therefore by Corollary 3.2,
Proposition 3.3 and by Lemma 3.6, we may find a neighborhood U, of (0,0)
in R? and a real-analytic curve C in U, satisfying (a), (c) of (2) of Theorem 1.3
and Umb(Gp, ) = .

Suppose mp = 3. Then y, € Umb(Gp) holds. There exist real-analytic func-
tions Op,cr on y, such that an element qu € ;z/(fz) defined for each ¢o €y, by
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E,(x,¥) = Fy,(x cos 0r(qo) — v sin 0r(qo), x sin 0r(qo) + » cos Or(qo))

satisfies Mg, = Mg and F = cr(qo)x™ . We may suppose that there exist a
nelghborhood V! of o in ¥, and a neighborhood 7| of o in y, such that for
any (x,y) e V' and for any qo € p), Wr(x, ¥,q0) := F,(x, ) makes sense. Then
we see that the function Wr is real-analytic on ¥’ x ;. Therefore we may find a
continuous function X on y} satisfying ¥(¢o) > 0 and (x,0, F, (x,0)) ¢ Umb(G qu)
for any xe (—%(qo0),*(q0))\{0} and for any ¢o € y). Then by Corollary 3.2,
Proposition 3.3 and by Lemma 3.6, we may find a neighborhood U, of (0,0)
in R* and a real-analytic curve Cp in U, satisfying (a), (c) of (2) of Theorem
1.3 and Cy =Umb(Gp, ). Hence we have proved Theorem 1.2 and Theorem
1.3.

6. Classification

In this section, let S be a connected, complete, real-analytic, embedded,
parallel curved surface.

Suppose that there exists an element Py of %y satisfying Zg p, = S. Then
for each ¢ € S, we see by Corollary 3.2 that Cﬁm ; 18 isometric to R. There exists
the element Pp , € %5 satistying g € Pp, , and the condition that Pp , is parallel
to Py. Then by Proposition 4.2, we see that Pp ,NS is a real-analytic curve
isometric to R or to a simple closed curve. Therefore we obtain

PropPoOSITION 6.1. Let S be a connected, complete, real-analytic, embedded,
parallel curved surface satisfying Zs p, = S for some Py e HBs. Then there exists a
generating pair (Cp, C,) of which Cy (resp. C,) is the base (resp. generating) curve
and which satisfies the following:

(1) Py is parallel to Py;

(2) Cp is isometric to R or to a simple closed curve;

(3) C, is isometric to R;

4) S=Sc,c,

Then S is homeomorphic to a plane or to a cylinder.

Suppose Es p, # S and Eg p, # J for Py e #s. Then for Py e #s and for
g € Es,p,, we see by Corollary 3.2 and by Proposition 4.2 that the connected
component of P,%O ¢S containing ¢ is a real-analytic curve isometric to R or to
a simple closed curve. There exists the element Pp, , € #s satisfying q € Pp, , and
that Pp, , is parallel to Py. Then by Proposition 4.2, we see that the connected
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component of Pp, ,MS containing ¢ is a real-analytic curve isometric to R or
to a simple closed curve. We shall prove

LemMA 6.2. Let Py be an element of %s and qy a point of Es p, such that
some connected component of Pp, 4, NS shares plural points with some connected
component of Pﬁ), o S. Then S is a surface of revolution such that a line per-
pendicular to Py is an axis of rotation of S.

ProOF. Let O, O, be domains in Pp, 4, NS, Py, , NS, respectively satisfying
04, N0, =& and (0, NO0;) =2, and ¢1,q2 two points of S satisfying

o,

q0
point po of S\Eg p, satisfying Pplo,q n OqLO = {po} for any ¢q € O,,. By Proposition 4.2,

N (_)qLO = {q1,¢>}. Then by Proposition 3.1, we see that there exists the only one

we see that S is a surface of revolution such that the line through py perpendicular
to Py is an axis of rotation of S. Hence we have proved Lemma 6.2. O

By Lemma 6.2, we obtain

ProPOSITION 6.3. Let S be a connected, complete, real-analytic, embedded,
parallel curved surface satisfying Es p, # S and Eg p, # & for any Py e Bs. Then
one of the following holds:

(1) S is a surface of revolution such that the number of the intersections of S
with its axis of rotation is equal to one or two, and then S is homeomorphic
to a plane or to a sphere,

(2) There exists a generating pair (Cy, Cy) of which Cy (resp. C,) is the base
(resp. generating) curve and which satisfies the following:

(a) each of C, and C, is isometric to R or to a simple closed curve,
(b) §= S(CMQ/)’
and then S is homeomorphic to a plane, a cylinder or to a torus.

Using Proposition 6.1 and Proposition 6.3, we obtain Theorem 1.5.

RemArRk. If C, is a circumference in each of Proposition 6.1 and Propo-
sition 6.3, then S is a surface of revolution and its axis of rotation is per-
pendicular to Pj.
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