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INTRINSIC AND EXTRINSIC STRUCTURES OF

LAGRANGIAN SURFACES IN COMPLEX

SPACE FORMS

By

Bang-Yen Chen

Abstract. Lagrangian //-umbilical submanifolds introduced in [1, 2]

can be regarded as the simplest Lagrangian submanifolds in Kaehler

manifolds next to totally geodesic ones. It was proved in [1] that

Lagrangian //-umbilical submanifolds of dimension >3 in complex

Euclidean spaces are complex extensors, Lagrangian pseudo-spheres,

and flat Lagrangian //-umbilical submanifolds. Lagrangian H-

umbilical submanifolds of dimension >3 in non-flat complex space

forms are classifiedin [2].In this paper we deal with the remaining

case; namely, non-totally geodesic Lagrangian //-umbilical surfaces

in complex space forms. Such Lagrangian surfaces are characterized

by a very simple property; namely, JH is an eigenvector of the shape

operator Ah, where H is the mean curvature vector field.The main

purpose of this paper is to determine both the intrinsic and the

extrinsic structures of Lagrangian //-umbilical surfaces.

1. Introduction

Let / : M ―>Mm be an isometric immersion of a Riemannian ^-manifold M

into a Kaehler manifold Mm of complex dimension m. The submanifold M is

called totallyreal (or isotropic in symplectic geometry) if the almost complex

structure J of Mm carries each tangent space of M into its corresponding normal

space [5]. A totallyreal submanifold M of Mm is called Lagrangian if n = m.

From the symplectic point of view, a local classificationof Lagrangian sub-

manifolds is trivial,using local Darboux coordinates [9]. However, from the

Riemannian point of view, Lagrangian submanifolds are far from trivial.In this
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respect, there exist a number of very interesting results,both local and global (cf.

[8]).For instance it was proved in [5, 7] that a minimal Lagrangian submanifold

with constant sectional curvature in a complex space form has to be totally

geodesic or flat.

Totally umbilical submanifolds, if they exist, are the simplest submanifolds

next to totallygeodesic submanifolds in a Riemannian manifold. However, it was

proved in [6] that a complex space form of complex dimension >2 admits no

totally umbilical Lagrangian submanifolds except the totally geodesic ones. In

views of above facts the author introduced in [1, 2] the notion of Lagrangian H-

umbilical submanifolds.

According to [1, 2] a Lagrangian J/-umbilical submanifold of Kaehler

manifold Mn is a non-totally geodesic Lagrangian submanifold whose second

fundamental form takes the simple form:

h(ei,e＼)=Ue＼, h(e2,e2) = ･･･ =h{en,en) = fiJei,
(1.1)

A(ei,ej) = ^/e,-, /?(e/,≪?*)=0, j =£k, j,k = 2,...,n

for some suitable functions X and // with respect to some suitable orthonormal

local frame field e＼,...,en.

A Lagrangian submanifold with nonzero mean curvature vector H is

Lagrangian //-umbilical if and only if (a) JH is an eigenvector of the shape

operator Ah and (b) the restrictionof Ah to (JH)1' is proportional to the identity

map.

It is important to point out that condition (b) follows from condition (a)

automatically for Lagrangian surfaces (cf. Lemma 3.1).

Lagrangian //-umbilical submanifolds M of dimension >3 in a complex

space form of constant holomorphic sectional curvature Ac have an important

property; namely, the integral curves of JH are geodesies of M whenever H # 0,

unless M is a real space form of constant sectional curvature c. This important

property does not hold for 2-dimensional Lagrangian //-umbilical submanifolds

in general. Using thisimportant property the author was able to classifyin [1, 2]

Lagrangian //-umbilical submanifolds of dimension > 3 in complex space forms.

In particular, he proved that, except the flat ones, Lagrangian //-umbilical

submanifolds in C" with n > 3 are either Lagrangian pseudo-spheres or complex

extensors. Lagrangian //-umbilical submanifolds of dimension >3 in non-flat

complex space forms were determined in [2] via Legendre curves and Hopf's

fibration (see [4] for Lagrangian submanifolds of constant curvature c). The

explicitdescription of flatLagrangian //-umbilical submanifolds in C" with n > 2

were established in [3].
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In this paper we deal with the remaining case; namely, Lagrangian H-

umbilical surfaces in complex space forms. Because the integral curves of JH are

not longer geodesies in general, the method utilizedin [1, 2] does not apply to

this case.

We point out in section 3 that, except totally geodesic ones, minimal

Lagrangian surfaces in any Kaehler surface are Lagrangian //-umbilical auto-

matically. The main purpose of section 3 is to establish a general existence and

uniqueness theorem for Lagrangian //-umbilical surfacesin complex space forms.

As a by-product, we are able to determine the intrinsic and the extrinsic

structures of minimal Lagrangian surfaces in complex space forms. The intrinsic

and the extrinsic structures of Lagrangian //-umbilical surfaces with constant

Gauss curvature or with constant mean curvature are established in sections 4

and 5, respectively.In section 6 we determine Lagrangian //-umbilical surfaces

such that the functions X and /u given in (1.1) are linearly dependent. The

Lagrangian surfaces investigated in sections 4, 5 and 6 share the property that

e2fi― 0. The last section determines completely the intrinsic and the extrinsic

structures of Lagrangian //'-umbilicalsurfaces satisfying e＼u= 0.

2. Preliminaries

Let M"(4c) denote a complete simply-connected Kaehler ≪-manifoldwith

constantholomorphic sectionalcurvatureAc.Let M be a Lagrangian submanifold

in Mn(Ac). We denote the Levi-Civitaconnectionsof M and M"(4c) by V and V,

respectively.The formulas of Gauss and Weingarten are given respectivelyby

(2.1) VxY = VxY + h(X, Y),

(2-2) Vx£=-AzX + DxZ,

for tangent vector fieldsX and Y and normal vector field£,where D is the

connection on the normal bundle. The second fundamental form h is relatedto

the shape operator A$ by <Jh(X,F),£>= (A^X, F>. The mean curvaturevector

H of M in M2 (4c) is defined by H = ＼/ntraceh, where n ―dimM. We put

H2 = </f,Hy which is calledthe squared mean curvature.

For Lagrangian submanifolds we have [5]

(2

(2

3)

4)

DXJY = JVXY,

(h(x, Y)jzy = <h(Y,z),jxy = <mz,x),jy}.

If we denote the curvature tensor of V by R, then the equations of Gauss,

Codazzi and Ricci are given respectivelyby
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(2.5) <i?(Z,7)Z, W> = (AKYtZ)X, W} - (Ah{x,z)F, W}

+ c≪Z, WX Y, Z> - <X, Z>< 7, FT≫,

(2.6) (Vh)(X,Y,Z) = (Vh)(Y,X,Z),

(2.7) <**(*, 7)/Z, Jfr> = <{AjZ,AJW]X, F>

+ c≪z, fr>< f, z> - <*, z>< f, pr≫,

where JT, F, Z, PF are vector fieldstangent to M and Vh is defined by

(2.8) (Vh)(X, F, Z) = Dxh( Y, Z) - h(Vx Y,Z) - h( F, VXZ).

We need the following existenceand uniqueness theorems for Lagrangian

immersions (cf.[1, 41).

Theorem 2.1. Let (Mn,g) be a simply-connected Riemannian n-manifold. If a

is a symmetric bilinear vector-valued form on M satisfying

(1) g{o(X, Y),Z) is totally symmetric,

(2) (V<x)(X, 7, Z) = V*tj( 7, Z) - er(V;r7, Z) - <r(F, V^Z) is totallysymmetric,

(3) J?(JT, r)Z = c(0( 7, Z)X - g{X, Z) Y) + a(a( Y, Z),X)- a{o{X, Z), Y),

then there exists a Lagrangian isometric immersion L : (M,g) ―> Mn(Ac) whose

second fundamental form h is given by MX, Y) = Ja(X, Y).

Theorem 2.2. Let L＼,Li＼M ―≫■Mn(4c) be two Lagrangian isometric

immersions of a Riemannian n-manifold M with second fundamental forms h1 and

h2, respectively.If

<h＼X, Y),JLuZy = <h＼X, Y),JL2.Z>,

for all vector fields X Y, Z tangent to M, then there exists an isometry <j>of

M"(4c) such that L＼ = L2 o <b.

3. Lagrangian //-umbilical surfaces in complex space forms

We provide some lemmas for later use.

Lemma 3.1. Let L : M ― M2 be a Lagrangian surface in a Kaehler surface

without totally geodesic points. We have

(1) L is Lagrangian H-umbilical if and only if JH is an eigenvector of the

shape operator Ah-

(2) If'L is minimal, then L is a Lagrangian H-umbilical surface satisfying(1.1)

with 1 = ―a.
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Proof. (1) follows from (2) and the definition of Lagrangian //-umbilical

surfaces (cf. section 1).

(2) Let M be a minimal Lagrangian surface without totally geodesic points in

a Kaehler surface. We define a function yp by

(3.1) yp:UMp^R:v~ yp{v) = <A(t?,i>),/≫>,

where UMp = {v e TpM : <y, y> = 1}. Since l/M^ is a compact set, there exists a

vector y in UMP such that y^, attains an absolute minimum at v. Since p is not

totally geodesic, it follows from (2.4) that yp # 0. By linearity, we have yp(v) < 0.

Because yp attains an absolute minimum at v, it follows from (2.4) that

(h(v,v),Jw} ― 0 for all w orthogonal to v. So, using (2.4), v is an eigenvector of

the symmetric operator Ajv. By choosing an orthonormal basis {ei,^} of TPM

with e＼― v, we obtain

h(ei,e＼) = XJe＼, h{e＼,e2) = ―XJei, hie^ei) = ―XJe＼

for some X. Thus M is a Lagrangian ^-umbilical surface with a = ―k. D

Lemma 3.2. Except totallygeodesic ones, a Lagrangian H-umbilical surface

of constant Gauss curvature c in a complex space form M2(4c) is a Lagrangian H-

umbilical surface satisfying (1.1) with ju= O or with k = ju.

Conversely, every Lagrangian H-umbilical surface in M2(4c) satisfying(1.1)

with a ― 0 or with X ― u has constant Gauss curvature c.

Proof. Let M be a Lagrangian .//-umbilicalsurface in M2(4c). Then by

(2.3) and (2.7) we have

(3.2)

<R(X, Y)Z, W} = <＼Ajz,AjW＼X, F> + c≪X, W}(Y,Z} - <X,Z><7, FF≫,

for X, Y, Z, W tangent to M. If M has constant Gauss curvature c,(3.2) implies

that the shape operators of M commute. Thus, at each point p e M there exists

an orthonormal basis e＼,ei such that Ajei, Aje2 are simultaneously diago-

nalizable. Hence, by (2.4) we obtain

h(ei,ei) = XJei, h(eue2) =h(e2,e2) = 0

for some X with respect to some suitable orthonormal frame field e＼,e2 unless

The converse follows immediately from the equation of Gauss. □

Lagrangian if-umbilical isometric immersions of a real space form Mn(c) of
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constant sectional curvature c into a complex space form Mn(Ac) of constant

holomorphic sectional curvature Ac were classifiedin [1] and [2] for c ― 0 and

c # 0, respectively.The explicitdescription of such Lagrangian immersions was

established in [3] for c = 0.

Given a real number b > 0, let F : R ―>C be the unit speed curve defined by

(3.3) F(s) =
e2bsi + 1

2bi

With respect to the induced metric the complex extensor <f>= F (x)i of the unit

hypersphere of E" via F is a Lagrangian isometric immersion of an open portion

of an w-sphere Sn(b2) of sectional curvature b2 into C" which is called a

Lagrangian pseudo-sphere (see [1] for details).

Lagrangian //-umbilical submanifolds in complex Euclidean spaces satisfying

(1.1) with X ―2pi were determined in [1] as follows.

Theorem 3.3. Up to rigid motions of C", a Lagrangian isometric immersion

L : M ―>C" is a Lagrangian pseudo-sphere if and only if it is a Lagrangian H-

umbilical immersion satisfying(1.1) with X = 2a.

Lagrangian pseudo-sphereshave both constant mean curvatureand constant

Gauss curvature.

Remark 3.1. Lagrangian //-umbilical submanifolds satisfying(1.1) with X ―

2/i in nonflat complex space forms also have constant mean curvature and

constant Gauss curvature [2]. Such Lagrangian //-umbilical submanifolds have

been completely classifiedin [2] (see Theorems 5.1 and 6.1 of [2]).

The following lemma is easy to verify.

Lemma 3.4. Let L : M ―>M2(4c) be a Lagrangian H-umhilical surface. Then

the squared mean curvature and the Gauss curvature of M satisfy AH2 = 9(K ―c)

if and only if the second fundamental form of L takes the form:

h(ei,ei) = 2fiJei, h(ehe2) = JuJe2, h(e2,e2) = fxJe＼

for some function ju # 0, with respect to some orthonormal frame field e＼,e2.

In views of Lemma 3.2,Theorem 3.3,Lemma 3.4 and Remark 3.1,we only

need to consider Lagrangian //-umbilicalsurfacesin a complex space form

M2(4c) such that K # c, c+(4/9)H2.
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Now, assume that M is a Lagrangian //-umbilical surface in M2(Ac) sat-

isfying the condition K # c, c + (4/9)H2. Then the second fundamental form of

M takes the form:

(3.4) h(e＼,e＼)=XJe＼, h(eue2) = fiJe2, h(e2,e2) = fiM

for some functions k, fi with pi # 0, 2/2, with respect to some orthonormal frame

fielde＼,e2.

Let co1, co2 denote the dual 1-forms of e＼,e2 and let [cog) be the connection

forms on M defined by

(3.5)
Vft

2
･

2

7=1 7=1

2
■

2

7=1

where e,-*= Jet,(o＼― -co],coJjt――cof,i = 1,2.

For a Lagrangian surface M in M2(4c), we have [5]

(3.6) COj = COJ , io＼ = COJ

From (3.4)and (3.6) we find

(3.7) ≫ Xco ≫'

7=1

k=＼

= jUW2, U)＼ fico1

By (3.4),(3.7)and the equation of Codazzi we obtain

(3.8) eifi= {X - 2n)co}{e2)

(3.9) e2l=(2ji-X)a>l2(el),

(3.10) elfi= ^co2{el),

Since Span {e＼} and Span {^2} are one-dimensional distributions,there exists

a local coordinate system {x, y} on M such that d/dx and d/dy are parallel to

e＼,e2, respectively. Thus, the metric tensor g on M takes the form:

(3.11) g = E2dx2 + G2dy2,

for some nonzero functions E and G. Without loss of generality we may assume

(3.12)

From (3.11) we find

(3.13)

1 d

E dx
e2

w.(,i)=Jl, ^2) = Jk

1

~G

Ey

d
Ty

dE
Gx
dG_
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By (3.10),(3.12) and (3.13) we have

(3.14)

Solving (3.14) yields

(3.15)

(lnfi)=-3(lnE)y

w(x)

" 1*1/3

_m3(x)

for some function m(x) # 0.

By applying (3.9), (3.12), (3.13) and (3.15) we find

(3.16)

Solving (3.16) yields

(3.17)

EXy
2
= -=r$mi{x)Ey- XEy

X = -u +
/(*)

E

for some function f(x). From (3.15),(3.17) and the assumption 2//^ X, we

obtain f(x) # 3m(x)//2/3.

Using (3.8), (3.12), (3.13)

(3.18)

Solving (3.18) yields

(3.19)

for some

following

(3.20)

(3.21)

(3.15) and (3.17), we find

Mx= f

G = q(y)exp
(I

K= -

f"1 - 3n) (lnG),

k(x,y)

m(x)

1*1/3

/(x)/W3 - 3m(x)fi

G = q{y)exp(f

Gauss curvature K of M is

kdxj

given by

conclude that the functions f(x),

second order differentialequation:

m(x)

x ＼
k(x,y)dx＼

function q{y) ^ 0. Consequently, the metric tensor of M takes the

form:

g = E2dx2 + G2dy2,

From (3.11) it follows that the

E

EG{dy＼GJ dx＼EJ I

By (3.15), (3.17), (3.19) and (3.21), we

m(x), q(y) and ju(x,y) satisfy the following



(3-22> (ig^-2*

Intrinsic and extrinsic structures

5/3+cM-iA
(＼x

m(x)q(y)Qxpl

＼J

{iyexp(― jx kdx)

WqG)

)

,

kdx＼

q{y)
(e ^fcexp
m(x)

X
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Conversely, suppose that f(x), m(x), q{y) and ju(x,y) are functions defined

on a simply-connected domain U of R2 such that m(x), q{y) and ju(x,y) and

nowhere zero, f(x) # 3m{x)fi2l7>,and they satisfy (3.22). We define a metric

tensor a on 17 bv

(3.23) g = E2dx2 + G2dy2, E =
m{x)

= q(y)exp

where k = k(x,y) is defined by (3.19).

We define a symmetric bilinearform a on (U,g) by

(3.24) a{euei) =
/ (*y1/3

m(x)
-'

)
e＼

(f**)

o{e＼, e2) = ixe2, (j(e2, e2) = ue＼

By applying(3.22)-(3.24)and a straight-forwardcomputation, we know that

((U,g),a) satisfiesconditions(1),(2) and (3) of Theorem 2.1.

From the conditions f(x) # 3m(x)fi2^ and /i# 0, it follows that K # c,

c + {4/9)H2.

Consequently, by Theorem 2.1 and Theorem 2.2, we obtain the following.

Theorem 3.5. Let L : M ―>M2(4c) be a Lagrangian H-umbilical surface

such that K^c, c+ (4/9)H2. Then

(1) there existfunctions f{x), m(x), q(y) and p,{x,y) such that m(x), q{y) and

n{x, y) are nowhere zero, f(x) # 3m(x)^2/3, and they satisfy (3.22),

(2) with respect to some coordinate system {x, y} on M, the metric tensor of

M is aiven bv

(3.25)

where

(3.26)

g = E2 dx1 + G2 dy2, E = m{x)iTl/*, G = q(y) exp

k
m(x)/ix

/(*W/3 _ 3mfx)u

(3) the second fundamental form of L is given by

(l'kdx)
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(3.27) h{eue{)=(

(3.30)

(3.33)

/(*) ux"
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' Je＼, h(e＼, e2) = l*Je2, h(e2, e2) = iiJe＼

x f

m(x) dx and y =

^c
＼dy By

y
q(y) dy

ii -)dy
-""'(s)

= u2/3J
(-)

mix)

where e＼= E ld/dx and e-i= G ld/dy.

Conversely, suppose that f(x), m(x), q(y) and fi(x,y) are functions defined on

a simply-connected domain U of R2 such that m(x), q(y) and /i(x,y) are nowhere

zero, f(x) # 3m(x)^2//3, and they satisfy(3.22). Let g be the metric tensor on U

defined by (3.25). Then, up to rigid motions of M2(4c), there exists a unique

Lagrangian H-umbilical isometric immersion of (U,g) into M2(4c) whose second

fundamental form is given by (3.27). The Gauss curvature K and the squared

mean curvature H2 of such a Lagrangian surface satisfy the condition K # c,

c + 4/9H2.

Now, suppose that L : M ―>M2(4c) is a minimal Lagrangian surface without

totally geodesic points. Then, according to Lemma 3.1, the second fundamental

form of L satisfies

(3.28) h(ei,ei) = -fiJei, h{e＼,e2)= fiJe2, h(e2,e2) = fiJe＼.

for some nonzero function jX with respect to some orthonormal frame fielde＼,e2.

Thus, by (3.15),(3.17), (3.18) and (3.19), we obtain

(3.29) g = fi'2/3{rn2{x)dx2 + q2(y) dp2}

for some coordinate system {x,_y} with e＼= p.l/3m(x)~ld/dx1 e2 = p}^q{y)~ld/

dy.

After applying the coordinate transformation:

the metric tensor of M takes the simple form:

(3.31) g=iu-2/3(dx2 + dy2)

where ju(x,y) = fi(x(x),y(y)).With respect the coordinate system {x, y}, equation

(3.22) becomes

(3.32) A(ln^) = 3(c - 2ju2)^i~2/＼

where A = 82/dx2 + d2Idy2. With respect to x and y, (3.28) becomes

h＼te'te)
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Conversely,if /uis a nowhere zero function defined on a simply-connected

domain U of R2 which satisfies(3.23).We define a metric tensor on U by

9 = M 2/3(dx2+dy2)

and define a symmetric bilinearform a on {U,g) by

4―
-)

＼dx'dxj
a2/'
d d

-)
By
= /*2/3

d

_
Yy

(8 2/3 d

cx

Then, by a straight-forward computation, we know that {(U,g),o) satisfies

conditions (1), (2) and (3) of Theorem 2.1. Thus, by Lemma 3.1, Theorem 2.1

and 2.2, we obtain the following.

Corollary 3.6. Let L : M ―>M2(4c) be a minimal Lagrangian surface

without totallygeodesic points. Then, with respect to a suitable coordinate system

{x, y}, we have

(1) the metric tensor of M takes the form of (3.31) for some nowhere zero

function // satisfying(3.32) and

(2) the second fundamental form of L is given by (3.33).

Conversely, if ju is a nowhere zero function defined on a simply-connected

domain U of R2 satisfying (3.32) and g =/u~2/2(dx2 + dy2) is the metric tensor

on U, then, up to rigid motions of M2(4c), there is a unique minimal (U,g) into

M2(4c) whose second fundamental form is given by (3.33).

4. Lagranglan //-umbilical surfaces with constant Gauss curvature

The following result determines the intrinsic and the extrinsic structures of

Lagrangian //-umbilical surfaces with constant Gauss curvature in complex space

forms.

Theorem 4.1. Let L : M ―≫M2(4c) be a Lagrangian H-umbilical surface.If

M has constant Gauss curvature K such that K ^ c, c + (4/9)H2, then

(1) vvzY/?respect to some coordinate system {x, j} o≪ M, ?/?emetric tensor of

M is given by

(4.1) g = dx2 + G2dy＼

where

(4.2) G =
<

-j=cos(VKx)

X.
1

if K > 0;

if K = 0;

cosh(v/::M, if K <0,
yf^K
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(2) the second fundamental form of L is given by

(4.3) h(ei,e＼)

where e＼= d/dx, ei

(

(4.4)

K-c + ju2

u

)

Jei, h(e＼,e2) = fiJe2, h(e2, e2) = fiJei

G ld/dy and fi is a nonzero function satisfying

＼K-c-fi2＼ =

^sec2(v^x),

A, ,

-KsQch2(V^Kx)

if K>0;

if K = 0;

if K<0.

Conversely, suppose that c, K are two unequal constants, U a simply-connected

domain of R2 such that (4.1)is a well-definedpositive-definitemetric on U and fiis

a function satisfying(4.4). Then

(3) (U,g) has constant Gauss curvature K and

(4) up to rigid motions of M2(4c), there exists a unique Lagrangian H-

umbilical isometric immersion of (U,g) into M2(4c) whose second fundamental

form is given by (4.3).

Proof. Assume that L : M ―>M2(4c) is a Lagrangian /J-umbilical surface

such that K # c, c + (4/9)H2. Then the second fundamental form of L takes the

form:

(4.5) h(euei) = AJe＼, h(e＼,e2) = ^Je2, h(e2,e2) = uJe＼

for some functions X, ji with ju # 0, A/2, with respect to an orthonormal frame

field e＼,ei.

From the assumption K # c + (4/9)H2, we obtain /j.2# K - c. If the Gauss

curvature K of M is constant, then

(4.6) Xjj,―n1 + c = K = constant.

By applying (3.9), (3.10) and (4.5), we get fl>f(≪?i)=0and e2X = e2ju= 0.

From coj(e＼)= 0, it follows that the integral curves of e＼are geodesies in M.

Thus, there exists a local coordinate system {x, y} on M such that the metric

tensor of M takes the form:

(4.7) g = dx2 + G2 dy2

and e＼= d/dx, ei = G~ld/dy. From e2^ = eifi= 0, we obtain X = l(x) and ji

fi{x).

From (3.15), (3.17),(3.19) and (4.7), we get



(4.8) m(x)
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= ^＼ f{x) = X(x)+/i(x)
([

G = q(y)expl kdxj

where k is defined by (3.19). Equations (3.19), (4.6) and (4.8) imply

(4.9)

Solving (4.9) yields

(4.10)

k

K
**-?, ･ = ･(*)

k(x) = --(ln＼K-c-ju2＼Y(x)

Thus, the metric tensor of M takes the form:

(4.11) g = dx2 +
g2{y)

＼K-c-n2＼
dy2

After applying a suitable change of variable in v if necessary, we get

(4.12) g = dx2 +
1

＼K-c-^＼
dy1
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From fiv= 0, (4.6), (4.7),(4.9) and equation (3.21) of Gauss, we obtain

(4.12) k'(x)+k2(x) = -K

Solving (4.12) and using (4.9), we get

(4.13) ＼K-c-n2＼ = <

COS

a

2(y/K(b-x))
a

(x-b)2

if K > 0;

if K = 0;

, r^― , if K < 0,cosh2(V^K(x-b))

where a, b are integration constants.

Therefore, by applying a translationin x and dilationin y if necessary, we

obtain (4.4) and statement (1). (4.3) now follows from (4.5) and (4.6).

Conversely, assume that K, c are unequal constants, U is a simply-connected

domain of R2 such that (4.1) is a well-defined positive-definitemetric on U and ju

is a function which satisfies(4.4). Then, by a direct computation, we obtain

statement (3).

If we define a symmetric bilinear form a on (U, g) by

(4.14) o(e＼,e＼)

(
K-c + ju2

M

,

a(eue2) = /te2 ^2,e2) ue＼
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where e＼= d/dx, ei ― G~ld/dy, then, by a straight-forward long computation,

we conclude that {{U,g),o) satisfiesconditions (1),(2) and (3) of Theorem 2.1.

Hence, according to Theorem 2.1, there is a Lagrangian isometric immersion of

(U,g) into M2(4c) with second fundamental form given by h = Jo. Moreover, by

(4.14), we obtain statement (5).

The uniqueness of the Lagrangian immersion now follows from Theorem

2.2. □

Remark 4.1. Theorem 4.1 of [1] states that Lagrangian //-umbilical sub-

manifolds of dimension >3 with constant sectional curvature in complex

Euclidean spaces are either flator open portions of Lagrangian pseudo-spheres.

In contrast, Theorem 4.1 shows that there exist many Lagrangian //-umbilical

surfaces with constant Gauss curvature in the complex Euclidean plane which are

neither flatnor open portions of Lagrangian pseudo-spheres.

Remark 4.2. The intrinsic and the extrinsic structures of Lagrangian H-

umbilical surfaces in M2(4c) with constant Gauss curvature K = c + (4/9)H2

have been completely determined in [11 and [2] for c = 0 and c ^ 0, respectively.

It is obvious that a Lagrangian //-umbilical surface in a complex space form

has constant mean curvature and constant Gauss curvature if and only if both X

and ju are constant. However, Theorem 3.5 yields the following.

Proposition 4.2. Let L : M ―≫･M2(4c) be a Lagrangian isometric immersion

whose second fundamental form satisfies

(4.15) h(ei,ei) = XJeu h{ehe2) = juJe2, h{e2,e2) = iiJe＼.

with respect to an orthonormal frame field e＼,e2.If /uis constant, then M has

constant Gauss curvature. Moreover, M is flat unless u = 0 or u = A/2.

Proof. Let M be a Lagrangian surface in M2(4c) satisfies(4.15). If ＼x― 0,

then M has constant Gauss curvature c. If n = 2/2, then M also has constant

Gauss curvature according to Theorem 3.1 of [1] and Theorems 5.1 and 6.1 of [2]

for c = 0 and c ^ 0, respectively. Finally, if fi^ 0, 2/2, (3.23) implies that Is

and G are functions of x and y, respectively.In this case M is flataccording to

(3.21). □

Remark 4.3. The converse of Corollary 3.6 is false.In fact, there exist
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Lagrangian //-umbilicalsurfaces with constant Gauss curvaturein a complex

space form such that the function u of (4.15)is non-constant.

The following result shows in particular that Lagrangian //-umbilical surfaces

with X being constant do not have Gauss curvature in general.

Proposition 4.3. Let L : M ― M2(4c) be a Lagrangian isometric immersion

whose second fundamental form satisfies(4.15) for jx # 0, 1/2, with respect to an

orthonormal frame field e＼,ei. If X is constant, then

(1) there is a coordinate system {x, y} on M such that the metric tensor of M

is given by

(4.i6) * = ^+prS^

and

(2) u is a function of x satisfvina

(4.17) tit2= {k-2tf

H

-
X2 + Ac

4{X - 2,i)

)

for some constant b.

Conversely, suppose that b, c, X are constants and n{x) is a non-constant

function satisfying(4.17) on some open interval I. Let g be the metric tensor on

U = IxR defined by (4.16). Then, up to rigid motions of M2(4c), there is a

unique Lagrangian H-umbilical isometric immersion of (U,g) into M2(4c) whose

second fundamental form is aiven bv (4.15).

Proof. Assume that M is a Lagrangian surface in M2(4c) satisfying(4.15)

with pi# 0, 1/2 for some constant X. Then (3.9) and (3.10) yield Veiej = 0 and

e＼fx= 0. Thus, it follows as before that the metric tensor of M takes the form:

(4.18) g = dx2 + G2dy2

with respect to some coordinate system {x, y} with e＼= d/dx, e2 = G~ld/dy.

From em = 0, we obtain fi― n{x). Moreover, from (3.17), (3.19),(3.20) and

(4.18) we have



672

Thus,

(4.20)
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g = dx2 +

g＼y)

＼k-2fi＼

dy1

After applying a suitable change of variable in y if necessary, we have

(4.21) g = dx2 +
dy2

＼X-2ju＼

From (4.15),(4.21),and the equation of Gauss we know that the function

u = u(x) satisfiesthe following differentialequation:

(4.22) k>(x)+k2(x) = u2 -ku c k(x) =
fi'ix)

X -2ju

Solving (4.22) for ju' yields equation (4.17) for some constant a.

Conversely, suppose that b, c, X are constants and ju(x) is a non-constant

function satisfying(4.17) on some open interval /. We define a metric tensor g on

U = I x R by (4.16) and define a symmetric bilinear map a on (U,g) by

(4.23) o{e＼,e＼) = Xeu (J(e＼,e2)= jue2, <j(e2,e2) = jueu

where e＼= d/dx and ei ―＼k―2//|l'2d/dy. Then by a straight-forward compu-

tation we conclude that ((U,g),cr) satisfiesconditions (1),(2) and (3) of Theorem

2.1.

Consequently, by Theorems 2.1 and 2.2 we conclude that, up to rigid

motions of M2(4c), thereis a unique Lagrangian isometricimmersion of (U,g)

into M2(4c) whose second fundamental form is given by (4.15)with constant A.

□

Proposition 4.3 implies that Lagrangian //-umbilical surfaces with constant X

in a complex space form do not have constant Gauss curvature in general.

5. Lagrangiao .//-umbilicalsurfaces with constant mean curvature

Let L : M ― M2(4c) be a Lagrangian /f-umbilical surface with K # c, c+

(4/9)i/2. If M has constant mean curvature /?# 0, then the second fundamental

form of L takes the form:

(5.1) h(ei,ei) = (2fl-n)Jei, h(eue2) = fiJe2, h(e2,e2) = juJeu

for ju # 0, 2)5/3 with respect to some suitable orthonormal frame fielde＼,e2.
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From (3.9) and (3.10) we get 0 = e2(fi)= po)＼{ex)which yields Ve,ei = 0.

Hence, by (3.9) and (3.10), we also have e2k = eifi― Q.

From co＼(e＼)―0, it follows as before that the metric tensor of M takes the

form:

(5.2) g = dx2 + G2dy2

with respect to some local coordinate system {x, y} with e＼= d/dx, ei = G~ld/

dy.

From e^X ―ein = 0, we obtain X = X{x) and /i― /n(x).Thus, (3.17), (3.19),

and (5.1) imply k(x) = ju'/(2fi―3ju).Hence, after applying a suitable change of

variable in y if necessary, the metric tensor of M takes the form:

(5.3) g = dx2+
d^-Tn.

(26 -3a)2/3

From (5.1),(5.3),and the equation of Gauss we know that the function /i=

u(x) satisfiesthe following differentialequation:

(5.4) /'(*) +
V2

2B-3u
= {2p-^){2n2-2pli-c)

Solving (5.4) for ju' yields

(5.5) ti'2= (3ai- 2p)2{b{ip - 3≫)2/3- c - //2},

where 6 is an integration constant satisfying b(2fi- 3/n)2'3>c + ju2. Such con-

stant exists at least locally, since (2fi ―3ju)2= (2 ―2//)2> 0.

Conversely, suppose that b, c and /?# 0 are constants and /i(x)is a function

with pi # 0, 2)5/3 which satisfy(5.5) on some open interval /. We define a metric

tensor g on U = I x R by (5.3) and define a symmetric bilinear map a on (£/,#)

by

(5.6) a(e＼,ei)= (2fi-fi)e＼, a(ehe2) = fie2, a(e2,e2) = jue＼,

where e＼=d/dx and e2 = (2/?- 3pi)l^3d/dy. Then by a straight-forward com-

putation we conclude that ((U,g),a) satisfiesconditions (1), (2) and (3) of

Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2 we obtain the following.

Theorem 5.1. Let L : M ―>M2(4c) be a Lagrangian H-umbilical surface

with K # c, c+ (4/9)H2. If M has constantmean curvature6 # 0, then
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(1) there exist a constant b and a nonzero function fi(x)# 2/?/3 satisfying

(5.5),

(2) there existsa coordinate system {x, y} on M such that the metric tensor of

M is given by (5.3), and

(3) the second fundamental form of L is given by

(5.7) h{ei,ei) = (2fi-fi)Jei, h{eue2) = fiJe2, h(e2,e2) = fiJei,

where ex = d/dx, e2 = (20 - 3fi)l/3d/dy.

Conversely, suppose that b, c and (1^0 are constants and /i(x)is a function

satisfying(5.5) and ju(x) ^ 0, 2/?/3 on some open interval I. Let g be the metric

tensor on U = I x R defined by (5.3). Then, up to rigid motions of M2(Ac), there is

a unique Lagrangian H-umbilical isometric immersion of (U,g) into M2(4c) whose

second fundamental form is given by (5.7). Such a Lagrangian H-umbilical surface

has prescribed constant mean curvature fi＼"0.

Remark 5.1. If we put

(5.8) Mm) = I

(3^-2/?)

dn

b(2p - 3n)2/3 - c - n2

then $b(fi) is a monotonic function, since 3ju―2ft = 2//―X is assumed to be

nowhere zero. Hence, </>bhas an inverse function which is denoted by fa1. In

terms of fa＼ the solutions of (5.5) is given either by /u(x)= <f>b~l(x+ a) or by

ju(x)= fal(-(x + a)), where a is a constant.

Theorem 5.1 yields the following.

Corollary 5.2. If M is a Lagrangian H-umbilical surface in C2 with

constant mean curvature, then M is one of the following Lagrangian H-umbilical

surfaces:

(1) a minimal Lagrangian surface,

(2) an open portion of Lagrangian circular cylinder. Sl(r) x R a C xC =

C2, on a Lagrangian Clifford torus: Sl(r) x Sl(r) a C2,

(3) an open portion of a Lagrangian pseudo-sphere, or

(4) a complex extensor which is not an open portion of a Lagrangian

pseudo-sphere.

Proof. Let M be a Lagrangian //-umbilicalsurfacein C2 with constant

mean curvature.If M is flat,then the second fundamental form of M takes the
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form:

(5.9) h(ehei) = pJeu h{ehe2) = h(e2,e2) = 0,

for some constant /? # 0, according to Lemma 3.2 unless k = //.Thus, (3.8) and

(3.9) imply co^ = 0. Hence, by (2.3) we obtain DH ― 0. These imply that M is a

flat surface with parallel mean curvature vector. Hence, using (5.9), we may

conclude that M is an open portion of a Lagrangian circular cylinder or a

Lagrangian Clifford torus.

If M is a nonflat Lagrangian //-umbilical surface with nonzero constant

mean curvature, then from the discussion given at the beginning of this section,

we know that the integral curves of e＼are geodesies in M. Therefore, by applying

Theorem 4.3 of [1],M is either an open portion of a Lagrangian pseudo-sphere or

a complex extensor. □

Remark 5.2. If a Lagrangian //-umbilical surface M with constant mean

curvature ftis a complex extensor, then, up to rigid motions of C2, itis given by

the tensor product F R G, where G is the unit circlein E2 centered at the origin

and F is the unit speed curve in the complex plane C defined by

(5.10) F(s) = y+UQxpU＼2p-M(x))dx＼dt＼

where y is a complex number and n{x) is given either by jn(x) ―(f>bl(x + a) or by

ju(x)= </>Ll(-(x+ a)), where <f>~1is defined in Remark 5.1.

6. Lagrangiam //-umbilical surfaces with k = afi

First we give the following existence theorem.

Theorem 6.1. For any given constants c and a, there exists a Lagrangian H-

umbilical surface in M2(4c) whose second fundamental form satisfies

(6.1) h(e＼,e＼)= ajuJe＼, h(e＼,e2)= juJe2, h(e2,e2) = fiJeu

for some nonzero function /i with respect to some orthonormal frame field e＼,e2.

Proof. When cc――I, this follows from Corollary 3.6. When a = 2, this

follows from Theorems 5.1 and 6.1 of [2] and Theorem 3.1 of [1].

Now, suppose a ^ ―1,2. If we choose a sufficientlylarge positive number b

such that b > (a ―2)2(c + ju2)^2^^2^ on some open interval / c (0, oo), then
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(6.2) Mri =
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r

―

J

≪(≪-3)/(<x-2) b-(a-2)2(c + n2)n2/(≪-2)

is an increasing function on /. Let ju(x)= i//bl(x) denote the inverse function of

＼]/bdefined on the corresponding open interval, say /.

We define a metric tensor g on U = / x R by

(6.3) g = dx2 + iu2/{≪-2)dy2

and define a symmetric bilinear map a on (U,g) by

(6.4) (j(ei,ei)= ctfiiei,<y{e＼,e2)= /ie2, <r(e2,e2)= juei,

where e＼= d/dx, e2 = ju~l^(X~2^d/dy.Then, by a straight-forward computation

we conclude that ((U,g),a) satisfiesconditions (1),(2) and (3) of Theorem 2.1.

Thus, by Theorem 2.1, there existsa Lagrangian isometric immersion from (U,g)

into M2(4c) whose second fundamental form is given by (6.1). □

Theorem 6.2. Let M be a nonflat Lagrangian H-umbilical surface in C2

whose Gauss curvature K and squared mean curvature H2 are proportional. Then

M is one of the following Lagrangian surfaces:

(1) a minimal Lagrangian surface,

(2) an open portion of a Lagrangian pseudo-sphere, or

(3) a complex extensor which is not an open portion of a Lagrangian

pseudo-sphere.

Proof. Assume that M is a non-minimal Lagrangian if-umbilical surface in

C2 whose Gauss curvature K and squared mean curvature H2 are proportional,

that is, K = aH2 for some real number a. Since M is Lagrangian /f-umbilical, the

second fundamental form of M in C2 satisfies

(6.5) h(ei,ei) = XJei, h(ehe2) = juJe2, h(e2,e2) = juJeh

for some function X, ji # 0 with respect to some orthonormal frame field e＼,e2.

From (6.5), the equation of Gauss and the definition of the squared mean

curvature, we obtain

(6.6)

Solving (6.6) yields

(6.7)

aX2 + 2(a - 2)/U +(a + 4U2 = 0

X ― -{(2-a)M±2}J(l-2a)M2)
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Since X is real,(6.7) yields a < 1/2. Thus, there is real number a such that a =

4(a - l)/(a2 + I)2. Thus, we get

(6.8) {a+l)2K = 4{a-l)H2.

From (6.5) and (6.8), we know that the second fundamental form of M in C2

satisfies (6.1) for some nonzero function ju. Hence, by applying (3.9) and (3.10),

we get (1 + cc)e2{i― 0 which implies that either M is minimal or eiii = 0. If eifi =

0, (3.9) yields (2 - ai)fico＼(ei)= 0. Thus, we have either a = 2 or Veiei = 0.

If a = 2, M is an open portion of a Lagrangian pseudo-sphere according to

Theorem 3.1 of [1].

If Veie＼ = 0, then, according to Theorem 4.3 of [1], M is either a flat surface

or a complex extensor. However, the flat case cannot occurs. □

Remark 6.1. We are able to determine the intrinsic and the extrinsic

structures of a Lagrangian surface in a complex space form M2(4c) which

satisfies(6.1) for a # ―1,2, too. In fact,by applying the same method utilizedin

section 5, we may prove that the function ju of such a Lagrangian surface is a

function of x which is a solution of

(6.9) u＼x)2 = ju2(≪-i)/(≪-2){b- (a - 2)2(c + ju2)^^}

for some constant b and, moreover, the metric tensor of such a Lagrangian

surface is given by

(6.10) g = dx2+ju2/(-a-2)dy2

with respect to a coordinate system {x, y} satisfyinge＼= d/dx, e2 = fi^/^'^d/dy.

Remark 6.2. If the Lagrangian ff-umbilical surface M mentioned in

Theorem 6.2 is a complex extensor, then, up to rigid motions of C2, itis given by

the tensor product F (g)G, where G is the unit circlein E2 centered at the origin

and F is the unit speed curve in the complex plane C defined by

(6.11)
fV / f ＼ A

F(s) = y + f expf / ocju{x)dxjdt)

j ＼ ＼ j / /

where y is a complex number, a a real number and ju(x)a solutionof (6.9).
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7. Lagrangian //-umbilical surfaces with ju ― /j,(y)

All of the Lagrangian //-umbilical surfaces studied in sections 4, 5 and 6

satisfythe condition eiu = 0.

In this section we determine the intrinsicand

Lagrangian //-umbilicalsurfacesin M2(4c) whose

satisfies

the extrinsic structures of

second fundamental form

(7.1) h(ei,ei) = XJei, h(eue2) = fiJe2, h(e2,e2) = juJei, e＼n= ti

for ^t^O, A/2 with respect to some suitable orthonormal frame field e＼,e2.

From section 3 we know that, with respect to some coordinate system {x, y},

the metric tensor of such a Lagrangian //-umbilical surface M takes the form:

(7.2)

where e＼

(7.3)

g = E> dx2 + G2dy2, E =

E~ld/dx, e2

^T7f, G
= q{y)exp

= G ld/dy and k is defined by

*(x,y)
f(xW/3 - 3m(x)n

(M

for some function f(x) and nonzero functions m(x), q(y). Moreover, from

section 3 we also have

(7.4)

(7.5)

(7.6)

Solving (7.6)

(7.7)

< /(

x = -n +

ju-2ju5/2 + c/i-l/3

q{y)

/(*)

( Ay) V

-2^ + ciTl^)q＼y)

E

The assumption e＼fi= 0 is equivalent to fix = 0, that is, /i = fi(y). Thus (7.3)

yields k = 0. Hence, equation (3.22) reduces to

q{y)

IS a constant, which is denoted by b.

= -Wm

m(

X)

which implies in particular that f(x)/m(x)

Therefore, (7.5) can be rewritten as

uUV00 CW

yields

q(y)2 = ≫'2{9(a+ bf - //3 + c^)yx

where a is an integration constant.
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Consequently, the metric tensor of M takes the form:

(7.8) 9 =

M12

9(a + V/3-/"4/3 + ^-2/3)
df

679

Thus, by applying a suitable change of variable in x if necessary, we obtain

(7.9) g = ft'2/3dx2 + G2 dy2, G =
^(a
+ bf - ^3 + cpr1!3)-"11.

Using (7.1), (7.4) and (7.9) we conclude that the second fundamental satisfies

(7.10) h(euei) = (bjul/3-ju)Jeu h{eue2) = /uJe2, h(e2ie2) = {iJe＼.

Conversely, suppose that a, b are constants and pi―pi(y) a nowhere zero

function which satisfy a > /j,~2/3(fj,2―c ―b/u4/3) on some open interval /. We

define a metric tensor g on U = R x / by (7.9) and define a symmetric bilinear

map a on (U,g) by

(7.11) o{eue＼) = (bfil/3- fi)eh a{eue2) = /ue2, a(e2,e2) = fiei,

where e＼= [il/38/dx, e2 = G~1d/dx. Then we can verify by a straight-forward

computation that {(£/,g),a} satisfiesconditions (1),(2) and (3) of Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2, we obtain the following.

Theorem 7.1. Let L : M ―> M2(4c) be a Lagrangian H-umbilical surface

whose second fundamental form satisfies

(7.12) h{eue＼)=Ue＼, h(eue2) = piJe2, h{e2,e2) = fiJei

for n # 0, X/2 with respect to an orthonormal frame field e＼, e2. If e＼/j.= 0, then

there exist constants a and b such that

(1) ^ = V/3 -H and

(2) the metric tensor of M is given by (7.9) with respect to a coordinate system

{x, y} such that e＼= i^^d/dx, e2 = G~ld/dy.

Conversely, if /u ― ju(y) is a nowhere zero function and a, b are constants which

satisfy a > ju~2/3({i2― c ―b/u4/3) on some open interval I, then, up to rigid motions

of M2{Ac), there is a unique Lagrangian H-umbilical isometric immersion of (U,g)

into M2(4c) whose second fundamental form is given by (7.10), where U = R x /

and g is the metric on U defined by (7.9).

Finally, we remark that, unless the function /iis constant, the integral curves

of JH are not necessary geodesies for the Lagrangian //-umbilical surfaces given
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in Theorem 7.1. Consequently, these Lagrangian surfacescannot be complex

extensorsin the complex Euclidean plane when c = 0.
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