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A CLASS OF REAL-ANALYTIC SURFACES

IN THE 3-EUCLIDEAN SPACE

By

Naoya Ando

Abstract. A smooth surface S in R3 is called parallel curved if

there exists a plane in R3 such that at each point of S, there exists

a principal direction parallel to the plane. For example, a plane, a

cylinder and a round sphere are parallel curved. More generally, a

surface of revolution is also parallel curved. The purposes of this

paper are to study the behavior of the principal distributions on a

real-analytic, parallel curved surface and to classify the connected,

complete, real-analytic, embedded, parallel curved surfaces.

1. Introduction

Let S be a smooth surface in R3 and UmbðSÞ the set of the umbilical

points of S. If SnUmbðSÞ0q, then there exists a one-dimensional continuous

distribution on SnUmbðSÞ which gives a principal direction at each points of

SnUmbðSÞ. Such a distribution is called a principal distribution on S. Let p0 be

an isolated umbilical point of S. Then the indices of p0 with respect to two

principal distributions coincide with each other. The common number is called

the index of p0 on S and denoted by indp0
ðSÞ. Let ðx; yÞ be local coordinates

around p0 such that p0 corresponds to ð0; 0Þ and r0 a positive number such

that p0 is the only umbilical point on fx2 þ y2 < r2
0g, and let fS;p0

denote a

continuous function on ð0; r0Þ � R such that for any ðr; yÞ A ð0; r0Þ � R, a tan-

gent vector cos fS;p0
ðr; yÞq=qxþ sin fS;p0

ðr; yÞq=qy is in a principal direction at

(r cos y, r sin y). Then the index indp0
ðSÞ is represented as follows:

indp0
ðSÞ ¼

fS;p0
ðr; yþ 2pÞ � fS;p0

ðr; yÞ
2p

: ð1Þ
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Let Pk be the set of the homogeneous polynomials in two variables of degree

kf 2 and Pk
o the set of the elements of Pk such that on each of their graphs, the

origin o :¼ ð0; 0; 0Þ of R3 is an isolated umbilical point. For g A Pk and for y A R,

set ~ggðyÞ :¼ gðcos y; sin yÞ. In [1], we studied the behavior of the principal distri-

butions around o on the graph Gg of g A Pk
o . Then we divided the study into two

cases: d~gg=dy1 0 and d~gg=dy2 0. If g A Pk
o satisfies d~gg=dy1 0, then the ‘‘position

vector field’’ xq=qxþ yq=qy is in a principal direction at each point of Gg, and

from this together with formula (1), indoðGgÞ ¼ 1 follows. For g A Pk
o satisfying

d~gg=dy2 0, we mainly paid attention to the relation between the behavior of the

principal distributions and the behavior of the position vector field around a point

at which the position vector field is in a principal direction, and we presented a

way of computing indoðGgÞ and proved indoðGgÞ A f1 � k=2 þ ig½k=2�
i¼0 . In [2], we

have further studied the behavior of the principal distributions in relation to the

existence of other umbilical points than o, around a point at which the position

vector field is in a principal direction. We may find such a point, because Euler’s

identity holds for any homogeneous polynomial. In order to study the behavior of

the principal distributions around an isolated umbilical point on a general surface

by a similar method, we need some other vector field than the position vector

field.

For a smooth function f of two variables x; y, we set

pf :¼
qf

qx
; qf :¼

qf

qy
; rf :¼

q2f

qx2
; sf :¼

q2f

qxqy
; tf :¼

q2f

qy2
;

gradf :¼
pf

qf

� �
; grad?

f :¼
�qf

pf

� �
; Hessf :¼

rf sf

sf tf

� �
:

Let h ; i be the scalar product in R2 and set

$f :¼ hHessf gradf ; grad?
f i:

In Section 2, we shall prove the following:

Proposition 1.1. Let f be a smooth function of two variables and Gf the

graph of f. Then at a point of Gf , the gradient vector field of f is in a principal

direction if and only if $f ¼ 0 holds.

For g A Pk, we see by Euler’s identity ðk � 1Þ gradg ¼ Hessg
tðx; yÞ that

ðk � 1Þ$g ¼ detðHessgÞ
d~gg

dy
ðyÞ ð2Þ
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holds at ðcos y; sin yÞ for any y A R. Therefore $g 1 0 holds if and only if

detðHessgÞ1 0 or d~gg=dy1 0 holds. If g A Pk satisfies detðHessgÞ1 0, then there

exists a vector tða; bÞ A R2 satisfying g ¼ ðaxþ byÞk, which implies g B Pk
o . There-

fore we see that for g A Pk
o , $g 1 0 (resp. 20) is equivalent to d~gg=dy1 0 (resp.

20) and this leads us to study the behavior of the principal distributions in

relation to the behavior of the gradient vector field. In [2], we have carried out

this on Gg for g A Pk
o .

Let Að2Þ
o be the set of the real-analytic functions defined on a connected

neighborhood of ð0; 0Þ in R2 such that for each F A Að2Þ
o , F ð0; 0Þ ¼ pF ð0; 0Þ ¼

qF ð0; 0Þ ¼ 0 hold, and A2
o the set of the elements of Að2Þ

o such that on each of

their graphs, o is an isolated umbilical point. One of the purposes of this paper is

to study the behavior of the principal distributions around o on the graph GF of

F A Að2Þ
o satisfying $F 1 0 and the index indoðGF Þ of o for F A A2

o satisfying

$F 1 0. In Section 5, we shall prove the following:

Theorem 1.2. Let F be an element of A2
o satisfying $F 1 0. Then GF is part

of a surface of revolution such that o lies on the axis of rotation; at any point of

GF , the position vector field is in a principal direction and indoðGF Þ ¼ 1 holds.

Theorem 1.3. Let F be an element of Að2Þ
o nA2

o satisfying $F 1 0. Then one

of the following holds:

(1) GF is part of a plane or a round sphere;

(2) There exist a neighborhood Uo of ð0; 0Þ in R2 and a real-analytic curve C0

in Uo satisfying the following:

(a) C0 ¼ fðx; yÞ A Uo;F ðx; yÞ ¼ 0g,

(b) C0 ¼ UmbðGF jUo
Þ or UmbðGF jUo

Þ ¼ q holds,

(c) For any point q A C0 and for the plane P?
q in R3 normal to C0 at q, the

set C?
q :¼ P?

q VGF jUo
is a real-analytic curve such that at each point of

C?
q , a tangent vector to C?

q is in a principal direction of GF .

Remark. For an integer lf 3, let AðlÞ
o be the subset of Að2Þ

o such that for

any F A AðlÞ
o and for non-negative integers m; nf 0 satisfying 0emþ n < l,

ðqmþnF=qxmqynÞð0; 0Þ ¼ 0 holds. For each F A A2
o , there exists an element

fF A Að3Þ
o satisfying UmbðGF�fF Þ ¼ GF�fF , and there exists a homogeneous poly-

nomial gF of degree kF satisfying fF � gF A AðkFþ1Þ
o . Let A2

oo be the subset of

A2
o such that each F A A2

oo satisfies gF A PkF
o . In [3], we have mainly studied the

behavior of the principal distributions around o on GF for F A A2
oo satisfying

$F 2 0 and proved indoðGgF Þe indoðGF Þe 1 for F A A2
oo.
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The gradient vector field of a smooth function f is in a principal direction at

a point of Gf if and only if there exists a principal direction at the same point

parallel to the xy-plane. A smooth surface S in R3 is called parallel curved if

there exists a plane P in R3 such that at each point of S, there exists a principal

direction parallel to P; if S is parallel curved, then such a plane as P is called a

base plane of S and the set of the base planes of S is denoted by BS. A plane,

a cylinder and a round sphere are examples of parallel curved surfaces. More

generally, a surface of revolution is also parallel curved. We see by Proposition

1.1 that a smooth function f satisfies $f 1 0 if and only if Gf is a parallel curved

surface such that the xy-plane is an element of BGf
. A surface does not have to

be entirely represented as the graph of a function so that the surface is parallel

curved. The other of the purposes of this paper is to classify the connected, com-

plete, real-analytic, embedded, parallel curved surfaces.

Let Cb;Cg be real-analytic, simple curves in R3 with the unique intersection

pðCb;CgÞ and contained in planes Pb;Pg, respectively. Then a pair ðCb;CgÞ is called

generating if we may choose as Pg the plane normal to Cb at pðCb;CgÞ; if ðCb;CgÞ
is generating, then Cb and Cg are called the base curve and the generating curve

of ðCb;CgÞ, respectively. In Section 4, we shall prove the following:

Proposition 1.4. Let ðCb;CgÞ be a generating pair of which Cb (resp. Cg)

is the base (resp. generating) curve. Then there exists a connected, real-analytic,

parallel curved surface S0 which contains a neighborhood of pðCb;CgÞ in Cb UCg

and satisfies Pb A BS0
. In addition, if S

ð1Þ
0 and S

ð2Þ
0 are such surfaces as S0, then

S
ð1Þ
0 VS

ð2Þ
0 is also such a surface.

For a generating pair ðCb;CgÞ, the maximum of such surfaces as S0 in

Proposition 1.4 is denoted by SðCb;CgÞ. In Section 6, we shall prove the following:

Theorem 1.5. Let S be a connected, complete, real-analytic, embedded, par-

allel curved surface. Then S is homeomorphic to a sphere, a plane, a cylinder, or to

a torus. In addition,

(1) if S is homeomorphic to a sphere, then S is a surface of revolution which

crosses its axis of rotation at just two points;

(2) if S is homeomorphic to a plane, then one of the following holds:

(a) S is a surface of revolution which crosses its axis of rotation at just

one point,

(b) S ¼ SðCb;CgÞ holds, where ðCb;CgÞ is a generating pair each element

of which is isometric to R;
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(3) if S is homeomorphic to a cylinder, then S ¼ SðCb;CgÞ holds, where ðCb;CgÞ
is a generating pair such that one of Cb and Cg is isometric to R and the

other a simple closed curve;

(4) if S is homeomorphic to a torus, then S ¼ SðCb;CgÞ holds, where ðCb;CgÞ is

a generating pair each element of which is isometric to a simple closed

curve.
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2. Preliminaries

Let f be a smooth function of two variables x; y, and Gf the graph of f .

We set

Ef :¼ 1 þ p2
f ; Ff :¼ pf qf ; Gf :¼ 1 þ q2

f ;

Lf :¼
rfffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðIf Þ
p ; Mf :¼

sfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðIf Þ

p ; Nf :¼
tfffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðIf Þ
p ;

where detðIf Þ :¼ Ef Gf � F 2
f . The Weingarten map of Gf is a tensor field Wf on

Gf of type ð1; 1Þ satisfying

Wf

q

qx

� �
;Wf

q

qy

� �� �
¼ q

qx
;
q

qy

� �
Wf ;

where

Wf :¼
Ef Ff

Ff Gf

� ��1
Lf Mf

Mf Nf

� �
:

A principal direction of Gf at ðx0; y0Þ is a one-dimensional eigenspace of

Wf ; ðx0;y0Þ. Let PDf be a symmetric tensor field on Gf of type ð0; 2Þ represented

in terms of the coordinates ðx; yÞ as

PDf :¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðIf Þ
p fAf dx

2 þ 2Bf dxdyþ Cf dy
2g;

where
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Af :¼ EfMf � Ff Lf ; 2Bf :¼ Ef Nf � Gf Lf ; Cf :¼ Ff Nf � GfMf ;

dx2 :¼ dxn dx; dxdy :¼ 1

2
ðdxn dyþ dyn dxÞ; dy2 :¼ dyn dy:

For vector fields V1;V2 on Gf , the following holds:

1

2

X
fi; jg¼f1;2g

Vi5Wf ðVjÞ ¼
PDf ðV1;V2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðIf Þ
p q

qx
5

q

qy

� �
:

Therefore we obtain

Proposition 2.1. A tangent vector v0 to Gf at ðx0; y0Þ is in a principal

direction if and only if PDf ; ðx0;y0Þðv0; v0Þ ¼ 0 holds.

Let Df ;Nf be symmetric tensor fields on Gf of type ð0; 2Þ represented in

terms of the coordinates ðx; yÞ as

Df :¼ sf dx
2 þ ðtf � rf Þ dxdy� sf dy

2;

Nf :¼ ðsf p2
f � pf qf rf Þ dx2 þ ðtf p2

f � rf q
2
f Þ dxdyþ ðpf qf tf � sf q

2
f Þ dy2:

Then we obtain detðIf ÞPDf ¼ Df þ Nf . For a vector field V on Gf , we set

~DDf ðVÞ :¼ Df ðV ;VÞ; ~NNf ðVÞ :¼ Nf ðV ;VÞ;

fPDPDf ðVÞ :¼ PDf ðV ;VÞ:

For f A R, we set

uf :¼
cos f

sin f

� �
; Uf :¼ cos f

q

qx
þ sin f

q

qy
:

Then we obtain

Lemma 2.2. For any f A R, the following hold:

~DDf ðUfÞ ¼ hHessf uf; ufþp=2i;

~NNf ðUfÞ ¼ hgradf ; ufihgrad?
f ;Hessf ufi:

We set

Gradf :¼ pf
q

qx
þ qf

q

qy
; Grad?f :¼ �qf

q

qx
þ pf

q

qy
:

We shall prove
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Proposition 2.3. At each point of Gf , the following conditions are mutually

equivalent:

(1) $f ¼ 0;

(2) Af þ Cf ¼ 0;

(3) Gradf is in a principal direction of Gf ;

(4) Grad?f is in a principal direction of Gf ;

(5) there exists a principal direction parallel to the xy-plane.

Proof. The following holds:

$f ¼ ðAf þ Cf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðIf Þ

q
:

Therefore we see that (1) is equivalent to (2). By Lemma 2.2, we obtain

$f ¼ fPDPDf ðGradf Þ ¼ �detðIf ÞfPDPDf ðGrad?f Þ:

Therefore we see by Proposition 2.1 that (1), (3) and (4) are mutually equivalent.

It is easily seen that (4) is equivalent to (5). r

From Proposition 2.3, we obtain Proposition 1.1.

3. Parallel Curved Surfaces

Let S be a connected, real-analytic, embedded, parallel curved surface and

for P A BS, let XS;P be the subset of S such that for any q A XS;P, the tangent

plane TqðSÞ to S at q is not parallel to P. We see that XS;P is an open set of S.

If there exists an element P0 of BS satisfying XS;P0
¼ q, then we see that S is

part of a plane in R3. In the following, suppose XS;P 0q for any P A BS.

For P0 A BS and for q A XS;P0
, let P?

P0;q
be the plane in R3 through q

perpendicular to P0 and to TqðSÞ, and C?
P0;q

the connected component of

P?
P0;q

VXS;P0
containing q. We shall prove

Proposition 3.1. The plane P?
P0;q

is perpendicular to TpðSÞ for each p A C?
P0;q

.

Proof. For each q A XS;P0
, there exist orthogonal coordinates ðx; v; zÞ on

R3 satisfying the following:

(1) the point q corresponds to ð0; 0; 0Þ;
(2) the xz-plane Pxz is parallel to P0;

(3) the vz-plane Pvz is equal to P?
P0;q

.

Then we see that the xv-plane Pxv is not perpendicular to TqðXS;P0
Þ. Therefore there
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exist two positive numbers x0; v0 > 0 and a real-analytic function F? defined on a

neighborhood Ux0; v0
:¼ ð�x0; x0Þ � ð�v0; v0Þ of q in Pxv such that the graph

GF? of F? is a neighborhood of q in XS;P0
. The function F? satisfies

F?ð0; 0Þ ¼ ðqF?=qxÞð0; 0Þ ¼ 0. We see that at each point of GF? , the tangent

vector q=qx is in a principal direction. Therefore by Proposition 2.1, we obtain

q2F?

qxqv
1 þ qF?

qx

� �2
( )

¼ qF?

qx

qF?

qv

q2F?

qx2
ð3Þ

on Ux0; v0
. We may represent F? as

F?ðx; vÞ :¼
Xy
i; j¼0

aijx
iv j;

where aij A R and where a00 ¼ a10 ¼ 0. Then at ð0; vÞ A Ux0; v0
, we may rewrite (3)

into

Xy
j¼0

ð j þ 1Þa1jþ1v
j

 !
� 1 þ

Xy
j¼0

a1jv
j

 !2
0@ 1A

¼ 2
Xy
j¼0

a1jv
j

 !
�

Xy
j¼0

ð j þ 1Þa0jþ1v
j

 !
�

Xy
j¼0

a2jv
j

 !
: ð4Þ

Since a10 ¼ 0, we obtain a11 ¼ 0. Generally, we see by (4) that if each element of

fa1kg j�1
k¼0 for j A N is equal to zero, then a1j is also equal to zero. Therefore we

obtain a1j ¼ 0 for any j A N U f0g. Then for any v A ð�v0; v0Þ, ðqF?=qxÞð0; vÞ ¼ 0

holds. This implies that Tð0; vÞðGF?Þ is perpendicular to Pvz. Noticing Pvz ¼ P?
P0;q

,

we obtain Proposition 3.1. r

Corollary 3.2. The following hold:

(1) C?
P0;q

is a real-analytic curve;

(2) A principal direction of S at each point of C?
P0;q

parallel to P0 is per-

pendicular to P?
P0;q

;

(3) A nonzero tangent vector to C?
P0;q

at each point of C?
P0;q

is in a principal

direction of S and not parallel to P0.

We shall prove

Proposition 3.3. Let F be an element of Að2Þ
o satisfying $F 1 0. Then one

of the following holds:
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(1) GF is part of a surface of revolution such that o lies on an axis of rotation;

(2) There exist a neighborhood Vo of o in the xy-plane Pxy and a positive

number e0 > 0 and a real-analytic curve ge in Vo for each e A ð�e0; e0Þ
satisfying the following:

(a) Vo ¼ 6
e A ð�e0; e0Þ ge,

(b) for any e A ð�e0; e0Þ and for any ðx; yÞ A ge, jFðx; yÞj ¼ jej holds,

(c) if a line l? in Pxy is normal to ge at a point of l? V ge for some

e A ð�e0; e0Þ, then for any e 0 A ð�e0; e0Þ, l? is normal to ge 0 at any

point of l? V ge 0 .

To prove Proposition 3.3, we need lemmas.

For any f A R, we set ufðx; yÞ :¼ ðcos fÞxþ ðsin fÞy. For an element

F A Að2Þ
o , it is said that F is of one-variable if there exist a number f0 A R and

a real-analytic function fF ;1 defined on a neighborhood of 0 in R satisfying

F ¼ fF ;1 � uf0
around ð0; 0Þ, and it is said that F is radial if there exists a real-

analytic function fF ;2 defined on a neighborhood of 0 in R satisfying F ¼ fF ;2 � r2

around ð0; 0Þ, where rðx; yÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We shall prove

Lemma 3.4. Let g be an element of Pk. Then $g 1 0 holds if and only if g is

of one-variable or radial.

Proof. We see from equation (2) that $g 1 0 holds if and only if

detðHessgÞ1 0 or d~gg=dy1 0 holds.

If d~gg=dy1 0, then g is radial (see [1]). Suppose detðHessgÞ1 0 and

d~gg=dy2 0, and let ~gg attain a nonzero extremum at y0 A R. If we represent g

as

g :¼
Xk
i¼0

aiuy0
ðx; yÞk�i

uy0þp=2ðx; yÞ i;

then by ðd~gg=dyÞðy0Þ ¼ 0, we obtain a1 ¼ 0. In addition, by detðHessgÞ1 0, we

obtain ai ¼ 0 for each i A f2; . . . ; kg. Therefore we see that g is of one-variable.

If g is of one-variable (resp. radial), then by direct computation, we obtain

detðHessgÞ1 0 (resp. d~gg=dy1 0).

Hence we have proved Lemma 3.4. r

For integers k1; k2; k3 f 2, let g1; g2; g3 be elements of Pk1 ;Pk2 ;Pk3 , respec-

tively. We set

A class of real-analytic surfaces in the 3-Euclidean space 259



tg1;g2;g3
:¼ hHessg1

gradg2
; grad?

g3
i;

Tg1;g2;g3
:¼

X
f j1; j2; j3g¼f1;2;3g

tgj1 ;gj2 ;gj3 :

We shall prove

Lemma 3.5. Suppose k3 f k2 f k1 and that g1 and g2 are radial. Then g3 is

also radial if and only if Tg1;g2;g3
1 0 holds.

Proof. If g1 and g2 are radial, then k1 and k2 are even. If we set gj ¼ rkj

for j ¼ 1; 2, then we obtain

tgj1 ;gj2 ;g3
¼ �k1k2ðkj1 � 1Þrk1þk2�4ðxqg3

� ypg3
Þ;

tgj1 ;g3;gj2
¼ k1k2r

k1þk2�4ðxqg3
� ypg3

Þ;

tg3;gj1 ;gj2
¼ k1k2ðk3 � 1Þrk1þk2�4ðxqg3

� ypg3
Þ;

where f j1; j2g ¼ f1; 2g. Therefore we obtain

Tg1;g2;g3
¼ k1k2ð2k3 � k1 � k2 þ 2Þrk1þk2�4ðxqg3

� ypg3
Þ:

Since k3 f k2 f k1, we see that Tg1;g2;g3
1 0 is equivalent to xqg3

1 ypg3
. In

addition, noticing that xqg3
1 ypg3

is equivalent to d~gg3=dy1 0, we see that

Tg1;g2;g3
1 0 holds if and only if g3 is radial. Hence we have proved Lemma

3.5. r

Proof of Proposition 3.3. We may represent F A Að2Þ
o as F :¼

P
if2 F

ðiÞ,

where F ðiÞ A P i. We suppose F 2 0 and set

IF :¼ fi0 A N ;F ði0Þ 0 0g; mF :¼ min IF :

Then we may represent $F as

$F ¼
X

j1; j2; j3 A IF

tF ð j1Þ;F ð j2Þ;F ð j3Þ ;

and we obtain $
ð3mF�4Þ
F ¼ $F ðmF Þ . Therefore by Lemma 3.4, we see that if F A Að2Þ

o

satisfies $F 1 0, then F ðmF Þ is of one-variable or radial. If IF ¼ fmFg, then we

obtain Proposition 3.3.

Suppose IF 0 fmFg and that IF is a finite set. Then set n :¼ ]IF and let

i1; . . . ; in be the integers satisfying i1 < � � � < in and IF ¼ fijgn
j¼1. If F ði1Þ; . . . ;F ðijÞ
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are radial for j A f1; . . . ; n� 1g, then we see by Lemma 3.5 that F ðijþ1Þ is also

radial. Therefore we see that if F ðmF Þ is radial, then F is also radial. If IF is an

infinite set, then we obtain the same result. Hence we see that if F ðmF Þ is radial,

then GF is part of a surfece of revolution such that o lies on an axis of rotation.

Suppose IF 0 fmFg and that F ðmF Þ is of one-variable. Then we may suppose

F ðmF Þ ¼ xmF . For each q A GF , let P?
q be the set of the planes in R3 through q

such that each P? A P?
q is perpendicular to Pxy and to TpðGF Þ for any point p of

the connected component of P? VGF containing q. By Proposition 3.1, we obtain

]P?
q ¼ 1 for any q A XGF ;Pxy

. In addition, we shall prove

Lemma 3.6. If F is not of one-variable, then the following hold:

(1) For each q A GF , ]P?
q ¼ 1 holds;

(2) the xz-plane Pxz is the only one element of P?
o .

Proof. By $F 1 0, we obtain qF ðiÞ ðx; 0Þ ¼ 0 for any x A R and for any

i A IF . Therefore we obtain Pxz A P?
o and Pxz ¼ P?

Pxy;q
for any q A Pxz VXGF ;Pxy

. We

easily see that for any f A ð�p=2; p=2Þnf0g, the plane perpendicular to Pxy and

determined by uf is not an element of P?
o . Therefore we see that for each q A GF ,

]P?
q ¼ 1 or ¼ 2 holds and that if ]P?

q ¼ 2, then the two elements of P?
q are

perpendicular to each other. Suppose that there exists a point q0 A GF satisfy-

ing ]P?
q0
¼ 2. Then we see that for any q A GF , an element of P?

q is par-

allel or perpendicular to Pxz. Therefore by Proposition 2.3 and by Corollary 3.2,

we see that each of q=qx and q=qy is in a principal direction at each point of

GF and that F is of one-variable. Therefore we obtain ]P?
q ¼ 1 for any q A GF .

Particularly, P?
o ¼ fPxzg holds and we have proved Lemma 3.6. r

Suppose that F ðmF Þ is of one-variable and that F is not of one-variable. Then

for each q A GF , we denote by P?
q the only one element of P?

q . Then we may

find a positive number y0 > 0 and an open line segment ly in Pxy through ð0; yÞ
for each y A ð�y0; y0Þ satisfying the following:

(1) ly HP?
ð0;y;Fð0;yÞÞ holds for any y A ð�y0; y0Þ;

(2) ~VVo :¼ 6
y A ð�y0;y0Þ ly is a neighborhood of o in Pxy.

In addition, we may find a real-analytic vector field on ~VVo nonzero and tangent to ly

for some y A ð�y0; y0Þ at each point of ~VVo. Therefore we may find a neighborhood

Vo of o in Pxy and a positive number e0 > 0 and a real-analytic curve ge in Vo for

each e A ð�e0; e0Þ satisfying (a)@(c) of (2) of Proposition 3.3. If F is of one-

variable, then we may easily obtain the same result. Hence we have proved

Proposition 3.3. r

A class of real-analytic surfaces in the 3-Euclidean space 261



4. Generating Pairs

Let P be a plane in R3 and GP the set of the real-analytic, simple curves in

P, and for C A GP and for a point p A C, let L?
p be the line in P normal to C at

p. Then for C; ~CC A GP, we write C@ ~CC if and only if there exists a continuous

bijective map aC; ~CC from C onto ~CC satisfying L?
aC; ~CCðpÞ

¼ L?
p for any p A C. It is

seen that @ is an equivalence relation in GP. We denote by GC the equivalence

class of C A GP, and by SðCÞ the connected component of the set 6
C 0 AGC

C 0

containing C. We immediately obtain

Lemma 4.1. For C A GP and for each p A C, there exists a neighborhood Op

of p in C such that SðOpÞ is a domain of P.

For each plane P in R3, we denote by ProjP the map from R3 onto P such

that if a line L is perpendicular to P, then ProjPðLÞ consists of the only one

point of PVL. Then by Corollary 3.2 and by Proposition 3.3, we obtain

Proposition 4.2. Let S be a connected, real-analytic, embedded, parallel

curved surface and P0 an element of BS. Then for any q A S, just one of the

following holds:

(1) S is part of a surface of revolution such that the line through q per-

pendicular to P0 is an axis of rotation of S;

(2) There exists a neighborhood Uq of q in S such that if P1 and P2 are

base planes of S parallel to P0 and satisfying Pi VUq 0q for i ¼ 1; 2,

then each connected component Ci of ProjP0
ðPi VUqÞ is an element of GP0

satisfying C1 @C2.

Corollary 4.3. Let S be a real-analytic, embedded, parallel curved surface

and P0 an element of BS and q a point of S for which (2) of Proposition 4.2

holds. Then there exists a generating pair ðCb;CgÞ of which Cb (resp. Cg) is the

base (resp. generating) curve and which satisfies q ¼ pðCb;CgÞ, Cb;Cg HS and that

Pb is parallel to P0.

Proof of Proposition 1.4. Let ðCb;CgÞ be a generating pair and Pb;Pg

planes satisfying Cb HPb, Cg HPg and that Pg is normal to Cb at pðCb;CgÞ, and

P? the plane through pðCb;CgÞ perpendicular to Pb and to Pg. If Cg HPb, then

we see that a connected, real-analytic, parallel curved surface S0 which contains

a neighborhood of pðCb;CgÞ in Cb UCg and satisfies Pb A BS0
is part of Pb. In
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the following, suppose Cg 6O Pb. Then by Lemma 4.1, we see that there exist

neighborhoods Ob;Og of pðCb;CgÞ in Cb;Cg, respectively satisfying ProjPb
ðOgÞH

SðObÞ and the condition that ProjP? embeds each connected component of

OgnfpðCb;CgÞg into P?. For Ob;Og, there exists a real-analytic surface S satisfying

Ob;Og HS and the condition that if P is a plane parallel to Pb and satisfying

PVOg 0q, then each connected component of ProjPb
ðPVSÞ is an element of

GOb
. The minimum of such surfaces as S is denoted by SOb;Og

. Then we see that

Pb is not parallel to TqðSOb;Og
Þ for any q A SOb;Og

nOb. For each q A SOb;Og
nOb,

let ðx; v; zÞ be orthogonal coordinates on R3 satisfying the following:

(1) the point q corresponds to ð0; 0; 0Þ;
(2) Pxz is parallel to Pb;

(3) Pvz is perpendicular to Pb and to TqðSOb;Og
Þ.

Then there exist two positive numbers x0; v0 > 0 and a real-analytic function F?

defined on a neighborhood Ux0; v0
:¼ ð�x0; x0Þ � ð�v0; v0Þ of q in Pxv such that the

graph GF? of F? is a neighborhood of q in SOb;Og
nOb. Then we obtain

qF?

qx
ð0; vÞ ¼ q2F?

qxqv
ð0; vÞ ¼ 0

for any v A ð�v0; v0Þ. Therefore by Proposition 2.1, we see that each of q=qx and

q=qv is in a principal direction at ð0; v;F?ð0; vÞÞ for any v A ð�v0; v0Þ. Since q=qx

is parallel to Pb, we see that SOb;Og
nOb is a parallel curved surface satisfying

Pb A BSOb ;OgnOb
. Then we see that a tangent vector to Ob at each point of Ob is

in a principal direction of SOb;Og
. Therefore S0 :¼ SOb;Og

is a parallel curved

surface which contains a neighborhood Ob UOg of pðCb;CgÞ in Cb UCg and sat-

isfies Pb A BS0
. It is clear that if S

ð1Þ
0 and S

ð2Þ
0 are parallel curved surfaces which

contain a neighborhood of pðCb;CgÞ in Cb UCg and satisfy Pb A B
S
ðiÞ
0

for i ¼ 1; 2,

then S
ð1Þ
0 VS

ð2Þ
0 is also such a surface as S

ðiÞ
0 . Hence we have proved Proposition

1.4. r

5. Proof of Theorem 1.2 and Theorem 1.3

Suppose that F A Að2Þ
o satisfies $F 1 0 and (1) of Proposition 3.3. Then F

is radial. Then the following hold:

gradF ¼ 2
dfF ;2

dr
� r2 x

y

� �
;

HessF ¼ 2
dfF ;2

dr
� r2 1 0

0 1

� �
þ 4

d 2fF ;2

dr2
� r2 x2 xy

xy y2

� �
:
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Therefore by Lemma 2.2, we obtain

detðIF ÞfPDPDF ðUfÞ

¼ 4 � d 2fF ;2

dr2
� r2 þ 2

dfF ;2

dr
� r2

� �3
( )

ufðx; yÞufð�y; xÞ:

This implies that the position vector field xq=qxþ yq=qy is in a principal direc-

tion at any ðx; yÞ A GF . If d 2fF ;2=dr
2 2 2ðdfF ;2=drÞ3, then we obtain F A A2

o

and by formula (1), we obtain indoðGF Þ ¼ 1. If d 2fF ;2=dr
2 1 2ðdfF ;2=drÞ3,

then fF ;2 1 0 holds or there exists a positive number aF > 0 satisfying fF ;2 ¼ffiffiffiffiffiffi
aF

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aF � r

p
or ¼ � ffiffiffiffiffiffi

aF
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aF � r
p

. Therefore we see that GF is part of a

plane or a round sphere.

Suppose that F A Að2Þ
o satisfies $F 1 0 and (2) of Proposition 3.3. Then we

see that there exist a neighborhood Vo of o in Pxy and a real-analytic curve g0

in Vo satisfying g0 ¼ fðx; yÞ A Vo;F ðx; yÞ ¼ 0g. For each F0 A Að2Þ
o and for each

q0 :¼ ðx0; y0Þ A g0, we set fF0;q0
ðx; yÞ :¼ F0ðx� x0; y� y0Þ. The function fF0;q0

is

defined on a neighborhood of q0 in Pxy. We shall prove

Lemma 5.1. For each q0 A g0, there exists an element Fq0
of Að2Þ

o satisfying

GfFq0
; q0

HGF and mFq0
¼ mF .

Proof. There exist positive numbers u0; v0 > 0 and a real-analytic map F

from Uu0; v0
:¼ ð�u0; u0Þ � ð�v0; v0Þ into Vo satisfying the following:

(1) The Jacobian of F is nonsingular at each point of Uu0; v0
;

(2) for any u 0 A ð�u0; u0Þ, F maps the open line segment fu ¼ u 0g in Uu0; v0

into ge for some e A ð�e0; e0Þ;
(3) for any v 0 A ð�v0; v0Þ, F maps the open line segment fv ¼ v 0g in Uu0; v0

into ly for some y A ð�y0; y0Þ.
Then the function F �F on Uu0; v0

is of one-variable. This implies Lemma

5.1. r

Suppose mF ¼ 2. Then UmbðGF ÞV g0 ¼ q holds. Therefore by Corollary 3.2,

Proposition 3.3 and by Lemma 3.6, we may find a neighborhood Uo of ð0; 0Þ
in R2 and a real-analytic curve C0 in Uo satisfying (a), (c) of (2) of Theorem 1.3

and UmbðGF jUo
Þ ¼ q.

Suppose mF f 3. Then g0 HUmbðGF Þ holds. There exist real-analytic func-

tions yF ; cF on g0 such that an element ~FFq0
A Að2Þ

o defined for each q0 A g0 by
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~FFq0
ðx; yÞ :¼ Fq0

ðx cos yF ðq0Þ � y sin yF ðq0Þ; x sin yF ðq0Þ þ y cos yF ðq0ÞÞ

satisfies m ~FFq0
¼ mF and ~FF ðmF Þ

q0
¼ cF ðq0ÞxmF . We may suppose that there exist a

neighborhood V 0
o of o in Vo and a neighborhood g 00 of o in g0 such that for

any ðx; yÞ A V 0
o and for any q0 A g 00, CF ðx; y; q0Þ :¼ ~FFq0

ðx; yÞ makes sense. Then

we see that the function CF is real-analytic on V 0
o � g 00. Therefore we may find a

continuous function ~xx on g 00 satisfying ~xxðq0Þ > 0 and ðx; 0; ~FFq0
ðx; 0ÞÞ B UmbðG ~FFq0

Þ
for any x A ð�~xxðq0Þ; ~xxðq0ÞÞnf0g and for any q0 A g 00. Then by Corollary 3.2,

Proposition 3.3 and by Lemma 3.6, we may find a neighborhood Uo of ð0; 0Þ
in R2 and a real-analytic curve C0 in Uo satisfying (a), (c) of (2) of Theorem

1.3 and C0 ¼ UmbðGF jUo
Þ. Hence we have proved Theorem 1.2 and Theorem

1.3.

6. Classification

In this section, let S be a connected, complete, real-analytic, embedded,

parallel curved surface.

Suppose that there exists an element P0 of BS satisfying XS;P0
¼ S. Then

for each q A S, we see by Corollary 3.2 that C?
P0;q

is isometric to R. There exists

the element PP0;q A BS satisfying q A PP0;q and the condition that PP0;q is parallel

to P0. Then by Proposition 4.2, we see that PP0;q VS is a real-analytic curve

isometric to R or to a simple closed curve. Therefore we obtain

Proposition 6.1. Let S be a connected, complete, real-analytic, embedded,

parallel curved surface satisfying XS;P0
¼ S for some P0 A BS. Then there exists a

generating pair ðCb;CgÞ of which Cb (resp. Cg) is the base (resp. generating) curve

and which satisfies the following:

(1) Pb is parallel to P0;

(2) Cb is isometric to R or to a simple closed curve;

(3) Cg is isometric to R;

(4) S ¼ SðCb;CgÞ.

Then S is homeomorphic to a plane or to a cylinder.

Suppose XS;P0
0S and XS;P0

0q for P0 A BS. Then for P0 A BS and for

q A XS;P0
, we see by Corollary 3.2 and by Proposition 4.2 that the connected

component of P?
P0;q

VS containing q is a real-analytic curve isometric to R or to

a simple closed curve. There exists the element PP0;q A BS satisfying q A PP0;q and

that PP0;q is parallel to P0. Then by Proposition 4.2, we see that the connected
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component of PP0;q VS containing q is a real-analytic curve isometric to R or

to a simple closed curve. We shall prove

Lemma 6.2. Let P0 be an element of BS and q0 a point of XS;P0
such that

some connected component of PP0;q0
VS shares plural points with some connected

component of P?
P0;q0

VS. Then S is a surface of revolution such that a line per-

pendicular to P0 is an axis of rotation of S.

Proof. Let Oq0
;O?

q0
be domains in PP0;q0

VS, P?
P0;q0

VS, respectively satisfying

Oq0
VO?

q0
¼ q and ]ðOq0

VO?
q0
Þ ¼ 2, and q1; q2 two points of S satisfying

Oq0
VO?

q0
¼ fq1; q2g. Then by Proposition 3.1, we see that there exists the only one

point p0 of SnXS;P0
satisfying P?

P0;q
VO?

q0
¼ fp0g for any q A Oq0

. By Proposition 4.2,

we see that S is a surface of revolution such that the line through p0 perpendicular

to P0 is an axis of rotation of S. Hence we have proved Lemma 6.2. r

By Lemma 6.2, we obtain

Proposition 6.3. Let S be a connected, complete, real-analytic, embedded,

parallel curved surface satisfying XS;P0
0S and XS;P0

0q for any P0 A BS. Then

one of the following holds:

(1) S is a surface of revolution such that the number of the intersections of S

with its axis of rotation is equal to one or two, and then S is homeomorphic

to a plane or to a sphere,

(2) There exists a generating pair ðCb;CgÞ of which Cb (resp. Cg) is the base

(resp. generating) curve and which satisfies the following:

(a) each of Cb and Cg is isometric to R or to a simple closed curve,

(b) S ¼ SðCb;CgÞ,

and then S is homeomorphic to a plane, a cylinder or to a torus.

Using Proposition 6.1 and Proposition 6.3, we obtain Theorem 1.5.

Remark. If Cb is a circumference in each of Proposition 6.1 and Propo-

sition 6.3, then S is a surface of revolution and its axis of rotation is per-

pendicular to Pb.
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