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Abstract 

In our previous paper [Synthetic vector analysis, Internat. J. Theor. 

Phys. 41 (2002), 1165-1190], we have shown, following the tradition of 

synthetic differential geometry, that div and rot are uniquely 

determined, so long as we require that the divergence theorem and the 

Stokes theorem should hold on the infinitesimal level. In this paper, we 

simplify the discussion considerably in terms of differential forms, 

leading to the natural derivation of exterior differentiation in the usual 

form. 

1. Introduction 

Vector analysis presupposes dogmatically that every physical 

quantity is either a scalar or a vector, excluding the possibility of tensors 

as natural physical quantities. In vector analysis, the force and the flux 

are equally vector fields, but, to tell the truth, the former is a field of 

tensors of degree 1, while the latter is a field of skew-symmetric tensors 

of degree 2. In electromagnetism, E and B are fields of tensors of degree 
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1, while D and H are fields of skew-symmetric tensors of degree 2. It is 

not desirable to apply div to E or B, though curl is indeed applicable to 

both of them. It is not desirable to apply curl to D or H, while div is 

indeed applicable to both of them. Since E and D as well as B and H are 

proportional in the vacuum, the confusion is apt to occur and develop! 

Some physicists even insist wrongly that the CGS system of units, in 

which 100 =μ=ε  holds, is superior to the MKSA system of units. 

Nowadays the number of textbooks on elementary physics 

(elementary electromagnetism in particular) using differential forms in 

place of vector analysis is increasing, though there are still only a few. It 

is easy to give a dictionary of vector analysis into the framework of 

differential forms, so that vector analysis is really to be absorbed into the 

calculus of differential forms. Nevertheless vector analysis is still popular 

among physicists and students of physics, mainly because vector analysis 

is highly intuitive, while the calculus of differential forms is not. The 

exterior differentiation in the calculus of differential forms is usually 

given as a decree without taking care of its intuitive or physical 

foundations at all. 

What is easily forgotten, such geniuses as Newton and Leibniz 

discussed advanced calculus in terms of nilpotent infinitesimals without 

using limits at all. It was in the 19th century, in the midst of the 

industrial revolution, that advanced calculus was reformulated in terms 

of limits, while nilpotent infinitesimals were intentionally neglected as 

anathema. Synthetic differential geometry, born in the middle of the 20th 

century, succeeded in reviving nilpotent infinitesimals in advanced 

calculus and differential geometry without hurting mathematical rigor at 

all. Newton and Leibniz saw nilpotent infinitesimals not in this world but 

in another world, and the 20th century witnessed powerful gadgets, such 

as seen in forcing techniques of set theory, sheaf theory and topos theory, 

by which many other mathematically meaningful worlds can be 

coherently constructed. Synthetic differential geometry regained the 

natural meaning of exterior differentiation in differential forms. The 

principal objective in this paper is to convince physicists that the exterior 



SYNTHETIC VECTOR ANALYSIS III … 337 

differentiation is well motivated, just as div and curl in vector analysis. 

The paper is more expository than anything else. We have tried to help 

physicists understand how naturally vector analysis develops into the 

calculus of differential forms. 

2. Preliminaries 

We assume that the reader is familiar with Chapter 1 of 
Lavendhomme [5]. The set R  of (extended) real numbers is required to 

abide by the Kock-Lawvere axiom (cf. p. 2 of [5]). We denote by D the set 

of real numbers whose squares vanish. The Kock-Lawvere axiom implies 

that, given a mapping RR →ϕ n:  and x, ,nR∈a  there exists a unique 

( ) ( ) nR∈ϕ′ ax  such that 

( ) ( ) ( ) ( )dd axxax ϕ′=ϕ−+ϕ  

for any .Dd ∈  It can be shown easily that the mapping nR∈a  

( ) ( ) ,nR∈ϕ′ ax  which is to be regarded as the derivative of ϕ at x, is 

linear. The mapping ( )xϕ′  goes as follows: 
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1

n
n

x
x

x
x

dxdxx
∂
ϕ∂++

∂
ϕ∂=ϕ′  

We denote by ie  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0

0
1
0

0

 

( ),1 ni ≤≤  where 1 is positioned at the ith place. Given →γ +1: mD  

,nR  De ∈  and a natural number i with ,11 +≤≤ mi  we write i
eγ  for 

the mapping ( ) ( ) ....,,,,...,,...,, 111
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Let us consider the usual three-dimensional space ,3R  which is the 

favorite space of vector analysis. Viewing the force ( )xf  at 3R∈x  as a 

vector in the usual way should be called an idealistic or Platonic view of 

force. Our pragmatic or operational view of force is to consider how to 

measure ( )xf  experimentally. If we move from x to dax +  infinitesimally 

with 3R∈a  and ,Dd ∈  then we get the power ( ) ,daxf ⋅  where · 

denotes the inner product of vectors. Our pragmatic view of force 

recommends that the force at x should not be ( )xf  but the linear 

mapping 3R∈a ( ) .R∈⋅ axf  We stress that ( )xf  is recognized via 

the linear mapping ( ) .3 RR ∈⋅∈ axfa  This is our view of force as a 

tensor of degree 1. Therefore a field of forces is no other than a 

differential 1-form from a mathematical viewpoint. 

Let us consider a flow of air in ,3R  which is very often represented by 

a field f of vectors. Our pragmatic view of flow recommends that we 

should measure how much air passes in a unit time through the 

infinitesimal parallelogram whose four vertices are x, ,1dax +  2dbx +  

and 21 dd bax ++  with 3,, R∈bax  and ., 21 Ddd ∈  The result is 

surely ( ) ( ) ,21ddbaxf ×⋅  where × stands for the vector product. We would 

like to consider pragmatically that the skew-symmetric bilinear mapping 

( ) ( ) ( ) RRR ∈×⋅×∈ baxfba 33,  is no other than the mathematical 

representation of the flow at x. In this sense, the flow is represented by a 

field of skew-symmetric tensors of degree 2, namely, by a differential 

2-form. 

We know well that every linear mapping from 3R  to R  is of the form 

zyx ddd 321 α+α+α  with ,1α  ,2α  ,3 R∈α  while every skew-symmetric 

bilinear mapping from 33 RR ×  to R  is of the form zzy ddd 21 α+∧α  

.3 yxx ddd ∧α+∧  We know well that every skew-symmetric trilinear 

mapping from 333 RRR ××  to R  is of the form zyx ddd ∧∧α  with 

.R∈α  More generally, every skew-symmetric k-linear mapping from 
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k

nn RR ××  to R  is of the form 

∑
≤<<≤

∧∧α
+

nii
iiii

k

kk
xx

1

111
1

...,, .dd  

In vector analysis, the operators div and rot are determined uniquely 
so that the divergence theorem and the Stokes’ theorem should hold on 
the infinitesimal level, respectively. In the same way, the exterior 
differentiation from a differential k-form to a differential ( )1+k -form is 

determined uniquely so that Stokes’ theorem should hold on the 
infinitesimal level. The principal objective in this paper is to give a lucid 
explanation on these facts as elementarily as possible from the 
standpoint of synthetic differential geometry, while avoiding the utmost 
generality, which would usually be liable to defy ordinary physicists. 

3. The Fundamental Theorem for Gradient 

Theorem 1. Let ϕ be a scalar field on .3R  Let dDdt ax +∈:  be 

a tangent vector at x on .3R  Let .De ∈  Then we have 

( )( )∫ ∫∂
ϕ=ϕ

et et; ;
,d  

where 

( ) ( ) ( ).; xax −+=∂ eet  

Proof. This is no other than the definition of ,ϕ′=ϕd  namely, 

( ) ( ) ( ) ( ) .ee axxax ϕ′=ϕ−+ϕ  9 

4. The Fundamental Theorem for Rotation 

Theorem 2. Let zhygxf ddd ++=ω  be a differential 1-form on .3R  

Let ( ) 21
2

21,: ddDdd bax ++∈γ  be an infinitesimal parallelogram 

at x on .3R  Let ( ) ., 2
21 Dee ∈  Then we have 

( )( )∫ ∫γ∂ γ
ω=ω

21 21,; ,;
,

ee ee
d  
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where 

( ) ( ) ( ) ( ) ( )2
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for any ( ) ,, 33 RR ×∈ba  so that 

( )
( )∫ γ∂

ϕ=ω
21,;

21 .,
ee

eeba  

Then it is easy to see that ϕ is a skew-symmetric bilinear mapping, so 

that ϕ is of the form 

yxxzzy dddddd ∧α+∧α+∧α=ϕ 321  

with ( ).3,2,1=∈α ii R  By taking 

1. 2ea =  and ,3eb =  

2. 3ea =  and ,1eb =  or 

3. 1ea =  and ,2eb =  

we get 
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easily. This completes the proof. 9 

5. The Fundamental Theorem for Divergence 

Theorem 3. Let yxhxzgzyf dddddd ∧+∧+∧=ω  be a differential 

2-form on .3R� Let ( ) 321
3

321 ,,: dddDddd cbax +++∈γ  be an 
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6. The Fundamental Theorem for  

Exterior Differentiation 
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